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Abstract
Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of entero-

toxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a

type II secretion system (T2SS).We sought to determine the relationship between the capacity

to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. SixteenWTETEC

strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside en-

zyme-linked immunosorbent assay tomeasure LT concentrations in culture supernatants. All

strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly vir-

ulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-originWT

strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture)

explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobi-

otic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86),

or a non-enterotoxigenicWT strain (G58-1). All 16 porcine ETEC strains were positive by PCR

analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin

strains for which complete genomic sequences were available revealed a T2SSwith a high de-

gree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using

T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clus-

tered together in the same clade with other porcine-origin ETEC strains in the database,

UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct re-
lationship between the predicted ATP-binding capacities and LT secretion levels as follows:

H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5

kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-

binding capacity of GspE and LT secretion, and between the latter and virulence.
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Introduction
Enterotoxigenic Escherichia coli (ETEC) strains are important causes of diarrhea among travelers
and children<5 years old living in developing countries [35], and in addition, are economically im-
portant pathogens of pigs and cattle [27,37]. ETEC infections are especially severe among young
swine, causing illness and deaths of nursing and post-weaned piglets [13]. In swine, the most com-
mon and severe ETEC infections are caused by strains that express F4 (K88) fimbria [4]. These
strains usually produce two major enterotoxins that cause net fluid loss and diarrhea, viz., heat-
labile enterotoxin (LT) and heat-stable enterotoxin-b (STb) [22,24]. Some strains also may produce
heat stable enterotoxin-a (STa) or enteroaggregative E. coli heat-stable enterotoxin 1 [4].

Tauschek et al. [34] discovered a type II secretion system (T2SS) in the human prototypic
ETEC strain H10407 similar to the one in Vibrio cholerae, and demonstrated that it is function-
al and necessary for secretion of LT in ETEC. Both Tauschek et al. [34] and Lasaro et al. [21]
demonstrated the presence gspD and gspK in ETEC strains from human patients and from this
observation inferred that the T2SS is highly conserved among ETEC. However, to our knowl-
edge, no porcine-origin ETEC strains have been tested for these genes and among human-ori-
gin strains only the H10407 T2SS sequence has been analyzed [34].

Lasaro et al. [21] hypothesized that strain-specific differences in production and secretion of
LT by human-origin ETEC correlated with symptoms induced in vivo. Although these authors
demonstrated that the secretion levels, in contrast to the total amounts of LT produced were
correlated with volumes of fluid accumulation in ligated rabbit ileal loops, the authors were not
able to demonstrate a relationship between LT secretion and clinical symptoms in human pa-
tients. In that study, the clinical data was limited to presence or absence of diarrhea, and wheth-
er the affected children were co-infected with other pathogens was not reported.

In the present study, we sought to test the hypothesis that LT secretion is correlated with
virulence using wild-type porcine-origin ETEC strains for which we had clinical and pathologi-
cal records of natural cases of disease, and conclusive evidence that ETEC was the sole cause of
disease. In addition, for two of these ETEC strains which differed in virulence and a non-
enterotoxigenic wild-type porcine-origin control strain, we conducted experimental gnotobiot-
ic pig inoculations and also had genomic sequence data available. Hence, using these strains,
we assessed the relationship between virulence and LT secretion, and also compared the se-
quences of T2SS genes by bioinformatics analysis.

Materials and Methods

Strains
The strains used in this study are shown in S1 Table. Included among these were 16 porcine-
origin wild type (WT) LT+ STb+ ETEC strains from cases of severe diarrheal disease or sudden
death, most with lesions of hemorrhagic enteritis [10,14,25], humanWT ETEC strain H10407
(O78:K80:H11, CFA/1+, LT+, STp+, STh+) [12], and non-pathogenic LT- STb- E. coli control
strains [18,36]. All strains were confirmed to have the appropriate LT (eltAB) and STb (estB)
gene content by PCR using primers and methods as previously described [4].

Media and Growth Conditions
In order to properly assess levels of LT secretion, we needed to use optimized culture condi-
tions, as this has been reported to have a significant effect on LT production and release in pre-
vious studies. Casamino Acids-yeast extract (CAYE) medium-Mundell (CAYE-M) [26,29] was
prepared with Bacto Casamino Acids (2.0%) and Difco yeast extract (0.6%), and glucose at a
final concentration of 0.25%, and adjusted to a final pH of 8.5.
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Our first experiment aimed to determine whether porcine-originWT ETEC strains could se-
crete LT. This experiment utilized prototype human-origin ETEC strain H10407 as a positive
control;, test strains 2534–86 and its isogenic derivatives [MUN297(LT+), MUN299 (LT-),
MUN300 (LT-), andMUN301 (LT+)]; negative control K-12 strain DH5α; positive control
strain MUN302 (a DH5α-based LT+ clone); andWT porcine-origin negative controls (LT-

strains 1836–2 and G58–1). For this experiment, starter cultures were grown overnight in 15 ml
of CAYE-M in a 125 ml conical flask at 37°C and 225 rpm. After overnight incubation, a 1:100
dilution of each starter culture was inoculated into fresh medium of the same kind using the
same flask-to-medium ratio (8.3:1), and incubated for 18 h at 37°C and 225 rpm. Samples were
then obtained for preparation of supernatants and periplasmic extracts for LT determination.

A second experiment as a test of LT secretion attempted to rule out bacterial cell lysis as a
contributor to LT presence in the culture supernatant. This experiment utilized porcine-origin
LT+ WT strain 2534–86, 2 isogenic derivatives of this strain (LT+ MUN298 and LT-

MUN299), and human-origin prototype strain H10407, with strains grown in CAYE-M. For
this experiment, starter and experimental cultures were prepared in CAYE-M as described for
the first experiment, but samples were collected at 4, 8, 12 and 24 h PI. To confirm that growth
rates in CAYE-M among strains did not vary significantly, results which could confound the
measured LT concentrations, growth curves on all strains were conducted with samples ob-
tained at 0, 4, 8, 12 and 24 h. On aliquots of these samples, the OD600, colony-forming units
(CFU)/ ml, and pH values were determined. CFU/ml were determined by serial 10-fold dilu-
tion in phosphate-buffered saline (pH 7.4, 0.1M; PBS) and plating on LB agar.

A third experiment tested the capacity for 16 WT LT+ porcine strains isolated from cases of
severe disease to secrete LT (S1 Table), and was conducted using the same protocol as that
used in the second experiment, except that samples were collected at 2, 4, 6 and 18 h of culture.

For each of the 3 main experiments, 3 independent replicate experiments were conducted
on different days using new cultures.

