Article

Prioritizing transcriptional factors in gene regulatory networks with PageRank

[^0]
Article

Prioritizing transcriptional factors in gene regulatory networks with PageRank

Hongxu Ding, ${ }^{1,2,4,5, *}$ Ying Yang, ${ }^{1,3,4}$ Yuanqing Xue, ${ }^{1,4}$ Lucas Seninge, ${ }^{1}$ Henry Gong, ${ }^{1}$ Rojin Safavi, ${ }^{1}$ Andrea Califano, ${ }^{2}$ and Joshua M. Stuart ${ }^{1, *}$

Abstract

SUMMARY Biological states are controlled by orchestrated transcriptional factors (TFs) within gene regulatory networks. Here we show TFs responsible for the dynamic changes of biological states can be prioritized with temporal PageRank. We further show such TF prioritization can be extended by integrating gene regulatory networks reverse engineered from multi-omics profiles, e.g. gene expression, chromatin accessibility, and chromosome conformation assays, using multiplex PageRank.

INTRODUCTION

Biological processes are primarily executed via gene regulatory networks (GRNs), which are controlled by key transcriptional factors (TFs) (Levine and Davidson, 2005; Califano and Alvarez, 2017). Such key TFs usually occupy the top of the gene regulatory hierarchy (Chan and Kyba, 2013). The regulatory hierarchy of a specific TF depends on the number and hierarchy of corresponding transcriptional targets, thus can be quantified by PageRank centrality (Brin and Page, 1998; Page et al., 1999). Originally proposed for ranking search results of World Wide Web (WWW) snapshots, PageRank and related algorithms has been successfully applied to the analysis of single static biological networks (Morrison et al., 2005; Koschützki and Schreiber, 2008; Tarca et al., 2009; Iván and Grolmusz, 2011). The advent of high-throughput sequencing technologies provide unprecedented temporal and multi-dimensional biological information for understanding transcriptional regulation. For instance, transcriptional regulatory dynamics among consecutive biological states can be characterized with single cell RNA sequencing (scRNA-Seq) (Kolodziejczyk et al., 2015) and trajectory analysis (Herring et al., 2018). Meanwhile, epigenetic regulation of gene transcription can be illustrated using, e.g. chromatin accessibility (Klemm et al., 2019) and chromosome conformation (Sati and Cavalli, 2017) assays. Here, we show within such temporal and multiplex GRNs, TFs can be prioritized with temporal (Rozenshtein and Gionis, 2016) and multiplex (Halu et al., 2013) PageRank.

As the extension of original steady-state PageRank in temporal networks, temporal PageRank ranks nodes based on their connections that change over time (Rozenshtein and Gionis, 2016). In temporal GRNs, important TFs are those connected with more time-related targets and other important TFs. Such TFs will then be considered at the top of the temporal gene regulatory hierarchy and prioritized (Figure 1A, see Transparent methods). Multiplex PageRank, on the other hand, extends PageRank analysis to multiplex networks. In such networks, the same nodes might interact with one another in different layers. Multiplex PageRank is then calculated according to the topology of a predefined base network, with regular PageRank of other supplemental networks as edge weights and personalization vector (Halu et al., 2013). Therefore, GRNs reverse engineered from multi-omics assays can be integrated for TF prioritization (Figure 1B, see Transparent methods).

RESULTS

Interpreting regulatory dynamics using temporal PageRank

We first demonstrated TFs controlling cellular state transitions can be prioritized with temporal PageRank. Specifically, we analyzed the human myoblast-muscle cell differentiation process, during which single cells were harvested and profiled every 24 hr from T0 to T72 (Trapnell et al., 2014). To provide intuitions for the rationale of temporal PageRank analysis, following the schematic diagram in Figure 1A, we visualized static GRNs at neighboring timepoints, as well as the yielding temporal GRNs. Considering the sizes of such static/temporal GRNs, for clear visualization, we only highlighted key regulatory modules by filtering out less confident
${ }^{1}$ Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
${ }^{2}$ Department of Systems Biology, Columbia University, New York, NY, USA
${ }^{3}$ Department of Dermatology, Stanford University, Stanford, CA, USA
${ }^{4}$ These authors contributed equally
${ }^{5}$ Lead Contact
*Correspondence:
hding16@ucsc.edu (H.D.),
jstuart@ucsc.edu (J.M.S.)
https://doi.org/10.1016/j.isci. 2020.102017

A Temporal PageRank Analysis

B Multiplex PageRank Analysis

Figure 1. Graphic overview
Schematic diagrams of temporal and multiplex PageRank analysis are shown in (A) and (B), respectively.
interactions (see Transparent methods). As shown in Figure 2A, two independent regulatory modules were identified at T0. The first module was controlled by cell cycle TFs TOP2A (Mjelle et al., 2015) and FOXM1 (Wierstra and Alves, 2007), in concordance with the active proliferation of myoblasts. The second module, which is responsible for the lineage identity of myoblast, was marked by the lineage-specific TF MYF5 (Blais et al., 2005). As for T24 (Figure 2B) and the following timepoints (Figure S1), the corresponding GRNs were majorly controlled by a single regulatory module. Such a module was composed of muscle cell-specific TFs, including muscle cell lineage markers MEF2C and ANKRD1 (Blais et al., 2005), as well as epigenetic modifier HMGA1 (Brocher et al., 2010). Thus, the differentiation of myoblast can be described as the sequential interplay of key TFs. We further applied temporal PageRank on the differential GRNs derived from the corresponding adjacent static counterparts. As shown in Figures 2C and S1, the regulatory dynamics of myoblast-muscle cell differentiation was recapitulated, by discovering all the above-mentioned key TFs. We also analyzed the 33 major lineages during mouse organogenesis reported in the MOCA data sets (Cao et al., 2019) as the additional proof-of-concept (Figure S2).

Integrating multi-omics GRNs using multiplex PageRank

We then demonstrated GRNs reverse engineered from multi-omics assays can be integrated through multiplex PageRank for TF prioritization. Specifically, we included matching ATAC-Seq profiles (Pliner et al., 2018) of the above-mentioned differentiation process. We then constructed static and temporal GRNs, and performed corresponding PageRank analysis, following the workflow described in Transparent methods. Although the scRNA-Seq and ATAC-Seq GRNs were topologically different (Figure S1), muscle cell signature TF MEF2C was identified with both GRN types across the entire differentiation process (Figure S3). Meanwhile, additional muscle cell TFs, e.g. KLF5 (Hayashi et al., 2016) and REST (lannotti et al., 2013) were recapitulated by analyzing ATAC-Seq GRNs (Figure S3). Such results suggested GRNs reverse engineered from multi-omics profiles agreed on the general principle, while each provided unique insights into the gene regulatory machinery. Aiming at prioritizing TFs by combining scRNA-Seq and ATAC-Seq GRNs, we performed multiplex PageRank analysis. The contributions of scRNA-Seq and ATAC-Seq GRNs were quantified in Figures 2F and 2G. Noticeably, multiplex PageRank can be applied to integrate GRNs under both static and temporal scenarios. As shown in Figures 2D, 2E and S4, key TFs elucidated from scRNA-Seq and ATAC-Seq GRNs were together recapitulated.

