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Abstract: Many existing fault diagnosis methods based on deep learning (DL) require numerous fault
samples to train the diagnosis model. However, in industrial applications, rotating machines (RMs)
operate in normal states for most of their service life with fault events being rare and thus failure
samples are very limited. To solve the problem above, a novel wide residual relation network (WRRN)
is proposed for intelligent fault diagnosis of the RMs. Specifically, the WRRN is trained by performing
a series of learning tasks in RMs with sufficient samples to obtain knowledge about how to diagnose,
and then it is directly transferred to realize fault task of the RM with small samples. In this method,
a wide residual network-based feature extraction module is used to generate representative fault
features from input samples, and a relation module is designed to calculate the relation score between
the sample pairs so as to determine their categories. Extensive experiments are conducted on two
RMs to validate the WRRN method. The results demonstrate that the WRRN can accurately identify
the fault types of the RMs with only small samples or even one sample. The WRRN significantly
outperforms the existing popular methods in diagnostic performance.

Keywords: rotating machines; fault diagnosis; few-shot learning; wide residual network; rela-
tional network

1. Introduction

As a multi-disciplinary research field, rotating machine (RM) fault diagnosis has been
explored by studies from mechanical engineering, machine learning, artificial intelligence,
fault tolerance schemes, and so on [1–5]. Many machine-learning (ML) methods have
been employed and modified for fault diagnosis. The ML-based fault diagnosis methods
generally include feature extraction and classifier [6–8]. The widely used feature extraction
methods include empirical mode decomposition [9], Fourier transform [10], continuous
wavelet transform (CWT) [11], and so on. The classifier-based ML contain support vector
machine [12], Bayesian [13], ensemble learning [14], and so on. However, these ML-based
fault diagnosis methods require manually extracted features, which cannot provide an
end-to-end diagnosis.

In recent decades, intelligent fault diagnosis methods based on deep learning (DL)
have become widely applied. Many DL methods for fault diagnosis in industrial machines
has been received attention due to their ability to automatically extract fault features from
monitoring signals and deliver reliable diagnostic results [15–17]. For instance, Li et al. [18]
incorporated Bayesian Gaussian mixture and convolutional neural network (CNN) to
perform bearing fault diagnosis. A bearing dataset and a gearbox dataset are used to test the
efficiency of the proposed method. Chen et al. [19] combined continuous wavelet transform
and local binary CNN to provide end–end fault diagnosis of RMs. Two experimental studies
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are conducted to verify the stability and reliability of the proposed method, including
bearing fault diagnosis and gearbox compound fault diagnosis. Zhao et al. [20] developed
a deep network based on a residual shrinkage network. A soft threshold is inserted into
the network to eliminate unimportant features, resulting in improved feature learning
ability from highly noised signals and high fault diagnostic accuracy. Most existing DNN-
based fault diagnosis methods aim to improve diagnostic accuracy given enough fault
samples, while restricted fault samples are rarely considered [21–23]. However, industrial
applications, RMs operate under the normal state in most of their service life, whereas
failure events seldom happen. Thus, it is difficult to collect sufficient fault samples to meet
the training purposes of DL models.

Transfer learning (TL) can transfer the diagnostic knowledge learned from source
domain to apply it to a related but new target domain for fault diagnosis [24–26]. Many
researchers have found that the transfer diagnostic model is formed on RM operated
in lab environment (RMLE) and then transferred to specific machines with small fault
samples for fault diagnosis. Yang et al. [27] developed a feature-based transfer neural
network (FTNN) for bearing fault diagnosis. The FTNN can learn diagnostic knowledge
from other machines to diagnose the health of the machine. Shao et al. [28] used CWT to
transform time-frequency maps from raw vibration signals. Then, the TL model based
on DL has been built and high diagnostic accuracy obtained on three datasets including
gearboxes, motors, and bearings. Guo et al. [29] proposed a transfer relation network and
employed multikernel maximum mean discrepancy to improve the transfer performance.
The effectiveness of the method is verified by four datasets, including three lab datasets
and one practical dataset. Other transfer learning-based tasks were also investigated, such
as motor fault diagnosis [30] and tool remaining useful life prediction [31]. Those TL-based
fault diagnosis methods required a certain correlation between the source domain and the
target domain, and the data from the target domain involved in training. However, it is
hard to find an appropriate dataset as source domain. Since failure events are uncommon
in real-world industrial scenarios, it is difficult to ensure that the target machine dataset
has a certain number of fault samples.