Supernatant and Periplasmic Extract Preparation
To prepare cell-free supernatant, 1-ml aliquots of bacterial cultures were collected, centrifuged at
2,150 × g for 10 min, and passed through a 0.2 μm filter. To prepare periplasmic extracts, the cor-
responding cell pellets from the same aliquots were given 3 series of suspensions in 1 ml of PBS
and centrifugations at 2,150 × g for 10 min. The final re-suspension was in 1 ml of 2 mg/ml solu-
tion of polymyxin B in PBS for 30 min in a 37°C water bath; this was centrifuged at 2,150 × g for
10 min, 0.2 μm-filtered and the liquid fraction was obtained as the periplasmic extract. For each
sample of culture supernatant and periplasmic extract, a lack of contamination by live cells of the
strain of origin was confirmed by culturing an aliquot overnight in LB broth and on LB agar at
37°C. To test whether LT was present in culture supernatants as a result of secretion, bacterial
lysis or both during culture, aliquots of culture supernatants at 4, 6, 12, 18, and 24 h and periplas-
mic extracts at 2, 4, and 6 h of culture were mixed with equal volumes of p-nitrophenyl phos-
phate (PNPP, Sigma), the substrate for alkaline phosphatase, which is normally present in high
content in the periplasmic space in intact E. coli cells [34]. Mixtures of sample and PNPP in
0.2 M Tris buffer in 96-well plates were incubated at room temperature for 30 min. At that time,
25 μl of 5.0 N NaOH was added to stop the reaction, and the OD405 was measured.

Assays for LT Production and Secretion
The concentrations of LT in the periplasmic extracts and culture supernatant were determined
by GM1- ganglioside enzyme-linked immunosorbent assay (GM1-ELISA) using methods previ-
ously described [29,34] with the following modifications. All washings were done with 1%
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Tween 20 in PBS. The primary antibody was a rabbit anti-cholera toxin IgG (Sigma) at a 1:2000
dilution, and the secondary antibody was alkaline phosphatase-conjugated goat anti-rabbit IgG
(Sigma) at a 1:16,000 dilution in the first experiment, and at a 1:8000 dilution in the second and
third experiments. Incubations of 60 min at 37°C were given after the addition of each antibody.
The substrate was PNPP (Sigma) in 0.2 M Tris buffer, and after its addition, plates were incubat-
ed for 30 min at room temperature and ODmeasured at 405 nm. Standard curves were generat-
ed in each assay plate by using 2-fold serial dilutions of purified LT (List Biological Laboratories,
Product No. 165B) at a starting concentration of 400 ng/ml. Regression analysis (R2>0.97) was
used to generate a standard curve for determination of LT concentrations in the test samples.

Culture supernatants of MUN297, MUN299, MUN300, MUN301, MUN302, H10407,
1836–2, G58–1, DH5α, 2534–86, WAM2317, and 3030–2 were tested in Y1 adrenal cell assays
to confirm that LT biological activity was present or absent in samples from LT+ and LT-

strains, respectively. Y1 adrenal cell assays were conducted by the methods of Sack and Sack
[30] with minor modifications. Y1 adrenal cells from ATCC (CCL-79) were grown in F-12K
medium (ATCC) supplemented with 15% horse serum (ATCC) and 2.5% fetal bovine serum
(Sigma). For the LT assays, 100 µl of culture supernatants diluted 1:10 were added onto Y1 cell
monolayers in duplicate wells in the initial rows of 96-well microtiter plates, and then were se-
rially 2-fold diluted in the plates to 1:1,280. To the second row of inoculated wells for each sam-
ple, 100 μl of rabbit anti-cholera toxin IgG (Sigma) at a 1:100 dilution in PBS was added. At
4 and 24 h post-inoculation (PI), all wells were observed with an inverted microscope; a well
was considered positive if>50% of the cells in the respective monolayer were rounded. The
titer was the highest dilution at which an inoculated well was positive and the corresponding
well at the same dilution containing inoculum plus anti-toxin serum was negative.

Gnotobiotic Piglet Experiments
Twelve F4 receptor-positive gnotobiotic piglets were inoculated at 7–9 days of age with strains
3030–2 (n = 5), 2534–86 (n = 5), or G58–1 (n = 2) using methods previously described [4] with
minor modifications to determine whether these strains differed significantly in the number of h PI
for a moribund condition to occur. Experiments were approved by the University of Nebraska In-
stitutional Animal Care and Use Committee. In these experiments, piglets were checked at 1–4 h
intervals for depression, lethargy, diarrhea, and dehydration, and were euthanized when moribund,
or at 96 h PI if this condition did not occur. The h PI for a moribund condition to occur was used
for linear regression analysis along with LT secretion values (ng/ml) for the same strains. Piglets
were necropsied immediately after euthanasia and tissues were collected by aseptic technique and
processed for culture and histopathology as previously described [4]. Blood samples obtained at
necropsy also were tested for endotoxin activity using the LimulusAmebocyte Lysate QCL-1000
assay (LonzaWalkersville, Walkersville, MD) following the manufacturer’s instructions.

Analysis of Porcine ETEC Strains for Type II Secretion System
Using primers and conditions as described by Tauschek et al. [34], PCR for gspD and gspK was
conducted to determine the prevalence of the T2SS in the porcine ETEC strains listed in S1 Table.
As a further analysis of the T2SS, using Geneious 6.1.3, nucleotide and amino acid sequences of 3
porcine strains, viz., 2534–86 (Accession no. AFDS01000066), 3030–2 (Accession no.
AFDT01000052), and G58–1 (AFDX01000001) were aligned with that of H10407 (Accession no.
AY056599) and Vibrio cholerae TRH7000 (Accession no. L33796). Furthermore, they were
aligned with 2 other porcine ETEC in the NCBI Database, viz., UMNK88 (CP002729) and
UMNF18 (AGTD00000000) [31]. To construct phylogenetic trees and protein models, the follow-
ing were used in addition to the ETEC strains; Aeromonas hydrophilaAL09–71 (CP007566),
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Aeromonas salmonicida 449 (CP000644), Aeromonas veronii B565 (CP002607), Burkholderia
mallei ATCC 10399 (CH899680), Burkholderia pseudomallei K96243 (BX571965),Dickeya chry-
santhemi (L02214),Dickeya dadantii 3937 (CP002038),Dickeya zeae Ech1591 (CP001655), Erwi-
nia pyrifoliae Ejp617 (CP002124), Escherichia coli BW2952 (CP001396), Escherichia coli CE10
(CP001396), Escherichia coli EC958 (HG941718), Escherichia coli LF82 (CU651637), Escherichia
coliMG1655 (U00096), Escherichia coliNissle 1917 (CP007799), Escherichia coliNRG 857C
(CP001855), Escherichia coliW3110 (AP009048), Klebsiella oxytocaHKOLP1 (CP004887), Kleb-
siella pneumoniae ATCC BAA-2146 (CP006659), Legionella longbeachaeD-4968
(ACZG01000001), Pectobacterium carotovorum (X70049) Pseudomonas aeruginosa PA1
(CP004054), Pseudomonas putidaH8234 (CP005976), Shewanella amazonensis SB2B
(CP000507), Shewanella loihica PV-4 (CP000606), Shewanella putrefaciens 200 (CP002457), and
Vibrio vulnificus (CP002469). Protein models for all the strains were created using the SWISS-
MODEL server platform (swissmodel.expasy.org) using V. cholerae, V. vulnificus and E. coli T2SS
protein crystal structures in the Protein Data Bank. PyRx Python Prescription 0.8 was used to ana-
lyze the binding capacities of all the ATPases using models generated by the SWISS-MODEL serv-
er as the substrate and ATP as the ligand. Phylogenetic analyses of gspC, gspD, gspE and homologs
were conducted usingMEGA6 [33]. The evolutionary history was inferred by using theMaximum
Likelihood method based on the Tamura-Nei model [32]. Initial tree(s) for the heuristic search
were obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a matrix of
pairwise distances estimated using the MaximumComposite Likelihood (MCL) approach, and
then selecting the topology with superior log likelihood value. Trees were drawn to scale, with
branch lengths measured in the number of substitutions per site. Codon positions included were
1st+2nd+3rd+noncoding, with all positions containing gaps and missing data eliminated. Escheri-
chia coli ATCC 25922 16S rRNA (DQ360844.1:86278349) was used as an out group. For protein
alignment studies, PyMOLMolecular Graphics System version 1.3 was used.