As an additional proof-of-concept, we analyzed the human hematopoiesis process, including the linear lineage progression of hematopoietic stem cell, multi-potent progenitor, and CMP (common myeloid progenitor), as well as the bifurcation from CMP to granulocyte-macrophage progenitor and megakaryocyteerythroid progenitor, with multiplex PageRank. Following the same pipeline as the previous analysis, GRNs assembled from matching scRNA-Seq (Pellin et al., 2019) and ATAC-Seq (Corces et al., 2016) data sets were analyzed (Figure S5).

Figure 2. PageRank analysis on the myoblast-muscle cell differentiation process
(A and B) Static scRNA-Seq GRNs for T0 and T24. Vertex and label sizes correspond to static PageRank values. Red and blue edges correspond to positive and negative interactions, respectively.
(C) Temporal scRNA-Seq GRN between T0 and T24. Vertex and label sizes correspond to temporal PageRank values. Orange and purple vertices correspond to increased and decreased gene expression from T0 to T24, respectively. Red and blue edges correspond to gained and lost interactions from T0 to T24, respectively.
(D and E) Bubble plots showing the top 20 combined static and temporal PageRank candidates by analyzing scRNA-Seq and ATAC-Seq GRNs. The size of bubbles correspond to the degree values (number of connecting interactions). The color of bubbles correspond to the gene expression quantified by $\log 2(\mathrm{rpm}+1)$, where rpm stands for reads per million. For static PageRank, absolute gene expression was quantified, with red and gray corresponding to high and low gene expression, respectively. For temporal PageRank, differential gene expression was quantified, with red and blue corresponding to increased and decreased gene expression, respectively.
(F and G) Heatmaps showing the contribution of ATAC-Seq GRNs in TF prioritization. The contributions of scRNA-Seq and ATAC-Seq GRNs were normalized to 1. F and G describes static and temporal PageRank analysis, respectively.

We further expanded multiplex PageRank to integrate gene expression, chromatin accessibility and chromosome conformation GRNs, by analyzing scRNA-Seq, ATAC-Seq, and HiChIP (Mumbach et al., 2017) profiles of human T-cells. We used scRNA-Seq GRN as the base network for the integration. As shown in Figure S6, several known crucial TFs responsible for T cell homeostasis, e.g. FOXP1 (Feng et al., 2011) and functionalities, e.g. LEF1 (Travis et al., 1991) were recapitulated among the top 20 identified TFs. Moreover, a systematic survey of the top 20 TFs was performed with GO analysis (http://geneontology.org/). As shown in Table S1, a significant amount of T-cell-related biological processes were recapitulated. Noticeably, the three included GRNs complement each other by providing unique insights into gene regulatory machinery. For instance, the prioritization of LEF1 and FOXP1 was majorly contributed by the HiChIP and ATAC-Seq GRNs, respectively.

DISCUSSION

Taken together, by analyzing diverse biological questions, we demonstrated that key TFs responsible for biological processes can be prioritized by analyzing GRNs using PageRank. Specifically, we showed that the crucial TFs controlling the dynamic transition of biological states can be prioritized with temporal PageRank. Further, we showed GRNs reverse engineered from multi-omics profiles can be integrated for TF prioritization with multiplex PageRank.

PageRank quantifies the importance of TFs during biological processes by performing comprehensive surveys on GRN hierarchies, therefore extremely suitable for TF prioritization. Specifically, PageRank analysis can prioritize TFs even if their expression patterns are obscure. For instance, as shown in Figure 2E, although no strong differential expression was observed during the transition from T0 to T24, muscle cell-specific TF ANKRD1 was ranked \#2 with temporal PageRank analysis. Meanwhile, PageRank analysis prioritizes TFs with the entire GRN hierarchies, rather than based on "flattened" architectures which only consider the direct targets. For instance, as shown in Figure S2, during the mouse embryo development of inhibitory interneuron lineage from stage E10.5 to stage E11.5, the degree centrality of Sox6 was insignificant, while ranked \#3 by temporal PageRank analysis. We further performed a systematic comparison between our PageRank analysis with a state-of-theart TF prioritization algorithm, VIPER (Alvarez et al., 2016; Ding et al., 2018) (see Figure S11 for details).

Limitations of the study

Taken together, we anticipate the PageRank analysis would provide novel and comprehensive insights for the understanding of transcriptional regulation, by identifying regulators that potentially reside at the top of the regulatory hierarchy. One thing to be noticed for temporal PageRank analysis is that, we would not recommend applying it on distinct networks. Consider an extreme case, where (1) the number of nodes in network A and B are the same, while A has 10 times more interactions than B, and (2) the two networks have no overlapping interactions, for example. The differential network between A and B will include all interactions in A and B. If temporal PageRank analysis is performed on such a differential network, the yielded top ranks will be dominated by A nodes, considering the 10 times more interactions. B nodes, on the other hand, are under-appreciated even though they also convey important information describing differences between A and B. As for analyzing GRNs, similar biases could happen. For instance, the epigenetic landscape of zygotes is less restricted, thus more regulatory interactions are expected. In contrast, the more restricted epigenetic landscapes reduce possible regulatory interactions in terminally differentiated cells such as T-cells. Thus, the temporal PageRank analysis between zygote and T cell GRNs is highly likely to ignore functional TFs in T-cells. We thus would suggest only applying temporal PageRank analysis between temporally adjacent networks.

As for multiplex PageRank analysis, one limitation is that the results might vary according to the choice of the base network. For instance, during the myoblast-muscle cell differentiation process, although known myoblast-specific TFs SP1/3 (Parakati and DiMario, 2002) were prioritized by PageRank analyses based on only ATAC-Seq GRNs (Figure S3), they failed to be captured when using scRNA-Seq GRNs as base networks for multiplex PageRank analyses (Figures 2D and 2E). On the other hand, the effect of base network choice on the final multiplex PageRank integration was minor when analyzing T-cells (Figure S7). Thus, one possible future direction might be developing "reciprocal" multiplex PageRank analysis for GRNs, in which feedbacks among multiplex networks are considered as reported in (Tu et al., 2018).

Resource availability

Lead contact
Hongxu Ding, hding16@ucsc.edu.

Material availability
This study did not generate any new material.

Data and code availability
scRNA-Seq profiles of myoblast-muscle cell differentiation were downloaded from Gene Expression Omnibus (GEO) under accession number GSE52529. MOCA scRNA-Seq profiles were downloaded from GEO under accession number GSE119945. Hematopoiesis scRNA-Seq profiles were downloaded from GEO under accession number GSE117498. Healthy PBMC T cell scRNA-Seq profiles were downloaded from: https://support. 10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3. ATAC-Seq profiles of myoblastmuscle cell differentiation were downloaded from GEO under accession number GSE109828. Hematopoiesis ATAC-Seq profiles were downloaded from GEO under accession number GSE74912. T cell ATAC-Seq and HiChIP profiles were downloaded from GEO under accession number GSE101498.

The pageRank R package is available on Bioconductor, and GitHub repository https://github.com/hd2326/ pageRank. Custom scripts used to reproduce the results and figures are also available at https://github. com/hd2326/pageRank.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.102017.

