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Abstract: Bone loss raises great concern in numerous situations, such as ageing and many diseases
and in both orthopedic and dentistry fields of application, with an extensive impact on health
care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate
osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway,
which is known to be highly active during differentiation and development. This review provides a
revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy
regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones,
nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic
differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for
orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic
process is provided as well. Already investigated conditions regulating bone regeneration via
autophagy need to be better understood for finely tailoring innovative therapeutic treatments and
designing novel biomaterials.

Keywords: autophagy; osteogenesis; bone regeneration; osteoclastogenesis; biomaterial; osteoclast;
oxidative stress; aging; cell survival; osteoblast

1. Introduction

Autophagy is a complex dynamic process of recycling of non-essential or damaged organelles and
proteins for nutrients and/or energy generation. Initially believed to be a mere way of transporting
intracellular components to lysosomes, it is now known for playing an important role in maintaining
cell homeostasis and survival under stressful conditions. Three types of autophagy with distinct
regulatory mechanisms have been described: chaperone-mediated autophagy, microautophagy,
and macroautophagy. Among these, macroautophagy is the most extensively studied because it is the
most involved in cell biology, physiology, and disease.

Macroautophagy, henceforth referred to as “autophagy”, mainly involves the sequestration
of cytoplasmic contents in a double-walled membrane followed by the fusion with the lysosomes.
The lysosomal enzymes facilitate the degradation of the sequestered products. Autophagy is regulated
by a group of evolutionarily conserved genes named Atg (autophagy related genes). The Atg genes
have diverse functions, including the coordination of intracellular communication with all kinds of
signaling pathways, even non-autophagic ones [1]. Autophagy has been shown to be essential for the
maintenance of long-lived cells, such as neurons, cardiomyocytes, and osteocytes [2].

Osteocytes are the most abundant cell type in bone. They originate from osteoblasts that have
undergone terminal differentiation during bone formation and subsequently have been engulfed by the
extracellular matrix. Osteoblasts develop from pluripotent mesenchymal stem cells and are responsible
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for the formation of new bone, a process called osteogenesis. They produce bone by synthesis and
secretion of collagen type I and aid the mineralization of the bone matrix. Hydroxyapatite (HA)
constitutes most of the inorganic component of bone tissue. A third type of bone cells are osteoclasts,
large multinucleated cells capable of bone resorbing. Bone health and homeostasis are the result of a
delicate balance between the activity of osteoblasts and osteoclasts [3].

The bone loss is a common side effect in many physiological and pathological conditions,
including ageing, exposure to chemicals and various diseases, such as osteoporosis. In addition,
the reconstruction of large bone defects represents an extraordinary challenge both in orthopedics
and dentistry. Biomaterial design and manufacturing requires a balanced combination of biochemical,
biophysical, and material science concepts to make them biocompatible [4]. Interestingly, the previous
definition of biocompatibility, as the lack of toxic or injurious effects on biological systems, has been
recently replaced by a more complex idea. The notion of biocompatibility is currently intertwined with
that of bioactivity, meaning the ability of a biomaterial to generate the most appropriate beneficial
cellular or tissue response in a specific situation [5]. One of the strategies used to achieve this goal
is the functionalization of the biomaterial by linking to its surface molecules able to modulate the
oxidative stress and inflammation that may occur [6,7], promoting, at the same time, cell proliferation,
migration, and differentiation.

In the field of biomaterials, the disruption of the autophagic pathway is mainly seen as a
preferential target for nanoparticle-induced cytotoxicity in various tumor models [8–10]. However,
autophagy activation has been found to be a key player in the cellular response against nano-toxicity,
in non-cancerous cells [11,12]. Biomaterials designed for bone regeneration are discussed here for their
ability to tune bone osteogenesis by the regulation of the autophagic process.

Autophagy is, indeed, highly involved in the metabolism of bone tissue. Multiple components of
the autophagic pathway contribute to mediating the survival and functioning of the cells of the bone
tissue, namely osteoblasts, osteocytes, and osteoclasts [13,14]. Increasing evidence suggests that an
appropriate level of autophagy is associated with the survival of bone cells in many adverse conditions.
Moreover, the autophagic process contributes to preosteoblast differentiation, osteoblast–osteocyte
transition, and the genesis and functioning of osteoclasts [15].

It is not surprising, therefore, that research has long been focused on the role of autophagy in the
homeostasis of the bone tissue, and, indeed, the mechanisms at the basis of both osteogenesis and
autophagy have been extensively recently reviewed elsewhere [16,17].

Consequently, the authors decided to focus on different conditions that can affect osteogenesis
by modulating autophagy in various experimental models. This review is therefore focused on the
role of autophagy in the regulation of biological factors, metals, and biomaterial-related osteogenesis.
Hence, the interest to investigate the effect of different stimuli on both processes, aiming to find
a potential therapeutic alternative for many pathological conditions related to bone homeostasis.
First, factors promoting and inhibiting osteogenesis through autophagy modulation are described.
Dietary factors, mechanical stimuli, and metal exposition are described among the conditions
upregulating osteogenesis. A focus on the stimuli inhibiting osteogenesis and related inflammation
and oxidative stress is provided as well. A brief overview of the factors influencing osteoclastogenesis
occurrence by autophagy modulation follows. Last, the authors focus on the importance of autophagy
in bone regeneration driven by various biomaterials for application in both orthopedics and dentistry.

2. Osteogenesis Enhancement

Osteogenesis occurs during the entire life of the bone tissue, participating in both modeling,
i.e., the formation and shaping of bone, and remodeling, i.e., the replacement or renewal of old
bone. It is also involved in bone healing following a fracture. Undifferentiated cells are also present
in the bone, and they can be recruited to form osteoprogenitor cells and develop into osteoblasts.
Osteoblasts produce an organic matrix, called osteoid, whose deposition is followed by its mineralization.
Osteogenesis is therefore a complex, multi-step process which is finely regulated by many molecules
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and conditions. In this section, the factors that can positively regulate osteogenesis, through the
involvement of autophagy, are taken into consideration and summarized in Figure 1 (left).
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Figure 1. Stimuli that enhance osteogenesis through stimulation of autophagy (left) and conditions
that negatively regulate osteogenesis by inhibiting autophagy (right). The superscript numbers refer to
the references.