Statistical Analyses
Statistical Analysis System (SAS, Version 9.4, Cary, NC) software was used to analyze the data
for effect of strain on secretion, and strain on virulence. A test for a linear association between
LT secretion and h-to-a-moribund-condition was run for each of the 2 times at which culture
supernatant LT concentrations (ng/ml) were measured (6 and 18 h), and tested for lack of fit.
The coefficient of determination (R2) was calculated for each regression analysis. In addition,
the linear regressions for each time were compared to see if the slopes were different. Analysis
of variance for each time was conducted for comparisons between human and porcine strains
as well as among the WT porcine strains and separated using a protected least significant dif-
ference test. Calculated P values of< 0.05 were considered significant.

Results

LT Secretion by Porcine ETEC Strains
As an initial test of the capacity for porcine-origin WT strains to secrete LT, supernatants from
18-h cultures of 2534–86, 3030–2, and derivatives of 2534–86 grown in CAYE-Mmedium
were analyzed by GM1-ELISA and the Y-1 adrenal cell assay. Culture supernatants of all ETEC
strains with detectable GM1-ELISA activity also had activity in the Y1 assay after 24 h PI,
whereas non-enterotoxigenic E. coli strains lacked activity in both assays (S2 Table). Y1 activity
was not present at 4 h PI with any of the strains, suggesting that activity seen at 24 h PI was not
due to other toxic effects. Cell rounding was inhibited by incubation of culture supernatants
with anti-CT antiserum prior to inoculation. A lack of contamination of each of the culture su-
pernatants with the respective strains under growth also was confirmed by LB broth and agar
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cultures. Although these results confirmed secretion of biologically active LT, the results were
largely qualitative, and involved the testing of only 2 porcine-origin WT ETEC strains. The sec-
ondary antibodies used in the GM1-ELISA had not been optimized at the time this experiment
was done, so results were interpreted as positive or negative as reported in S2 Table, and results
were only semi-quantitative in the case of the Y1 assay. In addition, use of 18-h cultures raised
the question that some of the LT activity in the culture supernatant could have resulted from
bacterial lysis. To confirm that strain 2534–86 secreted LT and to compare secreted levels with
that of H10407, 2534–86, isogenic derivatives MUN298 (LT+) and MUN299 (LT-), and
H10407 grown in CAYE-M were sampled at 4, 8, 12, and 24 h, and LT concentrations in cul-
ture supernatants and periplasmic extracts determined with an optimized GM1-ELISA. LT
concentrations in the culture supernatant were significantly higher for H10407 (P<0.05),
whereas no significant difference was detected between 2534–86 and MUN298, and MUN299
was confirmed to have no detectable LT activity (S1 Fig). Periplasmic LT concentrations were
also highest for H10407 (P<0.05), and peaked at 4 h of culture for this and the other 2 LT+

strains (S2 Fig). Growth curves (S3 Fig) demonstrated that the CFU/ml did not significantly
differ among strains, and all exhibited the same drop in pH at 4 h and increase in pH thereafter,
which reflected utilization of glucose through aerobic fermentation, the production and accu-
mulation of organic acids, and afterward their utilization as energy sources.

To confirm that other porcine-origin ETEC strains could secrete LT and determine whether
LT secretion levels were detectably related to virulence, 16 ETEC strains isolated from pigs with
severe disease (S1 Table) were compared with that of prototypic human-origin strain H10407.
All strains were cultured in CAYE-M and sampled at 2, 4, and 6 h of culture to avoid significant
contribution of LT to the supernatant by bacterial lysis. In addition, the supernatants at 18 h of
culture were tested to determine whether any differences among strains remained so throughout
the growth curve. LT was detected in the culture supernatants of all porcine WT strains at 2, 4
and 6 h, confirming the capacity to secrete the toxin (Fig. 1). At 2 h, the concentration of LT in
culture supernatant for each of the strains did not differ significantly from that of H10407; how-
ever, at 4 and 6 h the concentrations were significantly lower than that of H10407 (P<0.05;
Fig. 1). A notable finding was that by 6 h, strain 3030–2 had secreted a significantly higher con-
centration of LT into the supernatant compared to that of all other porcineWT strains tested
(P<0.05) and this difference remained so through 18 h of culture (Fig. 1). Over all time points,
all strains tested had a higher concentration of LT in the supernatant than in the periplasm
(Fig. 2). As in the previous experiment, the highest concentration of LT in the periplasm was at
4 h (Fig. 2), and at this time the 3030–2 periplasmic LT concentration was significantly higher
than that of the otherWT porcine strains (P<0.05). To confirm that bacterial lysis was not a sig-
nificant contributor to LT in the culture supernatant nor resulted in loss of LT from the peri-
plasm during the exponential growth phase, each fraction was tested for alkaline phosphatase
activity in the samples at 4 and 6 h of culture. No alkaline phosphatase activity was detected in
the culture supernatants of any of the 16WT porcine strains at either time interval, and all peri-
plasmic extracts contained alkaline phosphatase activity, as expected. In contrast, at 12, 18 and
24 h of culture, alkaline phosphatase activity was present in both the culture supernatant and
periplasmic fractions. These results confirmed that LT was present in the supernatants during
the exponential phase by secretion and not by bacterial lysis, but during the stationary and
death phases, a portion of the LT activity was present in the supernatants as a result of cell lysis.

