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Abstract

Recent work indicates that allelic incompatibility in the mouse PRDM9 (Meisetz) gene can cause hybrid male sterility,
contributing to genetic isolation and potentially speciation. The only phenotype of mouse PRDM9 knockouts is a meiosis I
block that causes sterility in both sexes. The PRDM9 gene encodes a protein with histone H3(K4) trimethyltransferase
activity, a KRAB domain, and a DNA-binding domain consisting of multiple tandem C2H2 zinc finger (ZF) domains. We have
analyzed human coding polymorphism and interspecies evolutionary changes in the PRDM9 gene. The ZF domains of
PRDM9 are evolving very rapidly, with compelling evidence of positive selection in primates. Positively selected amino acids
are predominantly those known to make nucleotide specific contacts in C2H2 zinc fingers. These results suggest that
PRDM9 is subject to recurrent selection to change DNA-binding specificity. The human PRDM9 protein is highly
polymorphic in its ZF domains and nearly all polymorphisms affect the same nucleotide contact residues that are subject to
positive selection. ZF domain nucleotide sequences are strongly homogenized within species, indicating that interfinger
recombination contributes to their evolution. PRDM9 has previously been assumed to be a transcription factor required to
induce meiosis specific genes, a role that is inconsistent with its molecular evolution. We suggest instead that PRDM9 is
involved in some aspect of centromere segregation conflict and that rapidly evolving centromeric DNA drives changes in
PRDM9 DNA-binding domains.
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Introduction

Allelic incompatibility at the mouse PRDM9 (Meisetz) locus can

cause hybrid male sterility due to failure in spermatogenesis [1].

Rare dominant nonsynonymous mutations in human PRDM9

may also cause failure in spermatogenesis (azoospermia, [2]),

suggesting similar allelic incompatibility in humans. These data

support a role for PRDM9 in an early stage of pre-zygotic hybrid

incompatibility, consistent with a role in speciation [1,3]. Targeted

PRDM9 knockout in the mouse causes sterility in both sexes due

to a block in meiosis I in both the male and female germ line [4].

The germ line arrest morphology resulting from PRDM9

knockout and from incompatible PRDM9 alleles are identical,

suggesting that the incompatible alleles abrogate PRDM9 function

[1,4].

The PRDM9 gene in human and mouse encodes a protein with

KRAB [5] and SET domains followed by multiple tandem C2H2

zinc finger (ZF) domains near the C-terminus [6,7]. The PRDM9

SET domain region confers histone H3(K4) trimethyltransferase

activity, consistent with activity as a transcriptional activator [6].

The function of the KRAB domain of PRDM9 has not specifically

been studied, but in other ZF transcription factors it is known to

recruit histone deacetylases and histone H3(K9) methyltransferase,

suggesting activity as a transcriptional repressor [8,9]. Since the

ZF domains are the only DNA-binding domains in PRDM9, it is

likely that they confer the DNA-binding specificity of PRDM9.

Because of its histone modifying activity and DNA-binding

domains, it has been assumed that PRDM9 encodes a transcrip-

tion factor that regulates other genes important for germ line

meiosis but there is no direct evidence for such a role.

The structure of ZF domains of the type found in PRDM9

bound to DNA is well-established [10,11,12]. Tandem ZF

domains confer DNA-binding specificity in a modular manner,

with sequential ZF domains binding sequential 3 nt DNA

sequences in target sites. Each core ZF domain is typically 21

residues long and consists of a conserved framework of amino

acids that coordinates and positions a highly variable nucleotide

contact region. Adjacent core ZF domains are joined by a

conserved 7 amino acid linker region, which makes a DNA

phosphate contact and coordinates adjacent zinc fingers. Within

the core ZF domain, nucleotide contacts are made by an eight

amino acid turn-helix that occupies the major groove of DNA.