2.1. Hormones

Many systemic and local hormones can influence bone growth and remodeling. Indeed,
bone homeostasis is related to the correct functioning of a number of systemic or circulating hormones
that respond to changes in blood calcium and phosphorus concentrations [18]. Three calcium-regulating
hormones play an important role in producing healthy bone: (1) parathyroid hormone or PTH,
which stimulates both resorption and formation of bone and maintains the blood level of calcium,
(2) calcitriol, derived from vitamin D, stimulates the intestines to absorb enough calcium and phosphorus
and also affects bone directly, and (3) calcitonin, which inhibits osteoclast activity and reduce the levels of
calcium in the blood. Previous studies have shown that PTH can promote autophagy in osteoblasts and
chondrocytes and can also alleviate osteoarthritis by activating autophagy in articular chondrocytes [19].
In addition, in the MLO-Y4 osteocyte cell line, PTH upregulated the expression of the two autophagic
markers LC3-II and Beclin-1, and decreased the level of Caspase-3, a hallmark of the apoptotic process [20].

There are no studies on autophagy mediating the effects of calcitonin or calcitriol. The latter,
however, is in same way treated in Section 2.2, where its precursor, vitamin D, is discussed.

Sex hormones are also extremely important in regulating the growth of the skeleton and
maintaining the mass and strength of bone, both in men and women. The female hormone estrogen
have long been known to be positive regulators of bone homeostasis, enhancing osteocyte viability and
promoting bone formation. Their sudden decrease is the main cause of osteoporosis in post-menopausal
women. A recent study clarifies the mechanism of action of estrogen in differentiating human osteoblasts
and their precursors, the mesenchymal stem cells (MSCs). Estrogen reduced apoptosis by promoting
autophagy, thus contributing to osteoblast longer lifespan and mineralization capacity, via upregulation
of RAB3GAP1, a complex that regulates the GTPases [21]. Florencio et al. suggested that estrogen
maintains osteocytes viability, whereas its deficiency induces osteocytes apoptosis. The anti-apoptotic
effect of estrogen on osteocytes may be related to autophagy regulation [22].
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Growth hormone from the pituitary gland is also an important regulator of skeletal growth. It acts
by stimulating the production of another hormone called insulin-like growth factor-1 (IGF-1), which can
be produced also by bone tissue. IGF-1 binding to its binding protein 2 (IGFBP-2) stimulated osteoblast
differentiation through induction of AMP-activated protein kinase (AMPK), a key sensor of cellular
energy status. AMP-regulated osteoblast differentiation was finely tuned over time and is linked to the
autophagic process. Early induction of AMPK in response to IGF-I/IGFBP-2 followed by suppression
was required for osteoblast differentiation. Inhibition of AMPK influenced three autophagic markers:
the ULK-1 phosphorylation as well as beclin-1 and microtubule-associated protein 1A/1B light-chain
phosphatidylethanolamine conjugate (LC3II) induction. Direct inhibition of autophagy inhibited
differentiation [23]. The ULK1 serine threonine kinase complex (involving also FIP200) plays a major
role in autophagy initiation, whereas Beclin 1 and class III phosphatidylinositol 3-kinase (PI3KC3)
complexes generate phosphatidylinositol 3-phosphate (PI3P) to act in autophagosome nucleation.

Cortisol, one of the hormones produced by the adrenal gland, has complex effects on the
skeleton [24]. Small amounts are necessary for normal bone development, but large amounts block
bone growth. Synthetic forms of cortisol, called glucocorticoids, are used as therapeutic treatment in
many diseases. One of their main side-effects is osteoporosis, resulting from their ability to activate
osteoclasts. This is discussed in Section 4.2.

Thyroid hormones increase the energy production of all body cells, including bone cells.
They increase the rates of both bone formation and resorption but there is no evidence that their effects
on bone tissue are achieved through the autophagic pathway.

Another circulating hormone important for bone growth is insulin. The response to other factors
that stimulate bone growth is impaired in individuals with insulin deficiency [25,26]. The latter being
a condition that is a keystone in diabetic patients, and will be discussed in Section 3.1.

Finally, leptin, a hormone produced by fat cells, has also been shown to have positive effects
on bone [27,28], and indeed it was found able to protect mesenchymal stem cells from apoptosis by
inducing autophagy. In addition to AMPK, the serine/threonine kinase mTOR (mechanistic target of
rapamycin), a master regulator of the canonical autophagic response of cells to nutrient starvation,
appears to be involved [29].

2.2. Dietary Nutrients

The positive effects of dietary nutrients are largely correlated with autophagy in cancer,
neurodegeneration, and many other pathological conditions [30,31]. Vitamins in particular are
regulatory of autophagy in various situations, ranging from ocular disease to cancer and disorders of
the digestive systems [32–36].

Among the others, vitamin D is involved not only in immune responses, anti-inflammation,
anti-infection, and cancer prevention, but mainly in mineral and bone homeostasis [37]. Its active
form, 1a,25-(OH)2D3 (vitamin D3) proved to have a dual effect on osteoclastogenesis by regulating
autophagy, suggesting that some drugs targeting autophagy may act as an effective supplement
of 1a,25-(OH)2D3 in treating osteoporosis [38]. Vitamin K2 also exerted a protective effect during
osteoporosis by promoting osteoblast differentiation and mineralization and it has been recently
demonstrated to stimulate autophagy in doing so, confirming this process as a potential therapeutic
target [39].

A positive effect on osteogenesis can be achieved also by negatively regulating osteoclastogenesis.
Indeed puerarin, a phytoestrogen extracted from Pueraria lobata, exerted its significant bone-protective
effect by inhibiting the osteoclast precursor autophagy. Depending on the absence or presence of
RANKL, puerarin reduced osteoclast precursor proliferation or differentiation, respectively. Therefore,
an autophagic mechanism underlies the well-known therapeutic properties of puerarin in treating
osteoporosis [40].