Virulence of Porcine-Origin ETEC Strains in Gnotobiotic Piglets
Gnotobiotic piglets inoculated with strains 3030–2 or 2534–86 had an onset of diarrhea at 6 or
12 h PI, respectively, with subsequent passage of watery, clear-yellow fecal material. All piglets
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inoculated with strain 3030–2 or 2534–86 rapidly developed severe weight loss and dehydra-
tion, and became moribund; however, the clinical course with 3030–2 was more rapid. The
mean time-to-a-moribund-condition with 3030–2 was 14.4 h PI, in contrast to 71.2 h PI for
2534–86 (P<0.001). Hence, among these 2 strains, 3030–2 was significantly more virulent.
Non-enterotoxigenic strain G58–1 did not induce clinical illness, and piglets inoculated with
this strain were euthanized at 96 h PI since their survival time would have been indefinite.
A linear regression between LT secretion at 6 h of culture for these 3 strains and h-to-a-mori-
bund-condition in inoculated gnotobiotic piglets was conducted. The model-adjusted coeffi-
cient of determination (R2) was 0.92 (P< 0.0001), indicating that approximately 92% of the
variation in the time-to-a-moribund condition could be explained by the LT secretion level of
the inoculum strain (Fig. 3). A second linear regression based on LT concentrations at 18 h of
culture yielded a model-adjusted R2 of 0.8842 (P< 0.0001). This lower R2 value supported the
hypothesis by Lasaro et al. [21] that virulence is more highly correlated with secretion than
total production of LT, since a portion of the LT activity in the supernatants from 18 h cultures
originated from lysed cells in the stationary-to-death phases.

All piglets inoculated with 3030–2 or 2534–86 developed gross and microscopic lesions in
the intestines compatible with shock (Figs. 4–8). Both small and large intestines were affected
with hyperemia, hemorrhage and necrosis; these lesions were most severe in the mucosa, and

Fig 1. Heat-labile enterotoxin (LT) secretion into culture supernatant over time by human- and porcine-origin enterotoxigenic E. coli strains grown
in CAYE-Mmedium. Strains were cultured at 37°C and 225 rpm in CAYE-M using a flask-to-medium ratio of 8.3:1. Samples of culture supernatants were
obtained at 2, 4, 6 and 18 h of incubation, and LT concentrations in supernatant samples at each time interval were determined by GM1-ELISA. *LT
concentrations in H10407 culture supernatant are significantly different (P<0.05) from that of all other strains at the corresponding time interval. †LT
concentrations in 3030–2 culture supernatant are significantly different (P<0.05) from that of all other porcine or 2534–86 derivative strains at the
corresponding time interval. eltAB: strain is positive for LT genes by PCR. estB: strain is positive for STb gene by PCR. H = human-origin strain, P = porcine-
origin strain, D = 2534–86 derivative strain.

doi:10.1371/journal.pone.0117663.g001
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were compatible with what we have previously described as hemorrhagic enteritis [4]. Histologi-
cally, necrotic epithelial cells in affected intestines had either sloughed or were in the process of
it with formation of subepithelial clefts and exposure of the basal lamina. Intact small intestinal
epithelium in all pigs inoculated with 2534–86 and 3030–2, but none inoculated with G58–1,
had E. coli cells adherent to their apical surfaces, and in the case of pigs with lesions of shock
had bacteria adherent to the exposed basal lamina. Platelet-fibrin thrombi and intravascular
bacteria were seen in mucosal capillaries and venules of all piglets inoculated with 2534–86 and
3030–2, but in none of the piglets inoculated with G58–1. In all piglets inoculated with 2534–86
or 3030–2 but none inoculated with G58–1, either the respective inoculum strain, endotoxin ac-
tivity or both were detected in blood samples obtained at necropsy. Mean endotoxin activity
measured 0.49 ± 0.23 endotoxin units per ml in blood samples testing positive.

Presence of Type II Secretion System in Porcine ETEC Strains
PCR analysis revealed the presence of both gspD and gspK genes in all porcine-origin WT
strains shown in S1 Table with H10407 as a positive control (S4 Fig). Bioinformatic analyses of
the genomic sequences of porcine LT+ WT strains 2534–86 and 3030–2, as well as that of por-
cine LT- WT strain G58–1, further revealed that all 3 strains have a complete gspC-M operon
with a high degree of similarity to that of H10407. A comparison of the gspC-M sequences re-
vealed that 2534–86 shared 38.6–45.0% nucleotide and 94.3–99.8% amino acid identity with

Fig 2. Heat-labile enterotoxin (LT) secretion into the periplasm over time by human- and porcine-origin enterotoxigenic E. coli strains grown in
CAYE-Mmedium. Strains were cultured at 37°C and 225 rpm in CAYE-M using a flask-to-medium ratio of 8.3:1. Periplasmic extracts were prepared from
samples of cell pellets obtained at 2, 4 and 6 h of culture, and LT concentrations in these extracts at each time interval were determined by GM1-ELISA. *LT
concentrations in H10407 periplasmic extracts are significantly different (P<0.05) from that of all other strains at the corresponding time interval. †LT
concentrations in 3030–2 periplasmic extracts are significantly different (P<0.05) from that of all other porcine or 2534–86 derivative strains at the
corresponding time interval. eltAB: strain is positive for the LT genes by PCR. estB: strain is positive for STb gene by PCR. H = human-origin strain, P =
porcine-origin strain, D = 2534–86 derivative strain.

doi:10.1371/journal.pone.0117663.g002
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Fig 3. Linear regression between heat-labile enterotoxin (LT) secretion in culture and h to amoribund
condition in gnotobiotic piglets inoculated with the corresponding E. coli strain.Concentration of LT in
supernatants of 6-h cultures of strains G58–1 (LT-), 2534–86 (LT+), and 3030–2 (LT+; data shown in Fig. 1)
and h-to-a-moribund-condition in piglets after inoculation with the same strains was used in the
regression analysis.

doi:10.1371/journal.pone.0117663.g003

Fig 4. Photograph at necropsy of piglet 15 h after inoculation with enterotoxigenic E. coli strain 3030–2. Spiral colon (SC) is diffusely hemorrhagic,
and jejunum (J) is hyperemic; both spiral colon and jejunum are distended with watery ingesta.

doi:10.1371/journal.pone.0117663.g004
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Table 1. Comparison of type II secretion system nucleotide and amino acid sequences of Escherichia coli strains 2534–86 and 3030–2 with that
of E. coli strain H10407 and Vibrio cholerae strain TRH7000a.

ETECb /Vibrio cholerae gene Vibrio cholerae (TRH7000) Escherichia coli H10407

% Nucleotide Identity % Amino acid Identity % Nucleotide Identity % Amino Acid
Identity

2534–86 3030–2 2534–86 3030–2 2534–86 3030–2 2534–86 3030–2

gspC/espC 42.4 39.3 31.7 29.5 45.0 44.7 99.3 98.2

gspD/espD 40.9 38.9 51.6 42.8 42.9 42.8 99.8 99.1

gspE/espE 44.2 37.9 66.4 69.3 44.6 37.8 99.4 99.7

gspF/espF 43.6 42.6 56.2 56.2 43.0 42.6 98.5 98.8

gspG/espG 43.0 41.6 76.2 76.2 40.4 40.6 98.0 98.7

gspH/espH 40.8 39.8 32.0 26.2 41.8 42.1 96.6 98.9

gspI/espI 40.7 40.3 42.4 39.0 43.2 42.2 94.3 96.7

gspJ/espJ 40.7 43.5 44.3 36.0 38.6 40.3 98.4 98.9

gspK/espK 45.2 42.5 39.6 39.6 43.2 42.7 98.5 99.7

gspL/espL 38.5 38.0 27.3 20.0 39.7 39.4 97.9 99.7

gspM/espM 43.9 42.4 29.0 28.3 42.0 41.4 94.9 95.5

aAccession numbers: 2534–86, AFDS01000066; 3030–2, AFDT01000052; H10407, AY056599; Vibrio cholerae TRH7000, L33796.
bETEC: enterotoxigenic Escherichia coli.