Three amino acids make the major nucleotide contacts and

adjacent residues may contribute additional contacts and influence

the positioning of the major nucleotide contacts. The positions of

all these amino acids are highly conserved and can be directly

inferred from ZF domain sequence.

We report analysis of molecular evolution of the PRDM9 gene

based on sequence comparisons between primate species and on

human polymorphisms.
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Results

Primate Divergence and Positive Selection
We identified PRDM9 orthologs in primates and analyzed their

molecular evolution. Most of the PRDM9 gene is well conserved

in sequence, but the ZF domains are highly divergent. For

example, in the 12 ZF domains of human and chimpanzee

PRDM9 proteins, 28 of the 36 major nucleotide contact residues

differ (Figure 1), despite a genome-wide average nucleotide

divergence of 1.2% and protein divergence of 0.12% [13]. To

study selection acting on primate PRDM9 genes, we performed

maximum-likelihood analysis of synonymous and nonsynonymous

codons in the human, chimpanzee, orangutan, macaque, and

baboon. Most of the 894 codons in the PRDM9 alignment are

characterized by negative (purifying) selection, indicated by a low

estimated dN/dS value (frequency of nonsynonymous change

relative to synonymous change). However 32 codons had a high

estimated dN/dS value that reached statistical significance for

positive selection (P.0.95). Of these 32 codons, 26 encode major

nucleotide contact residues in ZF domains and all 6 other codons

are immediately adjacent to major nucleotide contact residues.

Several additional codons in DNA-binding turn-helix regions also

had high estimated dN/dS values that did not reach statistical

significance. Divergence in the DNA-binding turn-helix regions is

obvious by simple inspection of the protein multiple alignment

(Figure 1). In addition to rapid divergence in the DNA-binding

residues, there are several changes in the number of ZF domains

among the five primates. All of these changes are the result of

precise insertion or deletion of entire ZF domains, consistent with

generation by unequal cross-over events. These changes are also

expected to affect DNA-binding specificity. A high degree of

amino acid divergence in the DNA-binding turn-helix region and

changes in ZF domain number were also observed in other

mammals, including rodents (data not shown).

The strong evidence for positive selection in nearly all of the

DNA-binding domains and the fact that human and chimp

PRDM9 differ so sharply in their major nucleotide contact

residues suggests directional selection on PRDM9 to rapidly

change DNA-binding specificity. Maximum-likelihood analysis

also suggests that similar selection is acting on every branch of the

primate tree (data not shown). The remainder of the PRDM9

sequence is conserved throughout mammals and even in more

basal lineages including non-mammalian chordates and echino-

derms [7], indicating that a highly conserved function is tethered

to a rapidly evolving DNA-binding specificity.

Human Polymorphism
We assessed single-nucleotide polymorphisms (SNPs) in the

coding region of human PRDM9 reported in dbSNP130, from 16

individual exome sequences generated by next-generation se-

quencing ([14] and this study), and from a large study of PRDM9

coding SNPs in Japanese men [2]. Of 35 distinct SNPs, 31 are

nonsynonymous, indicating an exceptionally high population

diversity in PRDM9 protein sequence. The positions of the 31

nonsynonymous SNPs are remarkable (Figure 1 and Figure 2): 28

of 31 affect ZF domains or the linkers between ZF domains, and

24 of these 28 affect residues in the DNA-binding turn-helix of ZF

domains. In the entire PRDM9 protein of 894 amino acids, only

96 amino acids are in a DNA-binding turn-helix region (8 in each

of 12 ZF domains), indicating a highly significant enrichment of

nonsynonymous SNPs in turn-helix residues (24/31 vs. 96/894,

P,0.0001 by Fisher’s exact test). Taken together with the strong

positive selection acting at the same class of sites, this pattern

suggests an ongoing series of partial selective sweeps affecting

PRDM9. In the study of Japanese men, allele frequencies were

determined for 21 SNPs. Two of these 21 were found only once in

patients with azoospermia; neither affects a ZF turn-helix. All of

the remaining 19 alleles were common in the Japanese population

(.1% frequency) and all 19 affect a ZF turn helix. Of the 12

nonsynonymous SNPs found in non-Japanese populations, only

one is identical to a Japanese SNP. This lack of overlap suggests

that both the Japanese and non-Japanese PRDM9 polymorphisms

arose very recently.