Glucose is a nutrient whose metabolism is closely associated to bone tissue homeostasis.
Osteocalcin (OCN), a proteic hormone specifically expressed in osteoblasts and released into the
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circulation, may regulate glucose homeostasis, but, more importantly, high concentration of glucose
can cause bone fragility [41]. Indeed, osteoporosis is a major complication for diabetes mellitus (DM)
and the interlink among bone impairment, high glucose concentration, and autophagy is discussed
in Section 3.1. Advanced glycation end products (AGEs) are proteins or lipids that become glycated
as a result of exposure to sugars. They are a biomarker implicated in aging and the development
of many degenerative diseases, including diabetes. AGEs and their receptor RAGE are usually
associated with the development and progression of diabetes-associated osteoporosis, as well. Anyway,
Meng and collaborators [42] found that AGE-modified bovine serum albumin (AGE-BSA) induced
a biphasic effect on the viability and function of hFOB1.19 osteoblastic cells. Low doses (150 mg/L)
and short exposure (up to 48 h) of AGE-BSA, increased cell proliferation and osteogenic markers
expression, namely the soluble glycoprotein osteoprotegerin (OPG), the enzyme alkaline phosphatase
(ALP), and OCN. The stimulation of both cell viability and osteogenic function were regulated by the
Raf/MEK/ERK signal pathway and related to autophagy.

2.3. Metal Ions

Metals represent another category of substances that can profoundly affect osteogenesis [43].
They are indeed largely employed in regenerative medicine, and their use in biomaterials is reviewed
in Section 5 (Biomaterials, autophagy and osteogenesis). Here we will discuss the positive effects of
metal ions and autophagy on bone homeostasis.

Calcium is the most abundant metal of the human body where it provides skeletal strength and
serves as a reservoir for maintaining blood calcium levels in a physiological range [44]. As electrolytes,
calcium ions play a vital role in the physiological and biochemical processes of organisms and
cells. As a second messenger, calcium is able to activate or inactivate various regulatory proteins
such as enzymes, transcriptional factors, or molecular chaperones. Calcium ions outside cells are
important for maintaining the potential difference across excitable cell membranes, protein synthesis,
and bone formation.

Calcium has been implicated in autophagic signaling pathways encompassing both mTOR and
AMPK. Numerous studies have shown that cytosolic calcium signals can trigger autophagy. Moreover,
there is evidence that buffering calcium affects not only the triggering of autophagy, but also proximal
and distal steps during autophagic flux. However, calcium plays an essential role not only as a
pro-autophagic signal, but can exert anti-autophagic actions too. For example, the sequestration of
calcium by mitochondria during physiological signaling appeared necessary to maintain cellular
bio-energetics, thereby suppressing the AMPK-dependent autophagy [45].

Calcium and inorganic phosphorus (present in biological systems as phosphate) are the ionic
components required for hydroxyapatite formation during the mineralization of the extracellular
matrix in bone tissue. The autophagic process has been demonstrated to be induced in osteoblasts
during mineralization both in vitro and in vivo. The knockdown of autophagy-essential genes
and osteoblast-specific autophagy-deficient mice demonstrated that autophagy deficiency reduces
mineralization capacity. Moreover, it was suggested that autophagic vacuoles could be used as vehicles
in osteoblasts to secrete apatite crystals [46].

Magnesium is the fourth most abundant metal ion in the body mostly stored in the skeleton and a
natural agonist of calcium. It therefore plays a crucial role in bone metabolism and in the regulation of
bone cells. The upregulation of two magnesium transporters during osteogenic differentiation has
been recently demonstrated. Silencing either one accelerated osteogenic differentiation, partly through
the activation of autophagy, underpinning the contribution of magnesium to autophagy and
osteoblastogenesis [47,48]. It is worth noting that these two studies investigated the modulation
of magnesium transporter during physiological osteogenesis. Magnesium exposure above the
physiological value results in inhibition of the osteogenic process and it is discussed in Section 3.2.
Strontium is an alkaline earth metal, which is already known for improving bone formation and
suppressing bone resorption, resulting in increased bone apposition rates and bone mineral density [49].
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In a recent article, the mechanisms underlying such effects were clarified. Cheng and collaborators [50]
demonstrated that osteogenic differentiation induced by Sr was attenuated when cell autophagy was
inhibited. This finding suggests that autophagic events in the osteobastic cell line MC3T3-E1 are essential
in terms of strontium-induced osteogenic differentiation process. Elemental metal nanoparticles like
cadmium and silver are known to cause oxidative stress and to be highly toxic [51] and indeed they will
be addressed in Section 3 (Osteogenesis inhibition). Yet the exposure of human periodontal ligament
progenitor cells to gold nanoparticles (AuNPs) induced upregulation of antioxidants, stress response
genes, and autophagy as a cellular defense mechanism against oxidative stress toxicity [52].

2.4. Mechanical Stimuli

The study of the influence of mechanical stimuli on the structure of bone has long been a topic
of scientific interest. Osteocytes have been defined as mechanosensory cells within the bone [53].
Osteocytes coordinate the remodeling process by the conversion of external mechanical forces into
biochemical responses: a process called mechanotransduction [54]. During mechanotransduction,
osteocytes acts like sensory cells within the bone, and their response is mediated by strain-derived fluid
flow shear stress through the lacuno-canalicular network. Osteocytes will respond to this mechanical
stimulus by opening ion channels and increasing the levels of intracellular calcium and protein kinase
C, which consequently stimulate the release of potent anabolic regulators of bone growth, such as nitric
oxide and prostaglandin E2 [55]. Interestingly, mechanical stimuli in bone tissue can regulate autophagy.
Mechanical stretching, known to be able to promote the differentiation of bone marrow mesenchymal
stem cells (BMSCs) to osteoblasts, was found to be related to autophagy. Its activation ameliorated
hindlimb unloading-induced bone loss, by promoting osteoblast differentiation and consistent bone
formation in a murine model [56]. The role of physical exercise in inducing osteogenic differentiation
was confirmed by another study that found the modulation of osteogenic gene expression during
physical activity. The expression of most osteogenesis-related genes, namely, Runx2, Msx1, and Spp1,
appeared upregulated after running. RUNX2 (runt-related transcription factor 2), the master regulator
of osteogenesis, acts early to commit mesenchymal stem cells to the osteochondral lineages and then
induces the expression of collagen type I alpha 1 chain (COL1A1), which is crucial for the osteogenic
phenotype. The genes belonging to the Msx (Msh homeobox) family are abundantly expressed
at sites of inductive cell–cell interactions in the embryo, suggesting that they have a pivotal role
during early development. Ssp1 is the gene encoding for the protein osteopontin (OPN), also known
as bone sialoprotein (BSP), a protein synthesized by bone cells to modulate matrix mineralization.
Moreover, a positive correlation between Atg3 and Ulk1 gene expression and Sox9, encoding a protein
involved in chondrocite differentiation, and Runx2 gene expression in circulating progenitors were
observed following physical exercise. Therefore, it could be assumed that the increased expression of
chondrogenic and osteogenic genes is due to enhanced autophagy [57].