ACKNOWLEDGMENTS

J.M.S. was supported by a grant 5R01GM109031 from the NIGMS. J.M.S. and H.D. were supported by a grant from the Chan Zuckerberg Initiative's Human Cell Atlas portals project. H.D. was supported by a gift from Seagate Technology. J.M.S. was supported by grant GC1R-06673-C from the California Institute for Regenerative Medicine's Center of Excellence for Stem Cell Genomics.

AUTHOR CONTRIBUTIONS

H.D. conceived the idea. H.D. and A.C. performed ARACNe analysis. H.D. and Y.Y. performed epigenetic network analysis. H.D., Y.Y., Y.X., H.G., and R.S. performed the PageRank analysis. H.D., Y.Y., Y.X., and L.S. collected and pre-processed the data. H.D. and J.M.S. supervised the project. H.D., Y.Y. and J.M.S. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
Received: October 6, 2020
Revised: November 6, 2020
Accepted: December 28, 2020
Published: January 22, 2021

REFERENCES

Alvarez, M.J., Shen, Y., Giorgi, F.M., Lachmann A., Ding, B.B., Ye, B.H., and Califano, A. (2016). Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838-847.

Blais, A., Tsikitis, M., Acosta-Alvear, D., Sharan, R., Kluger, Y., and Dynlacht, B.D. (2005). An initial blueprint for myogenic differentiation. Genes Dev. 19, 553-569

Brin, S., and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 30, 107-117.

Brocher, J., Vogel, B., and Hock, R. (2010). HMGA1 down-regulation is crucial for chromatin composition and a gene expression profile permitting myogenic differentiation. BMC Cell. Biol. 11, 1-12.

Califano, A., and Alvarez, M.J. (2017). The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat. Rev. Cancer 17, 116.

Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., and Trapnell, C.
(2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502.

Chan, S.S.K., and Kyba, M. (2013). What is a master regulator? J. Stem Cell Res. Ther. 3, https://doi.org/10.4172/2157-7633.1000e114.

Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J., and Majeti, R. (2016). Lineage-specific and singlecell chromatin accessibility charts human
hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193-1203.

Ding, H., Douglass, E.F., Sonabend, A.M., Mela, A., Bose, S., Gonzalez, C., Canoll, P.D., Sims, P.A., Alvarez, M.J., and Califano, A. (2018). Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm. Nat. Commun. 9, 1-10.

Feng, X., Wang, H., Takata, H., Day, T.J., Willen, J., and Hu, H. (2011). Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat. Immunol. 12, 544-550.

Halu, A., Mondragón, R.J., Panzarasa, P., and Bianconi, G. (2013). Multiplex pagerank. PLoS One 8, e78293.

Hayashi, S., Manabe, I., Suzuki, Y., Relaix, F., and Oishi, Y. (2016). Klf5 regulates muscle differentiation by directly targeting musclespecific genes in cooperation with MyoD in mice. Elife 5, e17462.

Herring, C.A., Chen, B., McKinley, E.T., and Lau, K.S. (2018). Single-cell computational strategies for lineage reconstruction in tissue systems. Cell Mol. Gastroenterol. Hepatol. 5, 539-548.

Iannotti, F.A., Barrese, V., Formisano, L., Miceli, F., and Taglialatela, M. (2013). Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)regulated Kv7. 4 potassium channels. Mol. Biol Cell 24, 274-284.

Iván, G., and Grolmusz, V. (2011). When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks.
Bioinformatics 27, 405-407.
Klemm, S.L., Shipony, Z., and Greenleaf, W.J. (2019). Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207-220.

Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., and Teichmann, S.A. (2015). The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610-620.

Koschützki, D., and Schreiber, F. (2008). Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, GRSB-S702.

Levine, M., and Davidson, E.H. (2005). Gene regulatory networks for development. Proc. Natl. Acad. Sci. U S A 102, 4936-4942.

Mjelle, R., Hegre, S.A., Aas, P.A., Slupphaug, G., Drabløs, F., Sætrom, P., and Krokan, H.E. (2015). Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair 30, 53-67.

Morrison, J.L., Breitling, R., Higham, D.J., and Gilbert, D.R. (2005). GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 6, 233.

Mumbach, M.R., Satpathy, A.T., Boyle, E.A., Dai, C., Gowen, B.G., Cho, S.W., Nguyen, M.L., Rubin, A.J., Granja, J.M., Kazane, K.R., and Wei, Y. (2017). Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation Ranking: Bringing Order to the Web (Stanford InfoLab).

Parakati, R., and DiMario, J.X. (2002). Sp1-and Sp3-mediated transcriptional regulation of the fibroblast growth factor receptor 1 gene in chicken skeletal muscle cells. J. Biol. Chem. 277, 9278-9285.

Pellin, D., Loperfido, M., Baricordi, C., Wolock, S.L., Montepeloso, A., Weinberg, O.K., Biffi, A., Klein, A.M., and Biasco, L. (2019). A comprehensive single cell transcriptional
landscape of human hematopoietic progenitors. Nat. Commun. 10, 1-15.

Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A., Daza, R.M., Aghamirzaie, D., Srivatsan, S., Qiu, X., Jackson, D., Minkina, A., and Adey, A.C. (2018). Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858-871.

Rozenshtein, P., and Gionis, A. (2016).
September. Temporal pagerank. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Springer), pp. 674-689.

Sati, S., and Cavalli, G. (2017). Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126, 33-44.

Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.S., Kim, C.J., Kusanovic, J.P., and Romero, R. (2009). A novel signaling pathway impact analysis. Bioinformatics 25, 75-82.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381.

Travis, A., Amsterdam, A., Belanger, C., and Grosschedl, R. (1991). LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T -cell receptor alpha enhancer function [corrected]. Genes Dev. 5, 880-894.

Tu, X., Jiang, G.P., Song, Y., and Zhang, X. (2018). Novel multiplex PageRank in multilayer networks. IEEE Access 6, 12530-12538.

Wierstra, I., and Alves, J. (2007). FOXM1, a typical proliferation-associated transcription factor. Biol. Chem. 388, 1257-1274.

Supplemental Information

Prioritizing transcriptional factors

in gene regulatory
networks with PageRank
Hongxu Ding, Ying Yang, Yuanqing Xue, Lucas Seninge, Henry Gong, Rojin Safavi, Andrea Califano, and Joshua M. Stuart

Supplemental Data Items

Figure S1. [Graph visualization of myoblast-muscle cell differentiation GRNs], related to Figure 2. (A) Static scRNA-Seq GRNs. Bigger vertices corresponded to higher regular PageRank values. Red/blue edges corresponded to positive/negative interactions, respectively. (B) Static ATAC-Seq GRNs. Bigger vertices corresponded to higher regular PageRank values. (C, D) Temporal scRNA-Seq and ATAC-Seq GRNs. Bigger vertices corresponded to higher temporal PageRank values. Orange/purple vertices corresponded to increased/decreased gene expression, respectively. Red/blue edges corresponded to gained/lost interactions, respectively. T0, T24, T48 and T72 corresponded to sampling timepoints alongside the differentiation process as reported in [1].