For the problem of small data, few-shot learning methods have been proven to be an
effective solution by many researchers [32,33]. The few learnings provide much practical
value and have recently received a lot of attention from researchers in the field of computer
vision. The few-shot methods are able to learn classifiers in source domains with enough
labeled data and then perform a classification task on target domains with little labeled
data of each class. Li et al. [34] developed a hierarchical Bayesian model to learn visual
concepts with just one example. Gregory et al. [35] developed a Siamese network for one
shot learning. This network used a similarity algorithm to measure the similarity between
samples. Sung et al. [36] designed a relation network to calculate the relation score between
the sample pairs to determine their types.

Inspired by the above-mentioned methods for few-shot learning methods, a novel
wide residual relation network (WRRN) is proposed in this paper for solving the few
sample problems in intelligent fault diagnosis of RMs. The method mainly includes a
feature extraction module and a relation module. The wide residual network-based feature
extraction module is used to generate representative fault features from input samples. The
relation module calculates the relation score between the sample pairs to determine their
types. The main contributions of this paper are summarized below.

1. A WRRN method is first proposed to exploit the fault knowledge learned from the
lab machine for fault diagnosis in several real-case machines with small fault data,
whereas only lab machine datasets are used for training.

2. The built wide residual network can generate more representative fault features from
input samples compared to traditional CNN methods.

3. The relation module can reveal the similarity relations between the sample pairs to
determine their categories, which can improve diagnostic performance.
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The remainder of the paper is organized as follows. Section 2 describes problem
definition, the proposed WRRN method and the optimization objective of the WRRN.
Section 3 presented a fault diagnosis procedure based on WRRN. In Section 4 discusses the
experimental results. Finally, Section 5 summarizes the proposed method.

2. Proposed Method
2.1. Problem Formulation

The dataset for the WRRN method mainly includes training dataset Dtrain and the
test dataset Dtest, where the dataset Dtrain is a relatively large labeled dataset from RMLE
and the dataset Dtest is only a small dataset from RM operated in real-world environments
(RMRE). The purpose of the WRRN is to can utilize the transferable diagnostic model
trained on the dataset Dtrain to the test datasets Dtest for fault diagnosis. Both training
dataset and the test datasets include support set S and query set Q. The Dtrain and the Dtest
can be redefined as Dtrain = {Strain,Qtrain} and Dtest = {Stest,Qtest}, respectively, where
the S represents labeled dataset, and the Q represents unlabeled dataset. The support set
S = {(xi, yi)}m

i=1 consists of C health conditions, each health conditions with K labeled
samples. For each episode, the total number of S samples have m = K× C. The few-shot
learning method is to diagnose the health conditions of the Q based on the S. This setting
can be called C-way K-shot diagnosis.

For each training episode, a certain number of samples are randomly selected from
the Dtrain to construct a C-way K-shot setting as follows: T = Strain ∪ Qtrain where
Strain = {(xi, yi)}m

i=1 and Qtrain =
{(

xj, yj
)}n

j=1. |T| = m + n is the total number of
the samples in the task T. In the training process, the WRRN model F (S,Q; ϑ) is learned
on the Strain labeled to minimize the predictions loss of Qtrain.

F (S,Q; ϑ) : (Strain,Qtrain)→ CQtrain (1)

where CQtrain represents the health conditions of the Qtrain. θ is indicated as

ϑ = argmin
θ

∑
Dtrain

S(Strain,Qtrain) (2)

where S(·) represents the similarity between the Strain and the Qtrain.
For test process, the WRRN model ϑ is transferred to diagnose the test dataset

Dtest = {Stest,Qtest}, where the Stest represents small-labeled samples, and the Qtest needs
to be diagnosed.

F (S,Q; ϑ) : (Stest,Qtest)→ CQtest (3)

In this paper, the assumptions are given as:

1. The different RMs have the same machine health states.
2. The training dataset comes from a RMLE. The test dataset is from a RMRE, which is

not required to be involved in the training process.

2.2. Wide Residual Relation Network

As illustrated in Figure 1, the WRRN consists of a CWT module Wδ, feature extractor
module Fϕ and relation module Rθ . The CWT module Wδ is adopted to convert time-
frequency maps from raw signals. The feature extractor Fϕ can mine time-frequency maps
to generate representative fault features. Then the features are fed into the relation module
Rθ . The relation module Rθ calculates the similarity relations between the sample pairs to
determine their categories. The WRRN is described in detail below.
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Figure 1. Structure illustration of the proposed TRPGN model.