2.5. Direct and Indirect Proof

A direct link between autophagy and osteogenesis is represented by the use of the autophagy
activator rapamycin in two different models. In the first, aging BMSCs exhibited degenerative changes,
including imbalanced differentiation and reduced proliferation during aging, that contributed to
age-related bone loss. Rapamycin could restore the biological properties of aged BMSCs by increasing
osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation [58].
However, the supplementation of the diet with rapamycin offered no benefit in a model of osteogenesis
imperfecta [59]. On the other hand, another strong correlation between autophagy and osteogenesis
came from the demonstration that BMP-2-induced osteoblastic differentiation depends on the induction
of the autophagic related gene Atg7, an essential regulator of autophagosome assembly [60]. In addition,
another paper [61] reported that mice lacking the same autophagy related gene Atg7, had impairment
in skeletal homeostasis. They had low bone mass and fractures associated with reduced numbers of
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osteoclasts and osteoblasts. Atg7 silencing suppressed autophagy, reduced the amount of osteocyte
cellular projections, and led to retention of endoplasmic reticulum (ER) and mitochondria in osteocytes.

The relevance of autophagy in bone regeneration was also found in an in vivo model of rabbits
treated with implantation of tissue-engineered bone and injection of different concentrations of
angiopoietin 2 in the defected bone site [62]. The growth factor promoted neovascularization in
tissue-engineered bone and the repair of bone defects in a dose-dependent manner, which involved
induction of autophagy. In this case the impact on osteogenesis was indirect, the effect being exerted
on angiogenesis, that, in turn, favors bone regeneration. However, these findings highlighted the
importance of autophagy in the complex multi-step process of bone formation.

Another indirect proof of the significance of autophagy in osteogenesis could be found in an in vitro
model of fibroblasts from osteogenesis imperfecta recessive patients exposed to 4-phenylbutyrate
(4-PBA). 4-PBA, a well-known chemical chaperone, approved by the Food and drug Administation,
as an ammonia scavenger for urea cycle disorders, alleviated cellular stress by restoring ER size,
normalizing the expression of apoptotic markers and stimulating autophagy [63].

2.6. Others

The stromal cell-derived factor-1 (SDF-1), also known as C-X-C motif chemokine 12 (CXCL12),
is a cytokine protein ubiquitously expressed in many tissues and cell types and that is important
in stem and progenitor cell recruitment in tissue repair after injury. It was found able to increase
and accelerate bone formation both in vitro and in vivo [64]. Interestingly a direct interaction of the
SDF-1/CXCR4 signaling axis, and specifically the SDF-1β isoform, with autophagy in proliferation and
survival of BMSCs was demonstrated [65]. Moreover, SDF-1α-loaded silk fibroin scaffolds induced
matrix-formation and new dentin deposition accompanied by autophagy in dental pulp stem cells
(DPSCs) [66].

Substance P (SP), released predominantly by the peripheral terminal, is a conserved undecapeptide
and a member of the tachykinin peptide family that acts as a sensory neurotransmitter and
neuromodulator. Similar to growth factors, increasing studies have demonstrated that neuropeptides
are critical for maintaining tissue homeostasis and SP has been demonstrated to have an osteogenic
effect on BMSCs [67]. A recent study indicated that SP could promote osteogenic differentiation by
activating autophagy in the same cell type [68]. In parallel, autophagic activity played an important
role in restricting the excessive reactive oxygen species (ROS) generation and in mediating SP-enhanced
BMSC osteogenic differentiation.

β-Ecdysterone is a naturally occurring estrogen analog derived from Achyranthes bidentata and
Cyanotis arachnoidea. Multiple uses have been reported for this molecule, including similar protective
effects to estrogen, which is the primary therapeutic strategy for the treatment of osteoporosis.

BMSCs induced to osteoblastic differentiation were treated with dexametazone to study
glucocorticoid-induced osteoporosis. The osteogenic markers ALP, RUNX2, and OCN were decreased,
along with the expression levels of the autophagic regulators Beclin-1, autophagy protein 5,
and microtubule-associated protein 1 light chain 3 II. The effects on cell differentiation and autophagy
induced by dexamethasone were reversed by β-ecdysterone in a dose-dependent manner [69].
Similar results were obtained in vivo: in a murine model of osteoporois, β-ecdysterone was able
to inhibit apoptosis through the induction of the autophagic process [70].

3. Osteogenesis Inhibition

In order to have an extensive understanding of the factors that can regulate osteogenesis through
autophagy, it is crucial to take into consideration also the conditions that show a negative regulation
of osteogenesis through autophagy. If the positive regulation of osteogenesis is generally linked to
autophagy stimulation, in osteogenesis inhibition the mechanism may vary. In Figure 1 (right) the
substances that inhibit both osteogenesis and the autophagic process are reported. In Figure 2 the other
two different strategies of action of the determinants presented in this section are described. In Figure 2A,
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the conditions upregulating autophagy and leading to cell death are summarized, whereas in Figure 2B
the agents leading to osteogenesis inhibition by autophagy enhancement are represented.
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(A) and factors impairing osteogenesis by stimulation of the autophagic process (B). The superscript
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3.1. Diabetes