Zinc Finger Homogenization
We noticed that zinc fingers within the PRDM9 gene in each

primate tended to be similar in sequence, despite the rapid

divergence among species. We investigated the generality of this

pattern by identifying putative PRDM9 sequences from 19

sequenced mammalian genomes (including the primates in

Figure 1). The 19 sequences all encode multiple ZF domains with

the same spacing and arrangement as that in human and mouse.

The number of ZF domains ranges from 3 to 20 with an average of

8.3. A dot plot of ZF amino acid sequence similarity within genes is

shown in Figure 3. With the possible exception of tenrec,

intraspecies ZF domains are clearly more similar than between

species. These results are consistent with interfinger recombination

resulting in homogenization of most of the ZF sequence.

Homogenization among ZF domains in human and mouse is even

more striking at the level of DNA sequence (Figure 4). For example,

of the 28 codons that make up a single ZF domain plus linker, 19

encode the same amino acid in all 12 human ZF domains. All 19 of

these codons are 2-fold or 4-fold degenerate, but only 2 of 228

possible synonymous differences are found among the fingers.

Similarly, in the mouse only 1 of 264 possible synonymous

differences is found. All 3 of these synonymous differences occur

in the first or last zinc finger, consistent with partial recombinational

isolation of terminal ZF domain sequences.

It is likely that such recombination events contribute to human

population polymorphism as documented in Figures S1 and S2.

Briefly, 28 of 31 distinct human SNPs found in ZF domains could

have arisen by recombination with other ZF domains. Given the

general homogeneity of sequence in the aligned ZF domains

(Figure 4), this correlation is clearly significant. Rapid divergence

in PRDM9 genes could be facilitated by such recombination

events, which can allow spread of new advantageous mutations to

other fingers [15]. We speculate that it is this process of spreading

new advantageous changes by recombination that drives the

homogenization of other sequences in PRDM9 ZF domains.

Discussion

In summary, PRDM9 sequences across mammals show rapid

divergence specific to the DNA-binding turn-helix region of their

ZF domains and there is an exceptionally high level of

nonsynonymous human polymorphism in the same classes of

sites. What could account for these patterns? All other domains in

PRDM9 are conserved among species, suggesting that a

conserved biochemical function is tethered to a rapidly evolving

DNA-binding specificity. The expected histone modification

activities of PRDM9 (histone deacetylation and histone H3(K4)

trimethylation) suggest a role in transcriptional regulation.

However transcription factors are generally characterized by

highly conserved DNA-binding domains, yet these are the regions

where PRDM9 is most rapidly evolving. In contrast to

transcriptional regulation, centromere structure and function is

associated both with regulated histone modification states [16,17]

and with rapidly evolving DNA sequences [18,19,20]. A favored

Molecular Evolution of PRDM9
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model for the rapid evolution of centromere sequence is the

centromere-drive hypothesis, in which selfish centromeres com-

pete to segregate to the oocyte during female meiosis [19,21].

Centromere drive is potentially deleterious to the host by causing

skewed sex ratios or male sterility, effects that may be balanced by

observed rapid evolution in genes encoding centromere associated

proteins [22].

The internal structure and boundaries of functional centromeres

are strongly associated with histone modifications and with

centromere-specific classes of histones [16,17]. PRDM9 has the

potential to regulate two of the known centromeric chromatin-

associated histone modifications. First, human and Drosophila

centromeric chromatin is hypoacetylated on histones H3 and H4

[17]. PRDM9 encodes a KRAB domain, which is well-established

to recruit histone deacetylases via the KAP1 protein [23]. Though

the KRAB domain of PRDM9 has not itself been studied, it is very

similar to other KRAB domains and is probably the evolutionary

origin of the huge family of KRAB zinc finger transcription factors

[7]. Second, histone H3(K4) dimethylation is associated with

centromeric chromatin, whereas H3(K4) trimethylation is often

found at the borders just outside of centromeric chromatin [17].