CWT module: The CWT can reveal fault information at low-frequency and high-
frequency information, preserving the effective signal features. In the CWT module,
wavelet time-frequency maps are formed by calculating the inner product of the time-
domain data x(t) and the wavelet basis function ϕu,s(t), which are expressed as

Wδ(u, s) =
1√

s

∫ −∞

−∞
x(t)ψ

(
t− u

s

)
dt (4)

where s is the scale factor of CWT, and u is the time shift factor. Then, the support set
S = {(xi, yi)}m

i=1 and the query set Q =
{(

xj, yj
)}n

j=1 are converted to wavelet time-
frequency maps by CWT and fed to the feature extractor module.

Feature extractor: The feature extractor Fϕ is adopted to mine useful information and
extract high-level features from the wavelet time-frequency maps. The specific structural
parameters of the feature extractor Fϕ are shown in Table 1. The feature extractor Fϕ

adoptes a wide residual network (WRN), which consists of four wide residual blocks and
one pooling block. The operation of wide residual block is formulated as

Wl

(
xl

i

)
= F

(
cl xl

i + bl
)

(5)

where Wl

(
xl

i

)
is convolutional operation. cl and bl represent the convolutional kernel and

bias at layer l, respectively. The operation of pooling block is defined as

Pl

(
xl

i

)
= Avgxa,b

(
xl

i

)
(6)

where a and b denote the length and width of the pool window, respectively. For inputs of
the support set S = {(xi, yi)}m

i=1 and the query set Q =
{(

xj, yj
)}n

j=1, the corresponding

outputs of the feature extractor Fϕ, are described as high-level features fS = { fi}m
i=1 and

level features fQ =
{

f j
}n

j=1, respectively.
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Table 1. Architecture of feature extractor and relation module.

Module Group Name Block Type = B (3,3)

Feature extractor
Fϕ

Conv_1 [3× 3, 16]

Conv_2
[

3× 3, 16× 2
3× 3, 16× 2

]
× N

Conv_3
[

3× 3, 16× 3
3× 3, 16× 3

]
× N

Conv_4
[

3× 3, 16× 4
3× 3, 16× 4

]
× N

Avg-pool [5× 5]

Relation module
Rθ

Conv_1
[

3× 3, 16× 4
3× 3, 16× 4

]
× N

Conv_2
[

3× 3, 16× 4
3× 3, 16× 4

]
× N

Avg-pool [1× 1]
FC 1 8
FC 2 1

To explicitly indicate the feature relations between support set and query set, support–
query pairs are constructed. The support–query pairs are represented as

Gm
(

fS, fQ
)
=
[

fi, f j
]

(7)

where fi ∈ fS = { fi}m
i=1, gj ∈ fQ =

{
f j
}n

j=1. [·, ·] is the concatenation operation.
Relation module: The relation module Rθ is composed of WRN and two fully con-

nected layers. The WRN is composed of two wide residual blocks, which can mine relational
features of support–query pairs. The specific structural parameters of the relation module
Rθ are shown in Table 1. The corresponding operation is shown in Equation (5). For inputs
of the support–query pairs Gm, the corresponding outputs of the WRN are described as
relational features fG = { fi}m

i=1. The relational features fG = { fi}m
i=1 are fed into connected

layers to the relation score about support–query pairs. The sizes of two fully connected
blocks is 1× 8 and 1× 1, respectively. The output of the fully connected blocks in l is
expressed as

Gl

(
xl

i

)
= f

(
ol xl

i + ρl
)

(8)

where ol and ρl represent the weight and bias of fully connected blocks at layer l. The
relation module Rθ can calculate the relation score about feature map pairs Gm to preform
relationship learning. The relation score ri,j is a scalar between 0 and 1 and represents the
similarity between the support set and the query set. This means that the higher relation
score belongs to the same category, while the lower relation score belongs to a different
category. Thus, the output of the relation module Rθ is defined as

ri,j = Rθ(S
(
Gn
(

fS, fQ
))

, i = 1, 2, . . . , C (9)

2.3. Optimization Objective of the WRRN

Considering that the WRRN is a similarity score regression task, mean square error
(MSE) is adopted to calculate loss function of the WRRN. The loss function is formulated as

LMSE =
m

∑
i=1

n

∑
j=1

(ri,j − 1·
(
yi == yj

)
)

2 (10)

If yi and yj are in the same category, the label is 1; otherwise, the label is 0.
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Suppose θFϕ and θRθ
are the parameters of the feature extractor module Fϕ and the

relation module Rθ , respectively. The (8) is rewritten as

θ∗Fϕ
, θ∗Rθ

← argmin
θFϕ ,θRθ ,

LMSE

(
θFϕ , θRθ

)
(11)

where θ∗Fϕ
and θ∗Rθ

are optimal parameters. The training pipeline of the WRRN in an epoch
is described in Algorithm 1.