Figure S2. [Static PageRank analysis on MOCA lineages], related to Figure 2. We analyzed mouse organogenesis lineages reported in the MOCA datasets [2]. For every lineage, the top 20 static and temporal PageRank (the left and right panels of every lineage) candidates were shown in bubble plots. The size of bubbles corresponded to the degree: the more connecting interactions the bigger the bubble. The color of bubbles corresponded to the gene expression. For static PageRank panels, red/grey corresponded to high/low gene expression, respectively. For temporal PageRank panels, reg/blue corresponded to increased/decreased gene expression, respectively. E9.5 etc, embryonic stages.

Figure S3. [Static and temporal PageRank analysis on myoblast-muscle cell differentiation], related to Figure 2. The top 20 static and temporal PageRank candidates by analyzing scRNA-Seq [1] and ATAC-Seq [3] GRNs were shown in bubble plots. The size of bubbles corresponded to the degree: the more connecting interactions the bigger the bubble. The color of bubbles corresponded to the gene expression. For static PageRank analysis, red/grey corresponded to high/low gene expression, respectively. For temporal PageRank analysis, red/blue corresponded to increased/decreased gene expression, respectively. PR, static PageRank; tPR, temporal PageRank; T0 etc, differentiation timepoints.

Figure S4. [Multiplex PageRank analysis on myoblast-muscle cell differentiation], related to Figure 2. The top 20 multiplex (additive, multiplicative, combined and neutral, see METHODS for details) PageRank candidates by combining scRNA-Seq [1] and ATAC-Seq [3] GRNs were shown in bubble plots. The size of bubbles corresponded to the degree: the more connecting interactions the bigger the bubble. The color of bubbles corresponded to the gene expression. For static PageRank analysis, red/grey corresponded to high/low gene expression, respectively. For temporal PageRank analysis, reg/blue corresponded to increased/decreased gene expression, respectively. PR, static PageRank; tPR, temporal PageRank; T0 etc, differentiation timepoints.

Figure S5. [Multiplex PageRank analysis on hematopoiesis], related to Figure 2. The top 20 multiplex (additive, multiplicative, combined and neutral, see METHODS for details) PageRank candidates by combining scRNA-Seq [4] and ATAC-Seq [5] GRNs were shown in bubble plots. The size of bubbles corresponded to the degree: the more connecting interactions the bigger the bubble. The color of bubbles corresponded to the gene expression. For static PageRank analysis, red/grey corresponded to high/low gene expression, respectively. For temporal PageRank analysis, reg/blue corresponded to increased/decreased gene expression, respectively. PR, static PageRank; tPR, temporal PageRank; T0 etc, differentiation timepoints.

Figure S6. [PageRank analysis on T-cells], related to Figure 2. (A) Static PageRank values calculated from scRNA-Seq, ATAC-Seq and HiChIP GRNs reverse engineered from healthy human T-cells were analyzed [6]. The size of points correspond to the combined static PageRank values, and the color of points correspond to whether they are TFs or targets. (B) Top 20 combined static PageRank candidates. The contributions of each GRN were represented as normalized fractions. Red green and blue correspond to scRNA-Seq, ATAC-Seq and HiChIP GRNs, respectively.

Figure S7. [Effect of base network on multiplex PageRank], related to Figure 2. The scRNA-Seq, ATAC-Seq and HiChIP static GRNs reverse engineered from healthy human T-cells were analyzed [6]. (A) Multiplex PageRank values calculated from different base GRNs. (B) Scatter plot of regular versus multiplex (additive, multiplicative, combined and neutral, see METHODS for details) PageRank values calculated from different base GRNs.

Figure S8. [Overview of the analytical workflow], related to Figure 2.

Figure S9. [Overview of epigenetic GRN construction], related to Figure 2.
Figure S10. [Complexity analysis], related to Figure 2. We generated 10 random Erdos-Renyi graphs, represented as $E R(n, p)$, per n-p combination to gain enough statistical power for complexity analysis. Specifically, $\log 2(n)$ ranges from 5 to 14 , while p equals 0.1 . For both multiplex and temporal PageRank analyses, the complexity scales exponentially with the network size. Noticeably, even the largest ER graphs, which contain $2^{\wedge 14 ~(16384) ~ n o d e s, ~ c a n ~ b e ~ p r o c e s s e d ~ w i t h i n ~} 2$ hours, suggesting the decent efficiency of our temporal and multiplex PageRank implementations.

Figure S11. [Systematic comparison with state-of-the-art TF prioritization algorithm VIPER], related to Figure 2. Enrichment analysis-based algorithms, e.g. VIPER [7] and successor metaVIPER [8], as well as SCENIC [9], emerged as powerful tools for prioritizing TFs from GRNs. Such algorithms evaluate the activity of TFs by enriching the gene expression signatures against the corresponding transcriptional targets. If a majority of positive/negative targets of a specific TF are over/under-expressed, then such a TF can be considered as activated, and vice versa. With the quantified enrichment score, TFs can be prioritized. Specifically, we chose the VIPER algorithm for comparison study. VIPER has successfully prioritized TFs in various biological conditions, thus can be considered as the "ground truth" algorithm. For systematic comparison, we analyzed all the 33 MOCA lineages [2] using the VIPER algorithm [8,9]. We further compared the VIPER-inferred TF activities with temporal PageRank values, as described in Figure S2. The x-axis denotes the normalized enrichment score (nES , TF activity) quantified by VIPER, and the y-axis denotes the temporal PageRank values. The colored dots represent TFs during different developmental transitions. As shown, in general PageRank values agree with VIPER inferences, suggesting the recapitulation of key TFs. However, there were cases where discrepancies between the PageRank values and nES scores. VIPER evaluates TF activities by only visiting their direct transcriptional targets, thus cannot fully appreciate the hierarchy of gene regulatory networks. PageRank, on the other hand, performs a comprehensive survey on the network topology for systematic evaluation of the importance of TFs. For instance, during the E12.5-E13.5 development of mouse radial glia, Whsc1 regulates Tcf12 and Pax3 (purple). As shown in panel "Radial-glia", the moderate differential expression of Tcf12 and Pax3 gave less significant VIPER nES. In contrast, the PageRank value of Tcf12 ranked \#1 among all TFs, thus significantly promoted the importance of Whsc1. Such a dissection of the Whsc1 sub-network provides a good example of the advantage of PageRank analysis.

Table S1. [Result of the T-cell GO analysis], related to Figure 2. Results of online GO analysis (http://geneontology.org/) with the top 20 identified TFs reported in Figure S6.

Transparent Methods

Overview of the analytical workflow.

As shown in Figure S8, cell type-specific TF-target networks will first be constructed from corresponding multi-omics profiles (see subsections "Gene expression-based GRNs" and "Epigenetic GRNs" for details). TF-target interactions will then be filtered based on confidence scores derived from the expression of TFs and corresponding targets. The confidence scores were calculated based on marginal and joint expression distribution, using either their differences or mutual information. Based on the null model calculated from random TF-target pairs, interactions with p-value smaller than 10^{-3} were kept for downstream analysis. Such filtered GRNs can then be used to generate temporal GRNs, followed by temporal PageRank analysis (see section "temporal PageRank" for details). Such steady-state and temporal GRNs can be cleaned by removing certain nodes, further adjusted by user-provided edge weights, personalization vectors and damping factors. Finally, multiplex PageRank can be calculated among such filtered and adjusted GRNs (see section "multiplex PageRank" for details).