doi:10.1371/journal.pone.0117663.t001

Fig 5. Low (20X objective) magnification photomicrograph of jejunum of piglet shown in Fig. 4.Mucosa and submucosa are diffusely hyperemic, and
villi multifocally are necrotic. Necrotic villi (N) have hemorrhage in the lamina propria and loss of absorptive epithelium. Photomicrograph was taken of 4 μm-
thick section of 10% neutral-buffered formalin-fixed, paraffin-embedded jejunal tissue stained with hematoxylin and eosin. Bar = 100 μm.

doi:10.1371/journal.pone.0117663.g005
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H10407, and 38.5–45.2% nucleotide and 27.3–76.2% amino acid identity with V. cholerae T2SS
(Table 1). Similarly, 3030–2 shared 37.9–42.6% nucleotide and 20.0–76.2% amino acid identity
with V. cholerae T2SS while having 37.8–44.7% nucleotide and 95.5–99.7% amino acid identity
with the human ETEC strain H10407 (Table 1). Strain G58–1 shared 39.1–43.5% nucleotide
and 15.7–61.2% amino acid identity with 2534–86, 37.3–65.1% nucleotide and 16.1–61.9%
amino acid identity with H10407, 37.0–43.3% nucleotide and 16.7–64.6% amino acid identity
with 3030–2, and 37.6–61.4% nucleotide and 16.3–62.6% amino acid identity with the
V. cholerae T2SS (Table 2). Two other porcine ETEC strains in the NCBI database, UMNK88
and UMNF18, shared�95.7% nucleotide and�93.8% amino acid identity with 2534–86,
whereas they collectively shared only 37.0–43.9% and 16.1–61.9% nucleotide and amino acid
identity, respectively, with G58–1 (Table 3).

Maximum Likelihood phylogenetic trees were constructed using genetic sequences of gspC
(S3 Table; S5 Fig), gspD (S4 Table; S6 Fig), gspE (S5 Table; Fig. 9) and corresponding homologs.
In addition to V. cholerae TRH7000, porcine- and human-origin ETEC, and a subset of other
bacterial strains that have been described in the literature to possess gspC-M homologs were
used. All three trees generated showed that all four porcine ETEC strains (2534–86, 3030–2,
UMNK88 and UMN18) clustered together in the same clade with high bootstrap values (�
60%). G58–1, however, clustered away from these ETEC strains. In trees generated by homo-
logs of gspD and gspE, G58–1 clustered closer to H10407 and V. cholerae TRH7000.

Fig 6. Higher (100X objective) magnification photomicrograph of jejunum shown in Fig. 5 with detail of necrotic and intact villi. The lamina propria of
a necrotic villus is hemorrhagic (H), and contains numerous cells with pyknotic nuclei (P), indicating coagulation necrosis. The epithelium overlying this villus
is absent, due to necrosis and sloughing of epithelial cells into the intestinal lumen. The exposed basal lamina of the necrotic villus is colonized with
enterotoxigenic E. coli (vertical arrow), with bacteria having penetrated into the lamina propria with access to the microcirculation. The villi above and to the
right of the necrotic villus have ETEC bacteria (horizontal arrow) colonizing the apical surfaces of absorptive epithelial cells. Many of these epithelial cells are
in the process of sloughing as evidenced by the presence of clefts (C) between their basolateral surfaces and the underlying basal lamina. Photomicrograph
was taken of 4 μm-thick section of 10% neutral-buffered formalin-fixed, paraffin-embedded jejunal tissue stained with hematoxylin and eosin. Bar = 20 μm.

doi:10.1371/journal.pone.0117663.g006
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Protein models were constructed for the 2534–86, 3030–2 and G58–1 predicted Gsp proteins
based on structures of homologs in the Protein Data Bank (Table 4). The Qualitative Model En-
ergy ANalysis (QMEAN)4 scores, which signify the quality of the model and its relatedness to
the template used, showed that GspC, D, E, F, G, K and M have higher scores (i.e. closer to 1)
while only GspL has a low QMEAN4 score and a very low negative Z-score value [1–3]. Similar
results were obtained for protein models constructed with 3030–2 (Table 4). Both 2534–86 and
3030–2 had consistently higher QMEAN scores compared to those of G58–1. Furthermore,
G58–1 protein modeling yielded structures with negative Z-scores in all instances, while both
2534–86 and 3030–2 had proteins that yielded positive or very low negative Z-scores which sig-
nified that the model elucidated is statistically better than the average models for those proteins.

Proteins in T2SS that function as ATPases, in addition to the proton motive force, have
been identified as the source of energy required for secretion [7,28]. Hence, we hypothesized
that the ATP binding capacity of GspE for each of the strains tested would be related to LT se-
cretion levels and virulence. To address this hypothesis, the protein model of 2534–86 GspE
was aligned with that of H10407 GspE and V. cholerae TRH7000 EpsE using PyMol. While
H10407 GspE and 2534–86 GspE both aligned with V. cholerae TRH7000 EpsE with a relative
mean square (RMS) value of 0.083, H10407 and 2534–86 ATPases aligned with each other
with a RMS of 0.001. PyRx was used to analyze the predicted ATP-binding capacities of the
T2SS ATPases of each of the strains listed in the phylogenetic trees (Table 5). Of those strains
which we had corresponding quantitative data for LT secretion, the predicted binding

Fig 7. Low (20X objective) magnification photomicrograph of spiral colon of piglet shown in Fig. 4.Mucosa and submucosa are diffusely hyperemic
and hemorrhagic; a markedly hyperemic venule (C) in the center of the field is seen. The epithelium on the mucosal surface is almost completely absent with
the exception of a few cells (arrow) that are in the process of sloughing; architectural detail in the lamina propria and deep crypt epithelium are still intact at
this point. Photomicrograph was taken of 4 μm-thick section of 10% neutral-buffered formalin-fixed, paraffin-embedded spiral colonic tissue stained with
hematoxylin and eosin. Bar = 100 μm.

doi:10.1371/journal.pone.0117663.g007
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Fig 8. Higher (60X objective) magnification photomicrograph of the same field as that shown in Fig. 7. Eosinophilic platelet-fibrin thrombi (arrows) are
seen in hyperemic capillaries and venules. Photomicrograph was taken of 4 μm-thick section of 10% neutral-buffered formalin-fixed, paraffin-embedded
spiral colonic tissue stained with hematoxylin and eosin. Bar = 20 μm.

doi:10.1371/journal.pone.0117663.g008

Table 2. Comparison of type II secretion system nucleotide and amino acid sequences of Escherichia coli strain G58–1 with that of E. coli
strains 2534–86, 3030–2, H10407, and Vibrio cholerae strain TRH7000a.