Algorithm 1. Mini-batch training algorithm for the WRRN. b and epochs denote the batch size
and the number of iterations

Input: support set Strain = {(xi, yi)}m
i=1; query set Qtrain =

{(
xj, yj

)}n

j=1
;

Feature extractor module Fϕ; relation module Rθ .

1. for i = 1 to epochs do
2. Randomly sample K support set Strain = {(xi, yi)}m

i=1 and N query set

Qtrain =
{(

xj, yj

)}n

j=1
from each category

of Dtrain to construct b;
3. Forward update LMSE

(
θFϕ

, θRθ

)
4. Backward update Fϕ and Rθ ;
5. end for
6. return Fϕ and Rθ for the classification of test datasets

3. Fault Diagnosis Procedure Based on WRRN

As shown in Figure 2, the WRRN includes the training process and test process. In
the training process, the WRRN model is trained on the dataset from the RMLE. In the test
process, the trained WRRN model is transferred to diagnose the health conditions of the
RMLE. These two processes are described below.
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In the training process, fault simulation experiments are conducted on RMLE to
generate fault data of different fault types. The simulated fault types by the RMLM need
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to include all fault types occurring in the RMRM, but do not require the same type of
machine as the RMRM. The RMLE dataset is used as the training dataset Dtrain. Next,
the dataset Dtrain are converted by CWT into wavelet time–frequency maps with a size
of 28 × 28. Correspondingly, the support set Strain = {(xi, yi)}m

i=1 and the query set
Qtrain =

{(
xj, yj

)}n
j=1 are constructed. The built WRRN model is trained on the Strain and

Qtrain. The WRRN model is trained in such way that the final loss LMSE is minimized, and
the training process is completed. This trained WRRN model is directly used to diagnose
the health conditions of the RMLEs.

In the test process, the test dataset Dtest is collected from the RMRE, where the
RMRE has a very small quantity of labeled samples. The test datasets Dtest are converted
by CWT into wavelet time–frequency maps with a size of 28 × 28. The support set
Stest = {(xi, yi)}m=K×C

i=1 and the query set Qtest =
{(

xj
)}n

j=1 are constructed from the test

dataset Dtest. The Stest = {(xi, yi)}m
i=1 represents the small-labeled data from the RMRE.

The Qtest =
{(

xj
)}n

j=1 represents the diagnosed data. Both sets are fed into the trained
WRRN model. The WRRN model can calculate the similarity score between the Qtest and
the labeled Stest to figure out the health conditions of the Qtest.

4. Experimental Studies
4.1. Experimental Setup and Dataset Description

The WRRN method is validated by RMs from two different fields, including a shafting
machine and a steam turbine.

The shafting machine is a self-built testbed to obtain large amounts of labeled data
by simulating failure experiments. The shafting machine consists of three intermediate
bearings, a magnetic powder brakes, a flange, and a drive motor, as shown in Figure 3a.
The shafting machine dataset has three machine health conditions: misalignment (MS),
imbalance (IB), and normal (N). The shafting machine operates under five operating
conditions controlled by the speed of the shaft. Variation signals are collected for 2 min at
2000 Hz. A total of 1000 samples are obtained each with 1024 data points for each health
condition. Table 2 shows a detailed description of the dataset.
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Figure 3. Test bench for RMs: (a) the shafting machine operated in lab environment; (b) the steam
turbine operated in real-world environments.

As shown in Figure 3b, the steam turbine consists of a speed increasing gearbox, a rotor
mechanism, a coupling, a bearing based, an electric motor, and an oil pump. The rotation
seep of motor is 6680 r/min, and the flow rate of the oil circuit system is 1300 L/min. The
steam turbine has three health conditions, including N, IB, and MS. Variation signals are
collected at 20 kHz. A total of 1000 samples each with 1024 data points is collected for each
health condition. Table 2 shows a detailed description of the steam turbine dataset.



Sensors 2022, 22, 4161 8 of 14

Table 2. Introduction to datasets of lab machines and real-case machines.