Gene expression-based GRNs.

GRNs are conventionally reverse engineered from expression profiles [10]. Several well-established algorithms have been proposed to construct expression-based tissue-specific GRNs, as reviewed in [11]. Here, we specifically chose the ARACNe algorithm, considering the superior accuracy [12-14]. ARACNe was run on scRNA-Seq profiles with 200 bootstrap iterations using 1813 transcription factors (genes annotated in gene ontology molecular function database, as GO:0003700, "transcription factor activity", or as GO:0003677, "DNA binding", and GO:0030528, "transcription regulator activity", or as GO:00034677 and GO: 0045449, "regulation of transcription"). Parameters were set to zero DPI (Data Processing Inequality) tolerance and MI (Mutual Information) p-value (using MI computed by permuting the original dataset as null model) threshold of 10^{-8}. The ARACNe algorithm is available at https://github.com/califano-lab/ARACNe-AP.

Epigenetic GRNs.

In this study we focused on chromatin accessibility and chromosome conformation epigenetic assays. Chromatin accessibility assays, e.g. DNase-Seq [15,16], MNase-Seq [17], NOMe-Seq [18], ATAC-Seq [19] and derivatives are designed to identify physically accessible DNA regions, which are likely to be involved in transcriptional regulation. As shown in Figure S9, motif searching will be performed within called peaks (accessible regions) to identify putative TFs. Meanwhile, TSSs (Transcription Start Sets) will be searched within certain upstream and downstream genomic ranges of peaks to identify potential target genes. Thus, TF-target can be corresponded for GRNs assembly.

Chromosome conformation assays, e.g. ChIA-PET [20], 3C [21], 4C [22], 5C [23], Hi-C [24], HiChIP [6] and derivatives are designed to map spatial organization of chromosomes. Such spatial organization usually results in transcriptional regulation. As shown in Figure S9, chemical crosslink will preserve long-range interactions of genomic regions. Within such regions, TF binding motifs and TSSs will be searched for GRNs assembly, as described before.

Specifically, for TSS searching, genes will first be retrieved from Bioconductor R TxDb annotations [25] using the function genes in Bioconductor R package GenomicFeatures [26]. Then the corresponding promoter regions will be determined using the function promoters in Bioconductor R package GenomicRanges [26]. For motif searching, the most updated JASPAR database (available in Bioconductor R package JASPAR2018) [27] will be searched using the function getMatrixSet in Bioconductor R package TFBSTools [28]. Then functions matchMotifs and motifMatches in Bioconductor R package motifmatchr [29] will be used to match motifs to TFs.

Temporal PageRank.

Temporal PageRank extends the original static PageRank by only considering temporal edges instead of all edges. Temporal edges denote edges that change at certain stages during the lifetime of the networks [30]. Here, we simplify the definition of temporal PageRank by examining GRN pairs describing consecutive biological states, e.g. T0 and T24 of myoblast-muscle differentiation. Thus, we represented such GRN pairs using adjacency matrices, then took the subtraction as representation of temporal differential networks, further for temporal PageRank calculation. We implemented temporal PageRank as the function diff_graph in R package pageRank, based on CRAN R package igraph [31]. As shown in Figure S10, the complexity of our temporal PageRank implementation scales exponentially with the network size.

Multiplex PageRank.

Multiplex PageRank extends PageRank analysis to multiplex networks, in which the same nodes might connect differently across layers. Multiplex PageRank integrates network information from supplementary layers to base layer, as defined by

$$
X_{B i}=\alpha_{B} \sum_{j} X_{A i}{ }^{\beta} B_{i j} \frac{X_{B j}}{G_{j}}+\left(1-\alpha_{B}\right) \frac{X_{A i^{\gamma}}}{N\left\langle X_{A}{ }^{7}\right.}
$$

, where

$$
G_{j}=\sum_{r} B_{r j} X_{A r}^{\beta}+\delta\left(0, \sum_{r} B_{r j} X_{A r}^{\beta}\right)
$$

with δ as the Kronecker delta and $\langle\ldots$... as mean value.
In the equation, A and B denote the adjacency matrices of supplementary and base layers. For such adjacency matrices, the first/second subscripts represent the row/column indices. $X_{A i}$ represent the PageRank value of ith node calculated from B. The same representation rule applies for $X_{B j}$ and $X_{A r}$. N is the total number of nodes in the base layer. a_{B} is the damping factor used for. β and γ are user-defined parameters. As shown in the equation, multiplex PageRank is calculated according to the topology of the base layer, with regular PageRank of supplemental layer as outgoing weights and personalization vector. For networks with multiple supplementary layers, we can simply multiply their PageRank to fit into the above equation. Based on parameters β and γ, four special multiplex PageRank forms were defined, including additive ($\beta=0, \gamma=1$), multiplicative ($\beta=1, \gamma=0$), combined ($\beta=1, \gamma=1$) and neutral $(\beta=0, \gamma=0)$ [32]. We implemented the four special forms of multiplex PageRank as the function multiplex_page_rank in R package pageRank, based on CRAN R package igraph [31]. As shown in Figure S10, the complexity of our multiplex PageRank implementation scales exponentially with the network size.

We assume that regulatory machinery can be directly reflected on expression profiles, thus gene expression-based GRNs were used as base networks in this study. In contrast, epigenetic profiles are usually considered as indirect evidence of TF-target regulation. For instance ATAC-Seq and HiChIP GRNs were reverse engineered through motif-matching and TSS-searching, thus significant amounts of false positives should be expected. Also, TFs might not necessarily bind to the regions to be searched, e.g. ATAC-Seq peaks. In the case of ATAC-Seq, TF might bind to enhancer regions, which are usually distant from the corresponding promoters, thus cannot be captured. Therefore, considerable amounts of false negatives should also be expected.