ETECb / Vibrio cholerae gene V. cholerae TRH7000 E. coli H10407 E. coli 2534–86 E. coli 3030–2

% NA IDc % AA IDc % NA ID % AA ID % NA ID % AA ID % NA ID % AA ID

gspC/espC 37.6 37.6 37.3 19.4 39.1 22.7 39.4 22.7

gspD/espD 53.9 42.8 50.2 44.5 42.5 43.9 41.4 42.8

gspE/espE 58.2 57.5 59.5 57.0 43.3 57.4 37.0 64.6

gspF/espF 41.4 43.6 42.4 45.1 42.9 44.7 42.7 44.8

gspG/espG 61.4 62.6 65.1 61.9 39.8 61.2 39.4 61.2

gspH/espH 43.4 26.1 40.7 19.8 43.5 20.7 42.3 20.3

gspI/espI 43.1 25.2 45.8 26.1 42.4 23.5 42.0 25.2

gspJ/espJ 44.2 22.7 43.2 21.8 42.8 21.3 43.3 21.8

gspK/espK 49.6 32.8 47.4 32.6 42.6 32.6 43.2 32.6

gspL/espL 43.4 18.3 41.1 19.9 40.6 15.7 39.9 18.4

gspM/espM 44.0 16.3 40.5 16.1 41.7 17.2 41.9 16.7

aAccession numbers: G58–1, AFDX01000001; 2534–86, AFDS01000066; 3030–2, AFDT01000052; H10407, AY056599; Vibrio cholerae TRH7000,

L33796.
bETEC: enterotoxigenic Escherichia coli.
c% NA ID = percent nucleotide identity; % AA ID = percent amino acid identity.

doi:10.1371/journal.pone.0117663.t002
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capacities, from highest to lowest, were H10407 (-8.8 kcal/mol), 3030–2 (-8.6 kcal/mol),
2534–86 (-8.5 kcal/mol), and G58–1 (-8.0 kcal/mol). MG1655, a K-12 E. coli strain, which was
the origin of MUN302 used in this study, had a predicted binding capacity of-7.3 kcal/mol. For
those strains for which we had virulence data (3030–2, 2534–86, and G58–1), a direct relation-
ship was seen between virulence and the predicted ATP-binding capacity of the GspE.

Discussion
In the present study, we found that WT ETEC strains varied in LT secretion capacity, and this
played a major role in determining virulence. One strain (3030–2) secreted significantly more
LT than any other WT porcine strain tested, and also was significantly more virulent. When
combining data for 3 strains that varied in virulence, we found that LT secretion, based on con-
centrations in supernatants from 6-h cultures explained 92% of the variation in time-to-a-mor-
ibund-condition. If the regression was run using LT concentrations in supernatants from 18-h
cultures, the coefficient of determination was 89%. This lower R2 value supports the hypothesis
by Lasaro et al. [21] that virulence is more highly correlated with secretion than total produc-
tion of LT, since a portion of the LT activity in the supernatants from 18-h cultures originated

Fig 9. Maximum Likelihood phylogenetic tree generated by analyses of gspE and homolog sequences listed in S5 Table using MEGA6.

doi:10.1371/journal.pone.0117663.g009

LT Secretion and Virulence in Porcine ETEC

PLOSONE | DOI:10.1371/journal.pone.0117663 March 13, 2015 14 / 21



Table 3. Comparison of type II secretion system nucleotide and amino acid sequences of Escherichia coli strains G58–1, 2534–86, H10407,
UMNK88, and UMNF18a.

Gene G58–1 H10407 2534–86

% Nucleotide
Identity

% Amino Acid
Identity

% Nucleotide
Identity

% Amino Acid
Identity

% Nucleotide
Identity

% Amino Acid
Identity

UMNK88 UMNF18 UMNK88 UMNF18 UMNK88 UMNF18 UMNK88 UMNF18 UMNK88 UMNF18 UMNK88 UMNF18

gspC 38.7 39.9 22.1 22.2 44.7 44.0 97.1 95.3 97.5 96.1 97.8 95.3

gspD 43.0 43.9 43.9 43.9 43.3 42.2 99.7 99.7 98.6 97.2 99.9 99.9

gspE 43.6 43.7 57.2 57.2 43.9 44.7 99.2 99.2 98.6 98.2 99.4 99.4

gspF 41.9 42.6 44.8 45.1 42.1 41.5 98.8 99.5 97.6 97.3 99.3 98.5

gspG 39.9 39.0 61.9 61.9 40.5 40.5 98.7 99.3 97.6 98.2 98.0 98.7

gspH 43.3 43.7 21.2 20.7 40.7 40.4 95.5 94.9 98.7 98.9 98.9 98.3

gspI 37.0 41.2 25.2 26.1 42.2 43.9 95.1 99.2 97.3 96.0 95.9 95.1

gspJ 42.9 43.4 21.3 22.0 39.1 40.3 98.9 99.5 95.7 95.7 98.4 97.8

gspK 42.9 42.7 32.3 32.6 43.0 42.8 98.5 99.1 97.3 97.8 98.8 99.4

gspL 42.5 41.8 19.9 20.4 43.1 43.0 100.0 98.5 98.5 98.5 97.9 97.9

gspM 41.1 39.9 16.1 16.1 40.1 40.2 100.0 98.9 96.1 95.7 94.9 93.8

aAccession numbers: G58–1, AFDX01000001; 2534–86, AFDS01000066; 3030–2, AFDT01000052; H10407, AY056599; Vibrio cholerae TRH7000,

L33796; UMNK88, CP002729; UMNF18, AGTD00000000.

doi:10.1371/journal.pone.0117663.t003

Table 4. Protein modeling data for 2534–86, 3030–2 and G58–1 type II secretion system proteins GspC-M.

Protein Model Templatea 2534–86 3030–2 G58–1

QMEAN4 Scoreb Z-Scorec QMEAN4 Scoreb Z-Scorec QMEAN4 Scoreb Z-Scorec

GspC EpsC (2I4S) 0.971 1.37 0.971 1.37 0.657 -1.30

GspD GspD (3EZJ) 0.895 0.85 0.801 0.12 0.729 -0.85

GspE EpsE (1P9R) 0.754 -0.52 0.741 -0.63 0.685 -1.34

GspF EpsF (2VMB) 0.662 -1.38 0.662 -1.38 0.647 -1.55

GspG EpsG (3GN9) 0.894 0.85 0.899 0.90 0.671 -1.28

GspH EpsH (2QV8) 0.579 -2.37 0.596 -2.18 0.688 -1.19

GspI EpsI (2RET) 0.475 -2.34 0.491 -2.23 0.522 -1.92

GspJ EpsJ (2RETE) 0.479 -3.61 0.502 -3.33 0.495 -3.28

GspK EpsK (3CIO) 0.695 -1.24 0.699 -1.19 0.556 -3.31

GspL EpsL (1W97) 0.214 -6.08 0.211 -6.11 0.429 -4.29

GspM EpsM (1UV7) 0.750 -0.33 0.740 -0.40 0.608 -1.21

aSource of model template: EpsC, EpsE, EpsF, EpsH, EpsJ-M, Vibrio cholerae (strain not stated in literature); GspD, E. coli strain H10407; EpsG, EpsI, V.