Datasets Health State Operating Conditions Number of Samples

Shafting machine

N
I
B

MS

L1–200 r/min 3 × 1000
L2–250 r/min 3 × 1000
L3–300 r/min 3 × 1000
L4–350 r/min 3 × 1000
L5–400 r/min 3 × 1000

Steam turbine
N
IB

MS

6680 r/min
1300 L/min 3 × 1000

Considering that the shafting machine dataset is recorded from the RMLE, and the
steam turbine dataset is from the RMRE, the transfer experiments of shafting machine
to steam turbine are carried out. The shafting machine dataset is collected under five
operating conditions. Thus, Table 3 lists five transfer tasks: A1, A2, A3, A4, and A5. For
instance, the task A1 represents the shafting machine data from the L1 operating condition
as the training dataset and the steam turbine dataset as the test dataset.

Table 3. Description of fault diagnosis task.

Task Training Dataset from Shafting Machine Testing Dataset

A1 L1 Steam turbine
A2 L1, L2 Steam turbine
A3 L1, L2, L3 Steam turbine
A4 L1, L2, L3, L4 Steam turbine
A5 L1, L2, L3, L4, L5 Steam turbine

4.2. Results and Discussion

To explore the impact of the WRN as feature extractors on the diagnostic performance
of the WRRN, a comparative experiment with the CNNRN method using the CNN as
feature extractors is carried out. The experiment settings of 1-shot, 3-shot, 5-shot, 8-shot,
and 10-shot are carried out to investigate the impact of the WR as feature extractors on
the diagnostic performance of the WRRN method. For instance, 1-shot represents that one
sample from each health state in the shafting machine is taken as the support set Strain
for the training process. For the test process, the 1-shot indicates that only one sample
from each health state in the steam turbine is labeled and taken as the support set Stest
for test process. Taking task A1 as an example, the impact of the fault sample size on the
diagnostic performance of the WRRN method is explored. For each experiment setting,
the training strategy of the WRRN method follows the usual zero-shot learning way by
episode-based training. These two methods adopt Adam with an initial learning rate 10−3

and half annealing every 1000 sets for end-to-end training.
Figure 4 displays the diagnostic mean accuracies and standard deviations (Std) of the

WRRN method and the CNNRN method, where both methods are conducted in ten trials.
The results reveal that the diagnostic accuracies of the WRRN method are significantly
higher than those of the CNNRN method by at least 5% in the five diagnostic tasks. From
the Std perspective, it is also seen that the diagnostic performance of the WRRN method
is significantly more stable than that of the CNNRN method. This can prove that the
WRN has superior feature extraction capability, which enables the relation module to better
discriminate the similarity relations between sample pairs, so as to improve the diagnostic
performance of the WRRN. Furthermore, as the fault sample size from the steam turbine
increases, the diagnostic accuracy improves. The WRRN method achieves almost 100%
diagnostic accuracy, and the lowest Std in task 10-shot. The conclusion from the results is
that increasing the fault sample size significantly improves the diagnostic performance of
the WRRN method.
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Figure 4. Diagnostic performance comparison on methods CNNRN and WRRN.

Figure 5 shows the Pareto charts of diagnostic performance of the WRRN method for
five settings under task A1. Each plot in Figure 5 represents the number of misidentified
testing samples in all health conditions from largest to smallest, and the cumulative fre-
quency of misidentified samples. The results also show that most of the fault samples with
incorrect diagnoses are related to the inner race fault samples, while the misdiagnosis rate
between the health samples and the outer race fault samples is much smaller. This implies
that the WRRN method can accurately diagnose the health state and fault state, which is
a critical need in real-world engineering applications. These results demonstrate that the
WRRN trained on the shafting machine can be directly transferred to the steam turbine for
fault diagnosis and achieve superior diagnosis performance.
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Figure 5. Diagnostic performance of WRRN method for five settings under task A1.

It can be seen from Figure 4 that the diagnostic accuracy of the WRRN method is
relatively low on the 1-shot and 3-shot settings, especially the diagnostic accuracy of
the WRRN method on the 1-shot is only 87.1%. Therefore, it is explored to improve the
diagnostic performance of the WRRN method by increasing the training data size when
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the fault samples of the steam turbine are relatively small. Figure 6 displays the diagnostic
mean accuracy and standard deviations (Std) for the different settings. It can be shown from
Figure 6 that as the training dataset size increases, the diagnostic mean accuracy increases,
and the Std decreases accordingly. The WRRN method achieves almost 100% diagnostic
accuracy and the lowest Std in task A5. It can be concluded that the diagnostic performance
of the WRRN method for the steam turbine can be improved by increasing the training data
size when there is only one sample of each fault type from the steam turbine. In addition,
it can be found that the diagnostic accuracy of the WRRN method under 10-shot setting
is as high as 100% when the task A1. It can also be concluded that when there is a certain
amount of each fault type from the steam turbine, the WRRN method can also achieve
effective diagnostic performance.
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Figure 6. Diagnostic performance of the WRRN method under different training dataset size for the
different setting.