In addition to other well-known complications, type 2 diabetic patients also have fragile bones
caused by faulty mineralization, mainly due to increased adiposity among diabetic patients that
affects both osteoblast and osteoclast functions. Other factors that increase fracture risk in diabetic
patients are augmented oxidative stress, inflammation, and drugs administered to treat diabetes [71].
Long-standing diabetes causes disruption of the bone marrow microenvironment by depleting and
altering stem/progenitor cells resulting in enhanced adipogenesis and depressed osteogenesis [72,73].
On the basis of the results from a streptozotocin-induced diabetic rat model, BMSCs were grown in a
hyperglycemic medium. They underwent an autophagy mechanism, and diverted from an osteogenic
to a metabolically stressed adipogenic phenotype with production of a monocyte-adhesive hyaluronan
matrix. The latter could be the mechanism involved in the osteopenic response of streptozotocin-treated
diabetic rats [74]. Another study found that BMSCs from type 2 diabetes mellitus patients (DM-BMSCs)
showed decreased osteogenic differentiation and autophagy level, and increased senescent phenotype.
The same type of cells from healthy donors exposed to hyperglycemic and hyperinsulinemic conditions
showed phenotypes similar to those of DM-BMSCs. In summary, insulin impeded osteogenesis
of BMSCs by inhibiting autophagy and promoting premature senescence, with the involvement of
the TGF-β1 pathway, notoriously related to cell differentiation [75]. Consistent with these findings,
the early induction of AMPK in response to IGF-1/IGFBP-2, by activating autophagy, is required for
osteoblast differentiation as already suggested by another research group [76]. Insulin-like growth
factor 1 is a potent stimulant of osteoblast proliferation and recent studies showed that a member
of the insulin-like growth factor binding protein family, IGFBP-2, was also required for optimal
IGF-1-stimulated osteoblast proliferation and differentiation [77]. These findings suggested that these
early catabolic changes were important for determining the energy source for osteoblast respiration.
Downregulation of these components could be required for induction of glycolysis, which is required
during the final anabolic stages of differentiation [23].
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Advanced glycation end products (AGEs) are a group of heterogeneous compounds that
accumulate in the bone tissue of diabetic patients. In a study, AGEs increased apoptosis in the
osteoblastic cell line MC3T3-E1. At the same time, the autophagy was upregulated as represented
by an increase in the total LC3 level and the LC3II/LC3I ratio, and a decrease in the expression
of p62/SQSTM1, a biomarker of the degradation of autolysosomes with its expression negatively
correlated with autophagy level. The further induction of autophagy by administration of rapamycin
attenuated AGE-induced apoptosis. Interestingly, blunting the oxidative stress with the antioxidant
N-acteylcysteine, suppressed autophagy. Autophagy hence played a protective role in MC3T3-E1
cells during AGEs-induced apoptosis, and ROS were essential in upregulating AGEs-induced
autophagy [78]. AGEs were already reported to trigger osteogenesis through autophagy at low
concentrations (see Section 2.2). However, in the same paper [42], it was demonstrated that increasing
AGE concentration (200 mg/mL) and exposure time (72 h) resulted in decreased cell proliferation and
osteogenic functions in hFOB1.19 cells.

Since many studies have shown that a high glucose environment can impede periodontal ligament
stem cells (PDLSC) proliferation and differentiation ability and affect the regeneration of periodontal
tissue [79,80], in another model of diabetic rats the role of autophagy in this process was investigated.
Fluctuations in many autophagy and osteogenesis related markers implied that autophagy was
involved in the osteogenic process and that high glucose weakened physiological functions in PDLSCs,
including osteogenesis and autophagy. Remarkably, regulation of autophagy could partly recover the
cells’ osteogenic abilities both in vitro and in vivo [81].

To complete the picture, it is crucial to mention a study about the effect of melatonin on type 2
diabetes osteoporosis. This hormone, also employed as pharmaceutical treatment, could suppress
autophagy, enhance bone microstructure, and promote osteoblast osteogenesis, by downregulating
the ERK pathway in type 2 diabetic osteoporosis and in hFOB 1.19 osteoblasts treated with high
glucose [82].

3.2. Metal Ions

As already mentioned above, metals as cadmium can be toxic for cells involved in osteogenesis.
To this regard, two papers from the same group are consistent in demonstrating autophagy induction
following cadmium exposure in mouse bone marrow mesenchymal stem cells. The first [83] found that
cadmium increased both mRNA and protein expression of FOXO3a, a member of the forkhead-box
(Fox) family of transcription factors, which plays an evolutionarily conserved role in cell proliferation
and survival in a variety of tissues. In addition, AMPK was demonstrated to enhance FOXO3a nuclear
translocation and transcriptional activity. These results demonstrated that overactivated autophagy
may be the primary contributing factor underlying cadmium-induced MSC death. However, since the
Foxo3 knockdown could not completely prevent cadmium-induced autophagy, in a more recent
paper other pathways were investigated [84]. Transcription factor E3 is a member of the basic
helix-loop-helix leucine zipper family of transcription factors, and has recently been identified as
a master regulator of the expression of genes that are associated with autophagy and lysosomal
biogenesis [85]. Transcription factor E3 was found to play a role in cadmium-induced autophagic cell
death in MSCs, independently by MTORC1.

In the Section 2 (see Section 2.3) physiological levels of magnesium were already described to be
crucial for healthy osteogenesis, this metal acting as a calcium antagonist and preventing aberrant
ossification. It is however valuable to point out that, at high doses, magnesium can impair the process
of osteogenesis. Matrix mineralization, expression of collagen type I, and the mineral crystals growth
in human bone marrow-derived mesenchymal stem cells can be suppressed by high magnesium
(1 mM). The upregulation of autophagy by ATP reverted the effects of high magnesium on extracellular
mineralized matrix deposition [86].

The divalent metal transporter 1 (DMT1) is a 12-transmembrane-domain protein found in a range
of tissues, including bone, on which the cellular transport of iron ions is heavily dependent. It was
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previously found closely associated to osteoporosis, but in a recent paper the increased expression
of DMT1 was found to induce iron overload. The iron accumulation in turn, induced osteoblast
autophagy and apoptosis, thus affecting the pathological processes of bone loss [87].

Natural uranium (U), which is present in our environment, exerts a chemical toxicity, particularly
in bone where it accumulates. In UMR-106 osteoblastic cell line, U(VI), the form uranium is found
in atmospheric conditions and in most environmental systems, affecting mineralization function
even at subtoxic concentrations. At the same time, the autophagic flux was impaired as a result.
In addition, a reduced degradation of autophagic vesicles could lead to non-elimination of damaged
mitochondria, resulting in enhanced ROS production which is one of the mechanisms of U(VI) toxicity
in osteoblasts [88].

3.3. Pathogens

A little investigated regulation of osteogenesis through autophagy came from biological agents.
First, bacteria of the genus Brucella are Gram-negative microorganisms that causes brucellosis, a disease
that commonly results in persistent, chronic involvement of osteoarticular system which usually
leads to bone damage [89]. Brucella abortus induced the activation of the autophagy pathway in
osteoblast cells and this activation was involved in the impairment of osteoblast function and bone
formation [90]. More importantly, it was demonstrated that Brucella infection uses the autophagic
pathway to inhibit matrix deposition early during infection, while at later times the process of
differentiation of osteoblasts takes control of the pathway, confirming that autophagy was required for
osteoblast terminal differentiation [91]. Second, infection from the Zika virus (ZIKV), a mosquito-borne
flavivirus, during gestation is deemed to be coupled to birth defects through direct impairment of
neurogenesis. It has become an international health concern and has been declared as a public health
emergency by the World Health Organization. Most relevant to the aim of this review, ZIKV infection
caused aberrant cranial osteogenesis by greatly enhancing autophagy, which led to neural crest cells
(the progenitor cells of bone formation in the skull) apoptosis [92]. Third, pneumolysin (PLY) is the main
virulence factor of Streptococcus pneumoniae and a common cause of septic arthritis and osteomyelitis.
As other toxins, PLY induced ROS production during osteoblast differentiation, leading to early
upregulation of autophagy. The ROS-mediated regulation of AMPK and mTOR, which downregulated
the expression of the transcription factor Sp1, resulted in an inhibition of differentiation in human
osteoblast- like cells [93].