The SET domain of PRDM9 has been shown to have H3(K4)

trimethyltransferase activity (converting dimethyl H3(K4) to

trimethyl H3(K4)). Thus PRDM9 could function to limit the

extent of core centromeric chromatin by helping to define the

borders of di- and tri-methyl histone H3.

Figure 1. Sites of positive selection in primate PRDM9 genes. Schematic of PRDM9 protein showing KRAB, SSXRD (SSX repression domain),
SET, and ZF domains. The ZF domain region of five aligned primate proteins is shown expanded and split into three sections, with blue shading
proportional to amino acid conservation. The 12 human zinc fingers are boxed with thickened lines showing the DNA-binding turn-helix and its three
major nucleotide contact residues. Below the alignment is a histogram of the Bayes-Empirical-Bayes estimate of dN/dS ratio for each codon as
computed by codeml. Filled red squares above the histogram indicate codons where the P-value for positive selection was 0.95 or more. Filled green
circles indicate the positions of all known nonsynonymous human polymorphisms; positions with more than one mark indicate more than one
distinct nucleotide change. Wavy red lines between the chimp and human indicate positions at which the reference protein sequence for the two
species differ. Regions of the alignment with only two sequences are paled to indicate that the dN/dS estimate is poorly informed.
doi:10.1371/journal.pone.0008505.g001
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Centromere drive is expected to be limited to the germ line, with

the most obvious site of action being meiosis in the female. The only

phenotype of PRDM9 knockout in the mouse is arrest at prophase

of meiosis I in both sexes, consistent with various specific roles

including recombination and chromatin condensation in prepara-

tion for metaphase. Our hypothesis for PRDM9 function clearly

predicts that the PRDM9 protein will be physically associated with

the centromere during meiosis I and that it will function there to

moderate centromere drive via histone modification.

Materials and Methods

dN/dS Analysis
Complete or nearly complete PRDM9 coding sequence was

obtained either from available gene predictions (human, chim-

panzee, orangutan, macaque) or from a genewise [24] prediction

based on the human PRDM9 protein (baboon). Codons were

aligned guided by a clustalw [25] protein alignment (default

parameters). The codeml program from the PAML suite [26] was

run on the codon alignment without gap removal using model 7

and model 8 (three starting omega values with unconstrained

added omega class, plus one run with the added omega class

constrained to 1.0). Evidence for positive selection was over-

whelming (e.g. an 85.2 difference in log-likelihood for model 8

with unconstrained omega relative to model 8 with omega

constrained to 1.0). The Bayes-Empirical-Bayes dN/dS estimates

came from the codeml ‘‘rst’’ output file and P-values came from

the standard codeml output (both with unconstrained model 8).

SNP Identification
Human SNPs were ascertained in three ways. First, a

publication provides extensive information on human coding-

sequence alleles and frequencies in a Japanese population [2].

Second, dbSNP130 was queried to obtain all known PRDM9

coding SNPs. Third, novel coding SNPs were ascertained by deep

sequencing of 12 human exomes [14] plus an additional 4 exomes

sequenced by the same method. Table S1 summarizes information

on all the SNPs, including genome position, nucleotide change,

and source. The haplotype configurations of the SNPs are

unknown. Haplotter summary statistics in the PRDM9 region

show no obvious signs of recent population-specific positive

selection [27].