Figure 7 displays the distribution of similar scores between each health state. It can be
concluded from the Figure 7 that the similarity scores of each category increase gradually
with the increase of the training data size. The similarity scores for each category in task
A5 are concentrated at 0.9. This verifies that the diagnostic accuracy of the WRRN method
is as high as 100% in task A5. Thus, the diagnostic performance of the WRRN method can
be improved by increasing the amount of training data from the shafting machine when
fault samples from the steam turbine are severely insufficient.

Table 4 displays the classification time for each sample under the different setting. All
experiment methods are performed on a NVIDIA GeForce GTX 1660, a computer (Intel
Core (TM) 3.6 GHz processor with 8 GB of RAM), and a windows version of the PyTorch
platform. As can be seen from Table 4, as the number of supporting samples increases, the
classification time for each sample increases accordingly. If the diagnosis task requires fast
classification time, the number of supporting samples can be reduced, and the training
dataset can be increased to ensure effective fault diagnosis performance.
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Table 4. Classification time for each sample under the different setting.

Task Classification Time (ms)

1-shot 4.1
3-shot 19.5
5-shot 44.5
8-shot 64.25
10-shot 90.25

4.3. Comparative Analysis

To show the superiority of the WRRN method even more clearly, several advanced
methods for comparison, including DL methods, TL methods, and few-shot learning
methods, are used to demonstrate the superiority of the WRRN method. The DL adopts
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the WRN as feature extractor like the WRRN method. For the WRRN method, the training
dataset includes a shafting machine dataset and a small amount of fault data from the
steam turbine. For TL methods, VGG-11 [37] and Resnet-18 [38] are used as backbone
networks for knowledge transfer. The two networks are pre-trained on the data from the
shafting machine, and then fine-tuned on small data from the RM operating real-world
experiment. For the few-shot learning methods, the matching network [39] is employed in
the comparative experiments, using the same feature extractors as the WRRN method. For
a fair comparison, the C-way K-shot setting is used for all the above comparing methods.

The task A5 is chosen as a comparison experiment because the fault data from the
shafting machine could be simulated. The Figure 8 shows the fault diagnosis performance
of different methods in the steam turbine with different fault sample sizes. Similarly, each
method is tested in ten trials, and the diagnostic accuracies and standard errors are obtained
for six methods. It can be found from the Figure 8 that the diagnostic accuracy of all methods
increases with the increase of the fault samples from the steam turbine. The diagnostic
performance of these few-shot learning approaches is significantly better than that of these
DL and TL methods. In terms of diagnostic performance, the WRRN method beats all other
methods, with diagnostic accuracy approaching 100% in a variety of fault sample sizes.
This is because the wide residual network can generate more representative fault features
from input samples. Then, RM can reveal the similarity relations between the features pairs
to determine their categories, which can improve diagnostic performance. These findings
further show that the WRRN method can accurately diagnose health conditions of the
steam turbine when just few fault samples or even only one fault sample is provided.
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5. Conclusions

In this paper, a novel WRRN is proposed to diagnose the health conditions of RM
with insufficient fault data. Specifically, the WRRN is trained by performing a series of
learning tasks in RMs with sufficient samples to obtain knowledge about how to diagnose,
and then, it is directly transferred to diagnose the RM with small samples. The method
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mainly includes the feature extraction module and the relation module. The wide residual
network-based feature extraction module is used to generate representative fault features
from input samples. The relation module calculates the relation score between the sample
pairs so as to determine their health states. Extensive experiments are conducted on two
RMs to validate the WRRN method. The results show that the WRRN model trained
on a RMLE can properly diagnose the health conditions of RMRE with just a few fault
samples, where the RMRE and the RMLE can come from different machine domains.
Furthermore, the impact of RMRE fault sample size and training dataset size on diagnostic
performance have been investigated. The results show that increasing the RMRM fault
sample size or the RMLE training dataset size can improve the diagnostic performance of
the WRRN significantly. Finally, the comparative experiments demonstrate that the WRRN
outperforms state-of-the-art methods for fault diagnosis in RMs with very limited fault
data circumstances.
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