3.4. Kynurenine

Kynurenine, a tryptophan metabolite, is a key upstream mechanism that appears to target a
number of osteogenic pathways with age. Physiological levels of kynurenine disrupted autophagic flux
and autophagolysosomal production, inducing a senescent phenotype in BMSCs via Aryl hydrocarbon
receptor (AhR) signaling, inducing downregulation of osteogenesis [94].

4. Osteoclastogenesis

Aim of the present review is to extensively summarize the literature on the interplay between
autophagy and osteogenic differentiation. Indeed, recent studies have highlighted the influence of
autophagy in osteoclast differentiation and function. The receptor activator of NF-κB ligand (RANKL)
is involved in osteoclast differentiation [95]. During this process an increase of autophagic protein levels
such as ATG5, ATG7, ATG4β, and LC3 was evident. These are the main proteins for autophagosome
formation responsible for generating the osteoclast-ruffled border and the lysosomal secretion [96].
Moreover, the increase of LC3/ILC-3I ratio is related to p62 degradation, essential in the generation of
the filamentous actin ring, a key feature of osteoclatogenesis [97].

A brief overview of the main factors influencing osteoclastogenesis is provided. Nevertheless,
it is not meant to be an exhaustive reviewing of the literature on the subject.
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4.1. High Glucose

If it is clear that high glucose negatively affects osteoblastogenesis, the role of high glucose
in the physiology and differentiation of osteoclasts is still controversial. In the only study relating
autophagy to osteoclast differentiation, glucose proved to negatively affect osteoclast formation and
function but did not affect the proliferation of RAW264.7 cells. Suppression of the AMPK/mTOR/ULK1
signaling axis by high glucose decreased autophagy in differentiating osteoclasts, demonstrating that
autophagy participates in osteoclast differentiation and function and can be inhibited by high glucose
concentration [98].

4.2. Glucocorticoids

Glucocorticoids remain an effective therapy for many inflammatory/autoimmune disorders.
Nevertheless, moderate-to-high doses of glucocorticoids or their prolonged administration lead to
osteoporosis, characterized by consistent changes in bone remodeling with decreased bone formation
as well as increased bone resorption [99].

Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but past some threshold the
process of autophagy leads the cells to apoptosis. Excess glucocorticoids impaired osteoblastogenesis
by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1 [100]. Lian et al. reported that HSP60
(heat shock protein 60) was required to sustain autophagic markers ATG4, and ATG12 expression,
LC3-II conversion, and autophagic puncta formation. It also alleviated the glucocorticoid-induced loss
of osteogenic gene expression and mineralized matrix accumulation via RPTOR signaling [101].

Interestingly, ROS, which play a crucial role in osteoclastogenesis, and autophagy flux activity
were found upregulated consistently with the dose-dependent effects of the glucocorticoids on
osteoclast formation and function. These results implied that with glucocorticoid administration,
ROS and autophagy, as a downstream factor of ROS, played vital roles in osteoclast formation
and function [102]. The same conclusions were found in an in vivo model of osteoporosis [103].
Taken together, the knowledge of the mechanisms at the basis of glucocorticoid-induced osteoporosis,
suggests the use of autophagy as a target in this disease [104].

Consistent with these data, lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis,
and reactive oxygen species in bone marrow derived macrophages that were pre-stimulated with
RANKL. Removal of ROS decreased LPS-induced osteoclast formation and autophagy as well [105].
A very recent paper reviewed the role in bone homeostasis of both autophagy and apoptosis induced
by glucocorticoids [106].

4.3. Oxidative Stress

Since oxidative stress has long been linked to osteoclastogenesis enhancement, another study
suggested that the differentiation of osteoclast precursors induced by monocyte chemotactic protein-1,
a CC chemokine commonly found at the site of tooth eruption, is mediated via oxidative stress.
The oxidative stress, in turn, caused ER stress leading to autophagy, revealing a novel mechanism
in OC differentiation [107]. As oxidative stress and apoptosis are strictly related, already published
data demonstrated that TNF receptor associated factor-6 (TRAF6)/c-Jun N-terminal kinase1 (JNK-1)
prevented osteoclast precursor apoptosis and mediated autophagy, enhancing RANKL-induced
osteoclastogenesis via TRAF3 degradation [108].

Oxidative stress is strictly associated to inflammation, which, in bone, leads to activation of
osteoclasts and to the subsequent bone destruction [109]. The pro-inflammatory cytokine IL-17,
already related to aberrant ossification in rheumatoid arthritis and osteoarthritis patients [110], is also
associated to an elevated number of osteoclasts in periodontitis [111]. Two studies suggested that
IL-17 was responsible for osteoclast differentiation and bone resorption, both in vitro and in vivo,
via activation of autophagy. These effects of IL-17 were found both in primary mouse bone marrow
macrophages [112] and osteoclast precursors through the activation of the RANKL-JNK pathway [113].
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4.4. Microgravity

Microgravity is an uncommon situation in which bone loss is experienced during space flights.
Osteoclasts and their precursors were already found to be the target of mechanical forces that could be
responsible for modulating gene expression associated with osteoclast differentiation/activity [114].
During exposure to microgravity, an induction of autophagy was registered and proved to play an
important role in enhanced osteoclast differentiation [115].

5. Biomaterials, Autophagy, and Osteogenesis

A biomaterial is any material (e.g., polymer, ceramic, metal, or composite) that has been engineered
to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair,
or replace a tissue function of the body) or a diagnostic one. Biomaterials are used every day in dental
and orthopedic applications, surgery, and drug delivery. They can be derived either from nature or
synthesized in the laboratory using a variety of chemical approaches and materials. Biomaterials can
be broadly categorized in metals, polymers, ceramics, and composite materials. This classification
is followed in this section to discuss biomaterials promoting bone regeneration by modulating the
autophagic process. The research in the field of biomaterials applied to bone regeneration is actually
focused on the modifications of their surfaces in order to improve their bioactivity. In this perspective
two strategies can be used: the functionalization of the biomaterial/cell interface by linking to its surface
osteoinductive/osteoconductive molecules; and the modification of surface topography to make them
more suitable for cell growth and differentiation. In the following paragraphs many examples of these
strategies are given, relating them to the biomaterial used.