Ortholog Identification
We wanted to obtain the PRDM9 ZF coding exon from

available mammalian genome assemblies. Divergence in PRDM9

ZF sequences combined with large C2H2 zinc finger gene families

throughout mammals made PRDM9 identification based on these

sequences impossible (data not shown). For low coverage

assemblies, the unique upstream coding exons were likewise

useless because they were often not present on the same contig as

the ZF exon. However, there is a conserved unique protein

sequence upstream of the ZF domains in the ZF-containing exon

(see Figure 1) that appears to be diagnostic for PRDM9 genes in

mammals. We used this protein sequence as a tblastn [28] query of

all available mammalian genome assemblies. The DNA corre-

sponding to the best tblastn matches from each genome were

extracted along with 1 KB of DNA downstream of the match.

These DNA sequences were translated and tested for encoding

multiple ZF domains in-frame and downstream of the diagnostic

sequence. Finally, candidate sequences that passed this test were

translated and a maximum-likelihood tree was made to confirm

probable orthology of the sequences (see Figure 3). As expected

because of incomplete assemblies, a PRDM9 ortholog was not

found in all species, especially those with 2-fold coverage. In most

cases additional confirmation that the sequence is a bona fide

PRDM9 gene was obtained as follows: the marmoset, macaque,

baboon, orangutan, and chimpanzee genes are complete or nearly

complete in their assemblies and are clearly syntenic to human

PRDM9; the rat gene is complete and syntenic with the mouse

PRDM9 gene; the cow gene is nearly complete; and the cat,

mouse lemur (Microcebus murinus), dolphin (Tursiops truncatus), and

bat (Pteropus vampyrus) genes have an upstream exon on the same

contig that matches the next upstream human exon from PRDM9.

Finally, all the sequences except tenrec show clear homogenization

of their ZF domain sequences, a very unusual character among

tandem ZF domain genes (data not shown). The tenrec sequence is

included based on the protein tree, but it should be regarded as a

questionable ortholog assignment because it shows no other shared

PRDM9 characters. Higher primates have a partial duplicate of

the PRDM9 gene (PRDM7) but it completely lacks the tandem ZF

domains of PRDM9 and is thus easily distinguished.

Supporting Information

Figure S1 Generation of 6 SNPs by recombination. Alignment

of the overlapping regions 18489–18657 and 18405–18573 of

PRDM9 (numbering is genomic position relative to the ATG start

codon). Colored dots indicate nucleotide differences between the

two stretches. Gene conversion of PRDM9 18489–18657 (top line)

with sequence from 18405–18573 (bottom line) could result in

changes in one or any combination of the highlighted residues. In

fact, each of these six changes appears as a SNP in the Japanese

population [2], as shown by the inset. Allowing for these six

nucleotide mismatches, the total region of identity available to

support recombination extends 228 nt (an extra 54 nt 5’ and 6 nt

3’ of the sequence shown).

Found at: doi:10.1371/journal.pone.0008505.s001 (0.73 MB TIF)

Figure S2 Generation of other SNPs by recombination.