vulnificus (strain not stated in literature). Letters in parentheses are the Protein Data Bank (PDB) identification for the respective protein.
bQMEAN4 score (Range 0–1) is a composite score consisting of a linear combination of 4 statistical potential terms: (1) C-beta interaction energy, (2) all-

atom pairwise energy, (3) solvation energy, and (4) torsion angle energy.
cZ-score: an estimate of the “degree of nativeness” of the structural features observed in a model by describing the likelihood that a model is of

comparable quality to high-resolution experimental structures; it provides an estimate of the absolute quality of a model by relating it to reference

structures solved by X-ray crystallography.

doi:10.1371/journal.pone.0117663.t004
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from lysed cells. In a previous study, we found that approximately 58% of the variation in the
rate of weight loss was explained by the LT production levels of the respective inoculum strain
[9]. However, in that study, LT secretion per se was not measured, and the strains only includ-
ed isogenic derivatives of 2534–86. The decision to euthanize gnotobiotic piglet experiments at
96 h PI if a moribund condition did not occur was somewhat arbitrary, but mainly based on
animal welfare.

In previous studies, we determined that LT contributed more than STb to the severity of dis-
ease in 9-day-old gnotobiotic piglets inoculated with isogenic derivatives of strain 2534–86 [9].
In those studies, death phase (48- or 72-h) cultures treated with polymyxin B which caused fur-
ther cell lysis were used to test for levels of LT production; hence, the capacity for the strain to
secrete LT was not measured. In a more recent study, we found that these same strains secreted

Table 5. Predicted ATP-binding affinities of GspE homologs in different bacteria.

Strain Predicted Binding Affinity (kcal/mol)

Burkholderia mallei ATCC 10399 -9.2

Dickeya dadantii 3937 -9.2

Dickeya zeae Ech1591 -9.2

Pectobacterium carotovorum -9.2

Shewanella putrefaciens 200 -9.1

Pseudomonas putida H8234 -9.0

Klebsiella pneumoniae ATCC BAA-2146 -8.9

Shewanella amazonensis SB2B -8.9

Shewanella loihica PV-4 -8.9

Burkholderia pseudomallei K96243 -8.8

Dickeya chrysanthemi -8.8

Escherichia coli BW2952 (K-12) -8.8

Escherichia coli H10407 (hETEC) -8.8

Escherichia coli CE10 (NMEC) -8.7

Escherichia coli NRG 857C (AIEC) -8.7

Escherichia coli UMNF18 (pETEC) -8.7

Escherichia coli W3110 (K-12) -8.7

Escherichia coli 3030–2 (pETEC) -8.6

Pseudomonas aeruginosa PA1 -8.6

Escherichia coli 2534–86 (pETEC) -8.5

Erwinia pyrifoliae Ejp617 -8.2

Escherichia coli LF82 (AIEC) -8.2

Legionella longbeachae D-4968 -8.1

Vibrio vulnificus -8.1

Aeromonas salmonicida 449 -8.0

Escherichia coli G58–1 -8.0

Escherichia coli EC958 (UPEC) -7.9

Aeromonas hydrophila AL09–71 -7.7

Aeromonas veronii B565 -7.6

Escherichia coli Nissle 1917 -7.4

Escherichia coli MG1655 (K-12) -7.3

Vibrio cholerae TRH7000 -7.3

Klebsiella oxytoca HKOLP1 -6.7

Escherichia coli UMNK88 (pETEC) -6.5

doi:10.1371/journal.pone.0117663.t005
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LT in 18-h cultures, but these studies did not test for attribution of LT secretion to virulence
[11]. To our knowledge, as reported in the published literature, only 4 other porcine-origin
strains had been tested for LT secretion, and the authors of these studies postulated that “the
intact holotoxin transverses the outer membrane with newly synthesized LPS and becomes a
component of the outer surface of E. coli” [20]. Besides the conclusion that LT is not fully se-
creted, this latter study provided no information about the virulence of the strains being tested,
or the relationship, if any, between LT secretion and virulence.

In the present study, we detected LT in the supernatant by an optimized GM1-ELISA as
early as 2 h of culture, and detected LT secretion by all 16 porcine WT ETEC strains tested,
each isolated from cases of severe disease. Although 1 porcine strain was found to secrete rela-
tively high levels of LT, we, similar to Gilligan and Robertson [15], also found that the levels of
LT produced by porcine ETEC strains were lower than that of the prototypic human strain,
H10407. Lasaro et al. [21], who analyzed 26 human ETEC isolates, reported that the levels of
LT secreted by human strains can vary by as much as 50-fold. Although the culture media, con-
ditions, and analytical methods used in our study differed in several respects, the levels of LT se-
creted by porcine ETEC strains in our study were within the general range of that of the human
strains in the Lasaro et al. [21] study, with the exception of H10407. H10407 was originally iso-
lated from a patient with severe, cholera-like diarrhea [12], and was found to secrete more LT
than any of the 26 human test strains in the Lasaro et al. [21] study. In contrast to the conclu-
sion by Gilligan and Robertson [15] that porcine ETEC strains produce less LT in complex me-
dium than human strains, we conclude that strains from pigs and humans produce and secrete
LT levels that are in general comparable to one another, whereas H10407 is more of an outlier.

We used a culture medium that had previously been shown to be optimal for LT secretion by
H10407 and other human-origin strains [19,26] for detection of LT secretion by porcine ETEC
strains. CAYE-Mmedium containing 0.25% glucose and adjusted to pH 8.5 has yielded the high-
est LT concentrations in culture supernatants in studies involving human-origin strains [19,26].
The molecular basis to explain the optimal nature of this medium for LT production and secre-
tion has been apparent in recent studies. The cAMP repressor protein (CRP) is a repressor of
eltAB transcription; glucose causes derepression of the eltAB promoter in H10407 by suppressing
synthesis of cAMP, thereby decreasing cAMP availability to bind to the CRP and increasing tran-
scription [5]. In contrast, CRP is a positive regulator of LT secretion and alkaline pH is a signal
optimal for production and secretion of LT [16]. Based on the results reported herein, porcine
ETEC strains would be expected to be affected by glucose and alkaline pH in the same manner as
H10407; however, experiments specifically testing these hypotheses were not conducted.

Similar to the study of Tauschek et al. [34] with the prototypic human-origin strain
H10407, we found that in porcine ETEC strains most of the LT secreted into the supernatant is
not retained in the periplasm. The time at which the highest concentration of LT was detected
in the periplasm by any strain tested was at 4 h PI. Furthermore, the LT levels in the superna-
tant did not increase significantly between 4 and 6 h, with someWT porcine strains showing
similar or lower levels compared to the 4-h LT levels.