Supplemental References

1. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S. and Rinn, J.L., 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature biotechnology, 32(4), p.381.
2. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J. and Trapnell, C., 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature, $566(7745)$, pp.496-502.
3. Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A., Daza, R.M., Aghamirzaie, D., Srivatsan, S., Qiu, X., Jackson, D., Minkina, A. and Adey, A.C., 2018. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Molecular cell, 71(5), pp.858-871.
4. Pellin, D., Loperfido, M., Baricordi, C., Wolock, S.L., Montepeloso, A., Weinberg, O.K., Biffi, A., Klein, A.M. and Biasco, L., 2019. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nature communications, 10(1), pp.1-15.
5. Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J. and Majeti, R., 2016. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature genetics, 48(10), pp.1193-1203.
6. Mumbach, M.R., Satpathy, A.T., Boyle, E.A., Dai, C., Gowen, B.G., Cho, S.W., Nguyen, M.L., Rubin, A.J., Granja, J.M., Kazane, K.R. and Wei, Y., 2017. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature genetics, 49(11), p. 1602.
7. Alvarez, M.J., Shen, Y., Giorgi, F.M., Lachmann, A., Ding, B.B., Ye, B.H. and Califano, A., 2016. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nature genetics, 48(8), pp.838-847.
8. Ding, H., Douglass, E.F., Sonabend, A.M., Mela, A., Bose, S., Gonzalez, C., Canoll, P.D., Sims, P.A., Alvarez, M.J. and Califano, A., 2018. Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm. Nature communications, 9(1), pp.1-10.
9. Aibar, S., González-Blas, C.B., Moerman, T., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., van den Oord, J. and Atak, Z.K., 2017. SCENIC: single-cell regulatory network inference and clustering. Nature methods, 14(11), pp.1083-1086.
10. Emmert-Streib, F., Glazko, G. and De Matos Simoes, R., 2012. Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Frontiers in genetics, 3, p.8.
11. Mercatelli, D., Scalambra, L., Triboli, L., Ray, F. and Giorgi, F.M., 2020. Gene regulatory network inference resources: A practical overview. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1863(6), p. 194430.
12. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R. and Califano, A., 2005. Reverse engineering of regulatory networks in human B cells. Nature genetics, 37(4), pp.382-390.
13. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R. and Califano, A., 2006, March. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In BMC bioinformatics (Vol. 7, No. S1, p. S7). BioMed Central.
14. Lachmann, A., Giorgi, F.M., Lopez, G. and Califano, A., 2016. ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics, 32(14), pp.2233-2235.
15. Crawford, G.E., Davis, S., Scacheri, P.C., Renaud, G., Halawi, M.J., Erdos, M.R., Green, R., Meltzer, P.S., Wolfsberg, T.G. and Collins, F.S., 2006. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nature methods, 3(7), pp.503-509.
16. Sabo, P.J., Kuehn, M.S., Thurman, R., Johnson, B.E., Johnson, E.M., Cao, H., Yu, M., Rosenzweig, E., Goldy, J., Haydock, A. and Weaver, M., 2006. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nature methods, 3(7), pp.511-518.
17. Schones, D.E., Cui, K., Cuddapah, S., Roh, T.Y., Barski, A., Wang, Z., Wei, G. and Zhao, K., 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5), pp.887-898.
18. Krebs, A.R., Imanci, D., Hoerner, L., Gaidatzis, D., Burger, L. and Schübeler, D., 2017. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Molecular cell, 67(3), pp.411-422.
19. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. and Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods, 10(12), p. 1213.
20. Fullwood, M.J. and Ruan, Y., 2009. ChIP-based methods for the identification of long-range chromatin interactions. Journal of cellular biochemistry, 107(1), pp.30-39.
21. Dekker, J., Rippe, K., Dekker, M. and Kleckner, N., 2002. Capturing chromosome conformation. science, 295(5558), pp.1306-1311.
22. Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., De Wit, E., Van Steensel, B. and De Laat, W., 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature genetics, 38(11), pp.1348-1354.
23. Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C. and Green, R.D., 2006. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome research, 16(10), pp.1299-1309.
24. Lieberman-Aiden, E., Van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O. and Sandstrom, R., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. science, 326(5950), pp.289-293.
25. Carlson, M.R., Pagès, H., Arora, S., Obenchain, V. and Morgan, M., 2016. Genomic annotation resources in R/Bioconductor. In Statistical Genomics (pp. 67-90). Humana Press, New York, NY.
26. Lawrence, M., Huber, W., Pages, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M.T. and Carey, V.J., 2013. Software for computing and annotating genomic ranges. PLoS Comput Biol, 9(8), p.e1003118.
27. Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., Van Der Lee, R., Bessy, A., Chèneby, J., Kulkarni, S.R., Tan, G. and Baranasic, D., 2018. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic acids research, 46(D1), pp.D260-D266.
28. Tan, G. and Lenhard, B., 2016. TFBSTools: an R/bioconductor package for transcription factor binding site analysis. Bioinformatics, 32(10), pp.1555-1556.
29. Schep, A.N., Wu, B., Buenrostro, J.D. and Greenleaf, W.J., 2017. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nature methods, 14(10), pp.975-978.
30. Rozenshtein, P. and Gionis, A., 2016, September. Temporal pagerank. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 674-689). Springer, Cham.
31. Csardi, G. and Nepusz, T., 2006. The igraph software package for complex network research. InterJournal, complex systems, 1695(5), pp.1-9.
32. Halu, A., Mondragón, R.J., Panzarasa, P. and Bianconi, G., 2013. Multiplex pagerank. PloS one, 8(10), p.e78293.

ATAC-Seq TO

scRNA-Seq T0->T24

ATAC-Seq T0->T24

ATAC-Seq T24

scRNA-Seq T24->T48

ATAC-Seq T24->T48

ATAC-Seq T48

scRNA-Seq T48->T72

ATAC-Seq T48->T72

ATAC-Seq T72

scRNA-Seq PR

ATAC-Seq PR

\#20	-	FOXO3	-	ATF7	-	HOXA10	-	RREB1
\#19	\bullet	RREB1	-	SP1	\bullet	TCF7L2	\bullet	SIX1
\#18	\bullet	ELK4	-	TCF7L1	-	STAT3	\bullet	TCF7L1
\#17	\bullet	ZNF24	\bullet	HOXC10	\bullet	ETV5	\bullet	NFYB
\#16	\bullet	MEF2C	\bullet	IRF2	\bullet	FOXK1	\bullet	SREBF2
\#15	\bullet	KLF5	\bullet	KLF5	\bullet	ELK4	\bullet	IRF1
\#14	\bullet	FOSL1	\bullet	MEF2C	\bullet	ZNF410	\bullet	XBP1
\#13	\bullet	TWIST1	-	SREBF2	-	REST	\bullet	ZNF410
\#12	\bullet	YY1	\bullet	ZNF410	\bullet	IRF2	\bullet	MEF2C
\#11	\bullet	STAT1	-	REST	\bullet	XBP1	\bullet	MSC
\#10	\bullet	ETS1	\bullet	SP3	-	MEF2C	-	CTCF
\#9	\bullet	NFYB	-	FOSL2	-	SOX4	-	YY1
\#8	\bullet	TCF7L2	-	MEF2A	-	KLF5	-	NR2F2
\#7	-	TFDP1	\bullet	MLX	-	SP1	-	REST
\#6	-	E2F7	O	RREB1	-	RREB1		TWIST1
\#5	-	ETV5	\bigcirc	NFYB	-	EGR1		TCF7L2
\#4	-	ATF4	\bigcirc	TEAD2	-	MGA		MLX
\#3		REST	-	JUND	\bigcirc	FOXO3		ELK3
\#2	-	SP3		ELK3	\bigcirc	YY1		POU5F1
\#1		SP1	-	CREB1		SP3		STAT3
	$\stackrel{\circ}{ }$		$\stackrel{\text { ® }}{\sim}$		$\stackrel{\infty}{+}$		$\stackrel{N}{N}$	