Alignment of all 12 ZF domains from human PRDM9, with

arrows indicating the possible source (arrow tail) and target (arrow

head) sites for generation of 20 SNPs by recombination. The

arrow head is numbered to indicate the allele correspondence as

given in Table S1 (gene position). In each case the target

nucleotide in the SNP allele matches the source nucleotide in the

reference allele. Numbers without superscripts correspond to

Japanese SNPs [2]; numbers with an ‘‘rs’’ or ‘‘js’’ superscript

correspond to hapMap130 alleles or alleles reported here

respectively. Of the 31 distinct SNPs (28 nonsynonymous) that

affect ZF domain sequences, the variant nucleotide of 28 is found

Figure 2. Human nonsynonymous polymorphisms according to
position in their zinc finger. The amino acid sequence below shows
the defining C2H2 zinc coordinating residues and their invariant
spacing. The thickened line shows the DNA-binding turn-helix and its
three major nucleotide contact residues. The open circles indicate the
positions of each distinct nonsynonymous polymorphism, which are
strongly associated with DNA-binding residues.
doi:10.1371/journal.pone.0008505.g002
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Figure 3. Zinc finger sequences are homogenized within genes and divergent between genes. Panel A. Self dot plot of all tandem 21
amino acid zinc fingers from PRDM9 orthologs in all 15 species with 5 or more zinc fingers. Dot shading corresponds to sequence similarity using the
BLOSUM62 matrix, scaled so that the lowest scoring match is white and the highest scoring is black. Lines separate fingers from each species.
Sequences are arranged by their taxonomic name and within each gene fingers are in order by position (N-terminal zinc finger first). Panel B. The
same PRDM9 fingers with their order randomized, showing that the appearance of self-similarity in panel A is significant. Multiple randomizations
were inspected; this one is typical. Panel C. A maximum-likelihood tree of the PRDM orthologs based on the protein encoded by their entire ZF
encoding exon. The protein tree approximates the species phylogenetic tree, supporting orthology of the PRDM9 genes. Panel D. Self dot plot of all
21 amino acid zinc fingers from 13 ZNF773 orthologs (representative of other KRAB zinc finger genes, data not shown). All species except one have 9
zinc fingers (the additional divergent zinc finger in armadillo (species 4) is N-terminal and not tandem with the 9 orthologous fingers). Each zinc finger
is closely related to its orthologous fingers from the other species and divergent from the other zinc fingers in the same gene. The species in figure
order are cow (species 1), dog (species 2), marmoset (etc.), armadillo, horse, cat, human, macaque, rabbit, baboon, orangutan, chimpanzee, and
ground squirrel. Because many of the PRDM9 genes come from low-coverage assemblies it is difficult to find a representative zinc finger gene from all
of the same species as shown in panel A. The species are domestic cow (Bos taurus), common marmoset (Callithrix jacchus), domestic dog (Canis
familiaris), guinea pig (Cavia porcellus), armadillo (Dasypus novemcinctus), lesser tenrec (Echinops telfairi), domestic horse (Equus cabalus), domestic cat
(Felis catus), human (Homo sapiens), African elephant (Loxodonta africana), Rhesus macaque (Macaca mulatta), mouse lemur (Otolemur garnettii),
domestic mouse (Mus musculus), domestic rabbit (Oryctolagus cuniculus), Hamadryas baboon (Papio hamadryas), Sumatran orangutan (Pongo
pygmaeus abelii), chimpanzee (Pan troglodytes), flying fox bat (Pteropus vampyrus), Norway rat (Rattus norvegicus), thirteen-lined ground squirrel
(Spermophilus tridecemlineatus), and bottlenose dolphin (Tursiops truncatus).
doi:10.1371/journal.pone.0008505.g003
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at the homologous position of one or more other fingers, indicating

that they could arise by recombination (rs72477009-17995,

rs6875787-18013, Irie-18097/rs71578786-18097/js1-18097, Irie-

18109, rs56256550-18245, rs58979818-18246, rs56001636-

18266/js2-18266, Irie-18327, Irie-18329, Irie-18330,

rs58945509-18339, rs55862350-18340, Irie-18350, Irie-18413,

Irie-18414, Irie-18415, Irie-18416, Irie-18417, Irie-18423, js4-

18423, Irie-18424, rs61051796-18495, Irie-18497, Irie-18498,

Irie-18507, Irie-18518, Irie-18579, Irie-18635). Eight of these

SNPs are not diagrammed on the figure for the sake of visual

clarity. The remaining 3 SNPs cannot arise by recombination with

any other finger from the reference sequence (Irie-17918, js3-

18548, js5-18542).

Found at: doi:10.1371/journal.pone.0008505.s002 (5.61 MB TIF)

Table S1 List of human polymorphisms in PRDM9. Summary

of positions, nucleotide changes, data source, and other informa-

tion for human SNPs analyzed. NOTE - single large table on

multiple PDF pages.

Found at: doi:10.1371/journal.pone.0008505.s003 (0.14 MB

PDF)
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