We found that all porcine-origin ETEC strains that had been genomically sequenced con-
tained a T2SS with a high degree of amino acid identity to that of H10407, supporting the infer-
ence by Tauschek et al. [34] that the T2SS is highly conserved in ETEC. Interestingly, porcine-
origin non-enterotoxigenic strain G58–1 was also found to contain the T2SS. This strain was
originally isolated from a piglet with diarrhea, and is of a serotype (O101:K28) that is common-
ly enterotoxigenic, usually expressing K99 (F5) and/or 987P (F6) fimbria and STa [8,17,23].
Hence, this strain may have been an ETEC that lost one or more plasmids containing entero-
toxin and fimbrial genes. The T2SS in G58–1 shares a similar level of nucleotide identity with
both H10407 and 2534–86 but a much lower level of amino acid identity with the respective
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components of the secretion system. In addition, 3030–2, as well as the other 2 porcine ETEC
strains in the NCBI database, all shared a very high degree of amino acid and nucleotide identi-
ty with each other, typically>93%, but a low level of nucleotide identity with the human ETEC
strain H10407. This fact is emphasized by the phylogenetic trees generated using gspC, gspD
and gspE, which showed that porcine ETEC have a similar clonal origin to each other while
G58–1 clustered closer to H10407 and V. cholerae TRH7000. Since gspC and gspD encode sub-
strate-specific components of the secretion pathway, this suggests a parallel evolution of the
same secretion system, which is not surprising since all these organisms are subjected to the
same evolutionary pressures that force them to evolve a functioning secretion system to take
advantage of their enterotoxin [6]. It could be argued that both 2534–86 and 3030–2 developed
a T2SS more efficient for recognizing the leader sequences of the enterotoxin subunits and
their subsequent processing in the periplasm. This may have happened after the acquisition of
the LT containing plasmid resulting in a secretion system that shares a high protein identity
with H10407, while G58–1 which shares a closer clonal match to H10407, has a low protein
identity with the H10407 T2SS.

GspE (EpsE) binds and hydrolyzes ATP, thereby providing energy for pseudopilus assembly
and protein secretion [7,28]. The results of protein modeling of these ATPases showed that dif-
ferent T2SS have different predicted binding capacities, which might in part explain the differ-
ent secretion capabilities of different strains of both animal and human ETEC. However,
further experiments are needed to test this hypothesis. The predicted binding affinities were
generated by using the respective GspE monomer of the T2SS. However, it has been shown
that the hexameric form of GspE has a much higher ATPase activity than the monomeric one,
and is thought to be the functional form in nature [7,28]. Therefore, it can be assumed that the
ATPase activities of GspE in the strains tested herein might be different in nature from their
predicted values based on protein models.

Supporting Information
S1 Fig. Heat-labile enterotoxin (LT) concentrations in supernatants of cultures of human-
and porcine-origin enterotoxigenic E. coli. Strains were cultured at 37°C and 225 rpm in
Casamino Acids yeast extract medium-Mundell (CAYE-M) medium containing 0.25% glucose,
pH 8.5 using a flask-to-medium ratio of 8.3:1. Samples of culture supernatant were obtained at
4, 8, 12, and 24 h of incubation, and LT concentrations in these samples were measured by
GM1-ELISA. A human-origin strain is represented by H10407, whereas porcine-origin strains
are represented by wild type 2534–86 and derivative strains, MUN298 (LT+, ΔestB, pBR322::
estB) and MUN299 (LT- ΔeltAB).
(TIF)

S2 Fig. Heat-labile enterotoxin (LT) concentrations in periplasmic extracts of human- and
porcine-origin enterotoxigenic E. coli strains. Strains were cultured at 37°C and 225 rpm in
Casamino Acids yeast extract medium-Mundell (CAYE-M) medium containing 0.25% glucose,
pH 8.5 using a flask-to-medium ratio of 8.3:1. Periplasmic extracts were prepared from cell pel-
lets of samples obtained at 4, 8, 12, and 24 h of culture, and LT concentrations were measured
by GM1-ELISA. A human-origin strain is represented by H10407, whereas porcine-origin
strains are represented by wild type 2534–86 and derivative strains, MUN298 (LT+, ΔestB,
pBR322::estB) and MUN299 (LT- ΔeltAB).
(TIF)

S3 Fig. Growth curves of human- and porcine-origin enterotoxigenic E. coli strains. Strains
were cultured at 37°C and 225 rpm in Casamino Acids yeast extract medium-Mundell (CAYE-
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M) medium containing 0.25% glucose, pH 8.5 using a flask-to-medium ratio of 8.3:1. Samples
were obtained at 0, 4, 8, 12 and 24 h of culture and from these samples the OD600, colony-
forming units (CFU)/ml and pH values were determined. The CFU/ml were determined by se-
rial 10-fold dilution and plating on LB agar. A human-origin strain is represented by H10407,
whereas porcine-origin strains are represented by wild type 2534–86 and derivative strains,
MUN298 (LT+, ΔestB, pBR322::estB) and MUN299 (LT- ΔeltAB).
(TIF)

S4 Fig. Detection of gspD and gspK in wild type porcine-origin enterotoxigenic E. coli
strains (ETEC) by polymerase chain reaction (PCR) assay. PCR assays to determine the exis-
tence of the T2SS in porcine ETEC stains were conducted using primers gspDF (5-
TTCGGAAATCGCCCGCGTGC) and gspDR (5-TCCACCTTCGAGACTTCC) to generate a
1.0-kb fragment of gspD, and primers gspKF (5-GCAGCAGGTGACTAACGGC) and gspKR
(5-CAGGGCTTAACCACGGGTC) to generate a 1.2-kb fragment of gspK [34]. PCR reactions
were conducted using a 95°C initial denaturation for 1 min, followed by 30 cycles of 95°C
(30 sec), 60°C (30 sec), and 68°C (90 sec), and a final extension at 72°C for 10 min. Electropho-
resis was performed using a 2% agarose- tris acetate ethanol (TAE) gel, supplemented with 0.5
µg/ ml of ethidium bromide. Human-origin strain H10407 was used as a positive control for
the presence of gspD and gspK, and a lane lacking DNA was used as negative control. Ampli-
cons of the appropriate sizes for gspD and gspK were seen in the lanes containing DNA from
H10407 and all porcine-origin ETEC strains (arrows), but not in the negative control lane.
(TIF)

S5 Fig. Maximum Likelihood phylogenetic tree generated by analyses of gspC and homolog
sequences listed in S3 Table using MEGA6.
(TIF)

S6 Fig. Maximum Likelihood phylogenetic tree generated by analyses of gspD and homolog
sequences listed in S4 Table using MEGA6.
(TIF)

S1 Table. Escherichia coli strains used in this study.
(DOCX)

S2 Table. Y1 adrenal cell assay results.
(DOCX)

S3 Table. Genetic sequences of gspC homologs used for generating the Maximum Likeli-
hood phylogenetic tree.
(DOCX)

S4 Table. Genetic sequences of gspD homologs used for generating the Maximum Likeli-
hood phylogenetic tree.
(DOCX)

S5 Table. Genetic sequences of gspE homologs used for generating the Maximum Likeli-
hood phylogenetic tree.
(DOCX)
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