Table 1 provides an overview of the biomaterials discussed in this section along with the
experimental model they were tested and the signaling pathway involved (where applicable).

Table 1. Biomaterials, experimental models, and signaling pathways.

Biomaterial Model Pathway Reference(s)

Silicon, Orthosilic acid Murine preosteoblast MC3T3-E1 BMP2/RUNX2 Col1 [116–119]
Silica NPs Murine preosteoblast MC3T3-E1 ERK1/2, LC3, p62 [120–122]
Chitosan Primary hMSCs mTOR/S6K/S6/4E-BP1 [123–125]

TiAl6V4 particles Osteocytic cell line MLO-Y4 IFN-β [126–128]
Titanium hBMSCs [129,130]
Titanium Human osteoblasts PI3K/Akt [131]
Titanium Murine preosteoblast MC3T3-E1 [132]
Titanium Murine preosteoblast MC3T3-E1 β-catenin/YAP [133]
Alumina rBMSCs Wnt BMP [134–136]

Silver NPs [137–141]
Silver NPs Mouse [142]
Silver NPs hMSCs [143,144]

Hydroxyapatite DPSCs [145]
Hydroxyapatite DPSCs IL-6 [146]
Hydroxyapatite Murine preosteoblast MC3T3-E1 mTOr [147]
Hydroxyapatite PDLSCs AMPK mTOR [148,149]

Fluorapatite hASCs [150,151]

5.1. Polymers

Silicon based materials have long been studied for their application in regenerative medicine either
for their proangiogenic role [116] or their use in scaffolds that mimic the structure and composition of
bone tissue [117]. In this field, the synthesis of silicate-containing hybrids by the sol–gel method is a
new route to preparing bioactive implants with improved mechanical properties. These materials can
be degraded by the physiological environment, which involves the eventual bone colonization and
full tissue restoring. Actually, the research is focused on tailoring the hybrid implants for bone tissue
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regeneration rather than bone substitution. Silicate-containing hybrids must promote the osteogenic
performance of the osteoblast-like cells [118].

Interestingly, orthosilic acid, a unique soluble form of silicon, enhanced the BMP-2/RUNX2 and
COL-1 protein expression in preosteoblastic cells, promoting differentiation and mineralization of
osteoblasts through the activation of the autophagic pathway [119]. Moreover, an engineered bioactive
silica-based nanoparticle formulation (NPs) was found able to stimulate in vitro differentiation and
mineralization of osteoblasts and increased bone mineral density in young mice in vivo [120,121].
In the search of the mechanisms underlying such results, Ha and collaborators [122] found that the
stimulation of autophagy and associated signaling suggests a cellular mechanism for the stimulatory
effects of silica nanoparticles on osteoblast differentiation and mineralization. They notably suggested
that it is the size of the nanoparticles (50 nm) that stimulates autophagy rather than the materials
they are made of. These considerations are remarkably in line with what was found about gold
nanoparticles discussed in Section 2.4. In the study cited above [52] the 45 nm AuNPS were the most
effective in promoting both autophagy and osteogenesis.

Chitosan is a polysaccharide copolymer of glucosamine and N-acetylglucosamine derived by
partial deacetylation of chitin from crustacean shells. Recently, many studies have investigated the
effects of chitosan film or membrane on the morphology, stemness, and multi-differentiation abilities
of MSCs. It has been demonstrated that MSCs cultured on chitosan film formed spheres and the
expression of stemness marker genes increased significantly when MSCs were cultured using chitosan
film compared with 2D monolayer culture systems [123]. More importantly, culture on chitosan
film resulted in an increased differentiation potential of MSCs into mesenchymal lineages, such as
osteoblasts [124]. In the same experimental model, mTOR signaling was activated especially in
senescent cells, whereas its suppression or knockdown selected more primitive MSCs that are enriched
in gene expression of pluripotency, in vitro osteogenesis, and in vivo bone formation [125].

5.2. Metals

5.2.1. Titanium and Nanostructure

Most of the recent research on biomaterials is actually focused on titanium, the most often used
material, due to its biocompatibility and mechanical properties, both for orthopedic and dentistry
applications, in substitution of ceramics, polymers, and other metals [126,127].

In a lately published paper, an osteocyte-conditioned medium proved to inhibit osteoclast
differentiation from bone marrow monocytes (BMMs) to osteoclasts. However, TiAl6V4 alloy
particles (TiPs) attenuated this inhibitory effect by markedly decreasing the expression of IFN-β,
an osteoclastogenesis-associated factor. Additional evidence suggested that TiPs decreased the
expression of IFN-β in osteocytes via stimulation of autophagy [128].

Among the others, one distinctive strategy used to improve the bio-functionality for titanium
implants, was the use of exosomes derived by macrophage stimulated with BMP2, that were
already known for their beneficial effects on osteogenic differentiation [129]. The incorporation of
BMP2/macrophage derived exosomes dramatically increased the expression of osteoblastic differentiation
markers in MSCs. Remarkably, the pro-osteogenic role of the titanium nanotubes incorporated with
BMP2/macrophage-derived exosomes is mediated by autophagy [130].

In the biomaterial field of research, it is already known that biomaterials with varied surface
topography have more biocompatible features and better interactions with the surrounding living
tissues. Rough surfaces caused osteoblast differentiation via the autophagic-dependent PI3/Akt
signaling pathway. One surface provoked the development of a third population of small, granular cells,
responsible for cell cluster formation, which were important for the formation of bone noduli and
mineralization. When autophagy was inhibited, both mature osteoblasts and small cells were absent,
and the cell cluster formation was also prevented. Autophagy therefore has to play an essential role in
the osteoblast differentiation on titanium-based surfaces with rough topography [131].
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The nanosized surface is well known for its ability to interfere with intracellular procedures
and a nanotube structure was found able to enhance mTOR-independent autophagy in osteoblasts
compared to a flat surface. Further analysis revealed that autophagy was temporally promoted by
nanotubes in the initial day contact, and cell membrane stretching appeared to be the central regulation
factor. The process was also reversible by exchanging the substrate nanotopographies in different cell
lines. In summary, the nanotopographic surface is able to induce temporal and reversible autophagy,
which may be used as a versatile method to control cell differentiation [132].