Figure S3

ATAC-Seq tPR

additive PR
additive tPR
multiplicative PR

multiplicative tPR

\#20	- PRRX1 - HEYL - DRAP1
\#19	- ZFP36L2 - NR113 - MSC
\#18	- E2F7 - ZFP36L2 - MYOG
\#17	- HES6 - KLF5 - CBFA2T2
\#16	- SOX11 - REST - AEBP2
\#15	- ATAD2 - RPL7 - ZNF90
\#14	- ELK3 - MYOG - MYT1L
\#13	- PTTG1 - ELK3 - ZNF221
\#12	- REST - HES6 - TWIST1
\#11	- CREB1 - CREB1 • POU5F1
\#10	- ZNF286B - ANKRD1 - ZFP36L2
\#9	- MYF5 - ZNF286B - GPBP1
\#8	- ZNF286A - ZNF286A - PRRX1
\#7	- FOXM1 - HMGA1 - ZNHIT1
\#6	- PSMC3IP - SOX4 - ZEB2
\#5	MLX - PSMC3IP HMGA1
\#4	- hmgat - MLX - SOX4
\#3	TOP2A - ZEB2 MEF2C
\#2	- MEF2C MEF2C SOX11
\#1	- ANKRD1 SOX11 ANKRD1

\#20		CENPK	-	ARNT2		KLF5		POU5F1
\#19	-	GMNN	-	AR	-	ZNF543		FOXN3
\#18	-	DTL	-	REST	-	ZNF22		BUD31
\#17	-	POU5F1	-	HOXA10	-	NR113		ZNF793
\#16	-	RUNX1	-	ELK3	-	MYF5		ID3
\#15	-	HMGB2	-	CREB1	-	MXD3		DRAP1
\#14	-	SP100	-	PRRX1	-	HMGA2		CBFA2T2
\#13	-	RFXANK	-	ZFP36L1	-	HLTF		AEBP2
\#12	-	RBL1	-	TARDBP	-	HBP1		MEF2C
\#11	-	MXD3	-	NR113	-	GLMP		ZNF90
\#10	-	HMGA1	-	ZFP36L2	-	BUD31		MYT1L
\#9	-	GLMP	-	SOX11	-	HEYL		ZNF221
\#8	-	E2F7	-	HES6	-	HES6		ZFP36L2
\#7	-	PRRX1	-	MLX	-	MYOG		GPBP1
\#6	-	MEF2C	-	PSMC3IP	-	RPL7		ZNHIT1
\#5	-	ATAD2	-	ZNF286B	-	ZEB2		PRRX1
\#4		PTTG1	-	ZNF286A	-	SOX4		SOX11
\#3	-	FOXM1	-	HMGA1	\bullet	ANKRD1		SOX4
\#2	\bullet	MYF5		ANKRD1	-	SOX11		HMGA1
\#1		TOP2A		MEF2C		MEF2C		ANKRD1
	\bigcirc		$\stackrel{\text { N }}{\sim}$		$\stackrel{\infty}{\square}$		N	

\#20	- E2F7 - PRRX1 - MYOG
\#19	- ZFP36L1 - HMGA2 • ZNF793
\#18	- TARDBP - ZFP36L1 - ID3
\#17	- NR113 - TARDBP - RPL7
\#16	- PRRX1 - ZFP36L2 - DRAP1
\#15	- HES6 - HEYL - CBFA2T2
\#14	- ZFP36L2 - NR113 - ZEB2
\#13	- SOX11 - MYOG - AEBP2
\#12	- ATAD2 - RPL7 - ZNF90
\#11	- PTTG1 - HES6 - MYT1L
\#10	- MLX - MLX - ZNF221
\#9	- PSMC3IP • PSMC3IP - ZFP36L2
\#8	- MYF5 ANKRD1 - GPBP1
\#7	- ZNF286B - ZEB2 - ZNHIT1
\#6	- ZNF286A - HMGA1 - PRRX1
\#5	- HMGA1 - ZNF286B HMGA1
\#4	- FOXM1 - ZNF286A - SOX4
\#3	- TOP2A SOX4 SOX11
\#2	- ANKRD1 SOX11 ANKRD1
\#1	- MEF2C MEF2C MEF2C

combined tPR

\#20	-	CENPK		ARNT2	-	HLTF	-	ZNF793
\#19	-	GMNN		SOX4	-	HMGA2	-	ID3
\#18	-	DTL	-	HOXA10	-	GLMP	-	MSC
\#17	-	HMGB2	-	PRRX1	-	BUD31		DRAP1
\#16	-	RUNX1		NR113	-	MYF5		CBFA2T2
\#15		MXD3		TARDBP	-	MXD3		AEBP2
\#14	-	SP100	-	ZFP36L1	-	HBP1	-	TWIST1
\#13	-	RBL1		ZFP36L2	-	NR113		ZNF90
\#12	-	RFXANK	-	SOX11	-	ZNF543		MYT1L
\#11		GLMP	-	REST	-	ZNF22	-	ZNF221
\#10	-	HMGA1	-	HES6	-	HEYL		MEF2C
\#9	-	POU5F1	-	ELK3	-	HES6		POU5F1
\#8		PRRX1	-	CREB1	-	MYOG		ZFP36L2
\#7		E2F7		ZNF286B	-	RPL7		GPBP1
\#6	-	MEF2C		ZNF286A	-	KLF5		ZNHIT1
\#5	-	ATAD2	-	HMGA1	-	ZEB2		PRRX1
\#4		PTTG1	-	PSMC3IP	-	SOX4	-	SOX11
\#3	-	FOXM1	-	MLX	\bullet	ANKRD1		SOX4
\#2	-	MYF5		ANKRD1	-	SOX11		HMGA1
\#1		TOP2A		MEF2C	-	MEF2C	-	ANKRD1
	\bigcirc		$\stackrel{\text { * }}{\sim}$		$\stackrel{\infty}{\leftarrow}$		N	

Figure S4
neutral PR

neutral tPR

EDF1 • HLF • YY1 - TP53 ○ RPL7 - ZFP36 - PA2G4 HMGB2 EDF1 • JUND YY1 - TAF10 CZFP36L2 ZNF207• HDGF BPTF - TRIM28 • ZBTB44 - FOSB •EWSR1 HMGB1 HOPX PA2G4 ILF3 TRIM28 ZFP36L2• CNBP TRIM28 NOLC1 • KLF6
FOXN3 - ZFP36 • IKZF1 TOP2B •ZMYND8 ZNF207• XBP1 BCLAF1•EGR1 HMGB2 - GABPB1- MAX - ILF3 HMGB2 PA2G4 - FOXP1 - GATA2 - FOSB HNRNPAB FLI1
KLF2 - HDGF • FOS YY1 • STAT5A
KLF6 - RPL7 - KLF6 YBX3 HNRNPAB