Implant topography is associated with the functionality of osteogenic transcription factors directed
by β-catenin in the nucleus. This protein can be degraded by YAP (Yes-associated protein) which is
susceptible to autophagic flux. Nanotopography, in comparison with smooth surfaces, was associated
with higher β-catenin nuclear translocation, osteogenic differentiation, and autophagy, and less
cytoplasmic YAP in MC3T3-E1 cells. These results demonstrated an involvement of this pathway in
the osteogenesis observed in response to titanium implants [133].

5.2.2. Alumina

The osteoimmune environment plays indispensable roles in bone regeneration because the early
immune environment that exists during the regenerative process promotes the recruitment and
differentiation of osteoblastic lineage cells [134]. Nanoporous anodic alumina with different sized pores
had modulatory effects on macrophage responses and consequently on the osteogenic differentiation
of BMSCs. The role of macrophages in osteogenesis was already suggested to be indispensable [135].
The effect of the 50 nm nanoporous alumina structures on macrophage spreading and shape resulted
in osteogenic differentiation of BMSCs, improving the osteogenic capacity of bone biomaterials with a
mechanism related to autophagy activation [136].

5.2.3. Silver

Silver is used in a variety of medical and general devices for its antimicrobial properties. It is,
therefore, widely used in the form of nanoparticles in medicine, in order to retard and avoid bacterial
infection [137,138]. Despite their antimicrobial action, silver nanoparticles (AgNPs) lack toxicity towards
eukaryotic cells, because of the induction of the autophagic process [12]. Interestingly, linking the
silver nanoparticles to thermosets made of materials commonly used in the dental practice resulted in
further reduced cytotoxicity [139], confirming that the adsorption of molecules on biomaterial surfaces
can improve their biocompatibility.

Many results were recently achieved regarding effects of AgNPs on osteogenesis of stem
cells [140–142]. Again, the linking of AgNPs, whose potential toxicity raises serious concerns, on titanium
surfaces proved to be a successful strategy [143]. Moreover, AgNPs activated autophagy and osteogenesis.
The administration of the autophagy inhibitor 3-methyladenine could reverse both processes, binding the
occurrence of osteogenesis to the autophagic activity in human MSCs [144].

5.3. Ceramics

Hydroxyapatite (HA) is a natural occurring mineral present in the human skeleton. In biomaterial
applications it can be used in combination with alginate to study the improved osteoblast differentiation
of DPSCs [145,146].

HA-nanoparticles (HANPs) promoted osteoblast differentiation in a dose-dependent manner the
osteoblast cell line MC3T3E1. In addition, the internalized HANPs were located in typical autophagic
vacuoles and increased the ratio of LC3II/LC3I, indicating HANPs induced cell autophagy. Moreover,
the induction of autophagy was via the mTOR signaling pathway also in a concentration dependent
manner. Collectively, these results revealed that HANPs modulates osteoblast differentiation by
mediating autophagy in a dose-dependent manner [147].

Polydopamine-templated hydroxyapatite (tHA) is a type of nano-biomaterial, designed as an
alternative to the traditional hydroyapatite (HA,) that can promote osteogenesis in bone tissue
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engineering. The reinforcement of polycaprolactone (PCL) matrix with tHA enhanced cell adhesion,
spreading, and proliferation of human mesenchymal stem cells. More importantly, tHA nanoparticles
exposed on the surface of composite nanofibers could further promote osteogenesis of human MSCs
in vitro [148]. However, as already seen in other experimental systems, the concentration is crucial.
Indeed, high concentrations of tHA stimulated ROS production, resulting in cell injury and apoptosis
in PDLSCs. Nevertheless, the triggering of the AMPK/mTOR signaling pathway when tHA is in
combination with metformin, led to autophagy activation and consequent increased viability of human
PDLSCs with a further improvement of the osteogenic effect [149].

Interestingly, also the incorporation of fluorapatite (FA) crystals within the three-dimensional
PCL nanofiber scaffolds provided a favorable extracellular matrix microenvironment for the growth,
differentiation, and mineralization of human DPSCs [150]. In a different cellular model, the inhibition
of autophagy at earlier stages (days 1 to 3) could affect human adipose stem cell (hASCs) osteogenic
capability and mineralization when grown on PCL+FA scaffolds. These results suggested that
autophagy was indispensable during the early stage of osteogenic differentiation in this model [151].

6. Conclusions

The health of the bone tissue is strictly related to the differentiation of osteoblasts, the cell
responsible for the deposition of organic osteoid and matrix mineralization, which leads to osteogenesis.
Autophagy is thoroughly involved in the development of these cells, contributing therefore to bone
homeostasis. Impairment of autophagic activity leads to disruption of the bone-remodeling balance,
which leads to pathological state and failure of biomaterial implants. Autophagy modulation has been
shown to have an intriguing potential as target for ageing, biomaterial design, and the therapy of
various pathological conditions. This review offers a deep insight in the mechanisms and stimuli driving
osteogenesis in combination with autophagy, providing a useful tool for the development of innovative
therapeutic strategies. As far as the authors know, this is the first review summarizing the role of
autophagy in osteogenesis promoted by different types of biomaterials. The knowledge of the conditions
improving biomaterial bioactivity will help future research to design new biomaterial solutions.
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Abbreviations

4-PBA 4-phenylbutirrate
AGEs advanced glycation end products
ASCs adipose stem cells
BMMs bone marrow monocytes
BMP bone morphogenetic protein
BMSCs bone marrow mesenchymal stem cells
DM-BMSCs diabetes mellitus bone marrow mesenchymal stem cells
DMT1 divalent metal transporter 1
DPSCs dental pulp stem cells
ER endoplasmic reticulum
FA fluorapatite
HA hydroxyapatite
IGF-1 insulin-like growth factor 1
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IGFBP insulin-like growth factor binding protein
LPS lipopolysaccharide
MSCs mesenchymal stem cells
NPs nanoparticles
PDLSCs periodontal ligament stem cells
PCL polycaprolactone
PLY pneumolysin
ROS reactive oxygen species
SDF-1 stromal cell-derived factor-1
SP Substance P
ZIKV Zika virus
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