- PHB - HMGB1 - ATF4 - MEF2D - FOS FOSB • KLF6 - TAF1D TRIM28 • TOP2B TSC22D3• JUND -CGGBP1 CNBP •ZFP36L1 JUND •TSC22D3॰ RUNX1 CEBPD HMGB1 MYB • JUN • PHB • ZFP36 - PBX1 JUN - LMO2 ILF2 ILF2 KLF1 FOS FOSB HDGF IRF8 - GATA2 ENO1 FOS - EDF1 - FOS - LMO2

combined PR

28- PHB • GATA2 CNBP - GATA2 • KLF4 • FLI1 ZNF207•IKZF1 PA2G4 HMGB1 - MAX - MAX - ILF3 ○ ILF2 HHEX • PHF20 ©CGGBP1•ZFP36L1 TRIM28 - KMT2A RUNX1 TRIM28 TSC22D1• ATF4 YBX3 PA2G4 KLF4 • TAF1D EDF1 • KLF1 RPL7 CGGGBP1HNRNPAB JUND ZFP36L2 EDF1 • FOSB HNRNPAB ENO1 • FOSB • YY1 • IKZF1 JUND - ILF2 CNBP • PBX1
KLF2 $\operatorname{TSC22D3}$ MEF2D • ZBTB44 HDGF - PHB TOP2B LMO2 HMGB1- JUN TRIM28. STAT5A LMO2 JUND • CEBPD TOP2B JUN • RUNX1•FOS - ATF4 FOSB LMO2 - ZFP36 - RUNX1 TSC22D3 FOS - IRF8 EDF1 FOS HDGF ILF2 HDGF

combined tPR

> KLF4 - HHEX TRIM28 YBX3 RPL7 TSC22D3•TSC22D1• JUN CNBP • EWSR PA2G4 -TSC22D3 HMGB2 - ETV6 - ILF3 - HOPX - PBX1 -SUPT4H1• ZFP36 - ZBTB44 KLF6 - PHF20 JUND • POU2F2• JUND BPTF - PA2G4 SOX4 TP53 PA2G4 FOSB • KMT2A - ZBTB44 - EGR1 HMGB2 HMGB1 RPL7 FOSB HMGB2•STAT5A - YY1 - TAF10 - KLF6 HNRNPAB TOP2B EDF1 - HLF • RUNX1 TRIM28 - JUN ZFP36L2• TRIM28•BCLAF1• FLI1 HNRNPAB - FOXN3 - LMO2 • TAF1D - YY1 - FOS -GABPB1• FOSB - ILF3 - XBP1 •ZFP36L - ZNF207• JUND - ILF2 • MAX • FLI1 - FOXP1 - HMGB1 - FOS - MYB - PBX1 JUND • HDGF ©CGGBP1• FOS - KLF1 MYB • MAX - ATF4 ILF2 - MEF2C FOS GATA2 PHB CEBPD HMGB ENO1 JUN HDGF MEF2D GATA2 - JUN FOS EDF1 IRF8 LMO2

- RPL7 • RUNX1 • ZFP36 HMGB2 - FOXN3 - SOX4 ORUNX1 ILF2 - TAF10 •BCLAF1 TRIM28 PA2G4 HHEX - HLF GNRNPABZFP36L1 -ZNF207• ILF3 •POU2F2HNRNPAB FOSB • PHF20 • ATF4 • KLF1 TSC22D1•KMT2A - JUND • ZBTB44 TRIM28•TAF1D • JUN •RUNX LMO2 - ILF2 • EGR1 • GATA2 HMGB1 EDF1 - XBP1 • MEF2C HDGF - ATF4 - YY1 - FLI1 MYB LMO2 • FLI1 • PBX1
KLF4 ©CGGBP1 MYB . STAT5A - MAX - PHB • MAX ○ JUND ENO1 JUND • ETV6 HMGB1 GATA2 - MAX ILF2 TOP2B - HLF - GATA2 • FOS • ATF4 JUND HDGF - MEF2D LMO2 JUN FOS CEBPD EDF1 FOS - JUN - IRF8 - HDGF

neutral PR

- ZFP36 • MAX • ZBTB44 - TP53 • FLI1 - CNBP - KMT2A HNRNPAB YY1 ILF3 -GABPB1- GATA2 HMGB2• FOSB - ZMYND8 - FOXP1 - XBP1 ZFP36L2. EGR1 - HDGF

EDF1 PA2G4 PA2G4 ZNF207 RPL - BPTF CNBP TRIM28 EDF1 EWSR1 HMGB1 ZFP3 ZFP3BL2 HOPX ATF4 ILF3 TRIM28 FOXN3 TAF10 BCLAF1 TOP2B FOS ZOXF207 TRIM28 FOSB YBX3 PA2G ZNF207 THME8 NOSB YBX3 PAZG KLF6 RPI7 - FOS HMGB2 PBX1 KLF6 ○ RPL7 FOS HMGB2• PBX1 - PHB - JUND - KLF6 - MEF2D• STAT5A JUN - KLF6 • RUNX1 CEBPD HMGB FOSB • JUN • TAF1D TRIM28 - TOP2B - JUND HMGB1 CGGBP1- CNBP HNRNPAB TSC22D3•TSC22D3 PHB - ZFP36 - ZFP36L1 MYB - LMO2 - ILF2 IRF8 - KLF1 FOS FOSB - HDGF - FOS - GATA2 ENO1 FOS EDF1 ILF2 - LMO2
neutral tPR
\#20
$\# 19$
$\# 18$
$\# 17$
$\# 16$
$\# 15$
$\# 14$
$\# 13$
$\# 12$
$\# 11$
$\# 10$
$\# 9$
$\# 8$
$\# 7$
$\# 6$
$\# 5$
$\# 4$
$\# 3$
$\# 2$
$\# 1$

- HOPX • ILF3 - KLF4 - ILF3 TAF10 PA2G4 - PHB HMGB2 - KLF4 HMGB1 HDGF - PBX1 - FOXN3 TRIM28 CGGBP1 HMGB1 JUND - PHF20 PA2G4 TRIM28 ZNF207• JUN YBX3 ILF2 HHEX - ATF4 ILF3 JUND TRIM28 - KMT2A • MEF2D - ZFP36L TSC22D1* FOSB - RUNX1 PA2G
KLF2 $\operatorname{TSC22D3BNRNPAB~IKZF1~}$ ZFP36L2 JUND • FOSB • KLF1 RPL7 LMO2 EDF1•ZBTB44 ENO1 - RUNX1 CNBP HNRNPAB JUN - TAF1D • CEBPD LMO2 HDGF CGGBP TOP2B. STAT5A LMO2 EDF1 TRIM28. ATF4 HMGB10 IIF2 FOS TOP2B FOSB PLE FOS RUNX TSC2DD FOS - IRF8 EDF1 FOS HDGF ILF2 HDGF

Combined PR

- scRNA-Seq

Figure S6

- HiChIP

Rank

A
 Base Network

Figure S7

B

PageRank Method

aracne_network: re-format ARACNe regulon R object. accessibility_network: generate genome accessibility-based GRNs from called peaks. conformation_network: generate chromosome conformation-based GRNs from records. P_graph: filter GRNs by probability-based approaches, with interaction confidence and mode as edge attributes, and regular PageRank as vertex attribute.
clean_graph: remove vertex by corresponding sub-graph size, name and PageRank, with updated regular PageRank as vertex attribute.
adjust_graph: re-calculate PageRank with weight, personalization and damping.
diff_graph: calculate differential graph, with mode of changing as edge attribute, and regular PageRank as vertex attribute.

- multiplex_page_rank: calculate multiplex PageRank from different networks.

accessibility_network

Motif-Searching (TF)

TF-Target Network

conformation_network

TSS-Searching (Target) Motif-Searching (TF)

TF-Target Network

Figure S9
multiplex PageRank
temporal PageRank

[^0]: Ding et al., iScience 24,
 102017
 January 22, 2021 © 2020 The Authors.
 https://doi.org/10.1016/
 j.isci.2020.102017

