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Cisplatin [cis-diamminedichloroplatinum (II)] is a platinum-based anticancer drug widely
used for the treatment of various cancers. It forms interstrand and intrastrand cross-
linking with DNA and block DNA replication, resulting in apoptosis. On the other hand,
intrinsic and acquired cisplatin resistance restricts its therapeutic effects. Although some
studies suggest that dramatic epigenetic alternations are involved in the resistance
triggered by cisplatin, the mechanism is complicated and remains poorly understood.
Recent studies reported that cytoskeletal structures regulate cisplatin sensitivity and
that activities of membrane transporters contribute to the development of resistance
to cisplatin. Therefore, we focus on the roles of actin filaments and membrane
transporters in cisplatin-induced apoptosis. In this review, we summarize the relationship
between actin cytoskeleton and membrane transporters in the cisplatin resistance of
cancer cells.

Keywords: cisplatin resistance, actin filament, membrane transporter, anion channel, apoptosis

INTRODUCTION

Cisplatin [cis-diamminedichloroplatinum (II)], a platinum-based anticancer drug, is a widely
used chemotherapeutic drug in the treatment of various cancers including testicular, bladder,
prostate, ovarian, head and neck, small cell lung, non-small cell lung, esophageal, cervical, and
stomach cancers (Lebwohl and Canetta, 1998; Boulikas and Vougiouka, 2004). Cisplatin enters
inside cancer cells in a balance between influx and efflux through membrane transporters. The
accumulated cisplatin forms intrastrand and interstrand adducts with DNA, which interferes
with DNA replication and transcription. The cisplatin-triggered DNA damage activates a variety
of signaling pathways such as a tumor suppressor p53 and mitogen-activated protein kinases
(MAPKs), leading to apoptotic cell death (Siddik, 2003). However, the cisplatin treatment is limited
in cancer therapy because cancer cells develop acquired resistance to cisplatin. The molecular
mechanisms involved in the cisplatin resistance are complicated. Generally, the following three
events, (1) reduced intracellular cisplatin accumulation, (2) increased DNA damage repair, and
(3) inactivation of the apoptotic signaling pathways, are associated with the cisplatin resistance

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2020 | Volume 8 | Article 597835

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.597835
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.597835
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.597835&domain=pdf&date_stamp=2020-10-27
https://www.frontiersin.org/articles/10.3389/fcell.2020.597835/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-597835 October 21, 2020 Time: 23:36 # 2

Shimizu et al. Membrane Transporters in Cisplatin Resistance

(Siddik, 2003; Tanida et al., 2012; Zhu et al., 2016; Lambert and
Sørensen, 2018). We, therefore, begin the review by providing an
overview of the cisplatin-resistant mechanism.

REDUCED INTRACELLULAR CISPLATIN
ACCUMULATION IN CISPLATIN
RESISTANCE

The independent influx and efflux pathways regulate the amount
of cellular cisplatin in cancer cells (Figure 1). Although the
mechanism of cisplatin uptake remains poorly understood,
cisplatin passes through the plasma membrane via facilitated
diffusion. The copper transporter 1 (CTR1), the first member
of the solute carrier transporter 31 family (SLC31A1), is
demonstrated to play a pivotal role in the cisplatin influx
(Howell et al., 2010; Liu et al., 2012). The deletion of CTR1
not only reduced intracellular cisplatin accumulation but also
increased the cisplatin resistance (Ishida et al., 2002; Lin et al.,
2002). Besides, some cisplatin-resistant cancer cells exhibited low
expression of CTR1 (Song et al., 2004; Kalayda et al., 2012). These
results suggest that the downregulation of CTR1 contributes to
the cisplatin resistance. The organic cation transporters (OCT),
which belong to the SLC22 family, are known to transport organic
cations containing medicines down an electrochemical gradient.
Several reports showed that the overexpression of OCT1-3
(SLC22A1-3) enhanced cisplatin uptake and cisplatin-triggered
cytotoxicity (Ciarimboli et al., 2005; Yonezawa et al., 2006; Li
et al., 2012). Recently, the expression of OCT6 [SLC22A16,
also called carnitine transporter 2 (CT2)] is demonstrated to
contribute to the cisplatin uptake and its cytotoxicity (Kunii
et al., 2015). These results suggest that these OCT proteins
might function as influx transporters of cisplatin. Further studies
are awaited to clarify the importance of OCT proteins in the
cisplatin resistance.

Volume-sensitive outwardly rectifying (VSOR) anion
channels (called volume-regulated anion channels: VRAC)
are also considered to mediate cisplatin influx (Planells-Cases
et al., 2015; Jentsch et al., 2016) and contribute to the cisplatin
resistance (Lee et al., 2007; Shimizu et al., 2008). The VSOR anion
channels generally play principal roles in cell volume recovering
after cell swelling and initial cell shrinkage on apoptotic cell
death (Okada et al., 2001; Shimizu et al., 2004; Pedersen et al.,
2016; Okada et al., 2019). Recent studies demonstrated that
the VSOR anion channels are composed of hetero-hexameric
leucine-rich repeat-containing 8 (LRRC8) proteins with four
membrane-spanning domains and intracellular C-terminal
leucine-rich repeat domains (Qiu et al., 2014; Voss et al.,
2014; Deneka et al., 2018; Kasuya et al., 2018; Kefauver et al.,
2018). The LRRC8 family consists of five members LRRC8A to
LRRC8E. LRRC8A is an essential component to form VSOR
anion channels. Interestingly, the stoichiometry of LRRC8
proteins modifies the electrophysiological properties of VSOR
anion channels. The combination of LRRC8A with LRRC8C or
LRRC8E exhibits slower or faster inactivation of VSOR anion
channel currents at positive potentials, respectively (Voss et al.,
2014; Ullrich et al., 2016). LRRC8D regulates the permeability

of VSOR anion channels (Lee et al., 2014; Planells-Cases et al.,
2015). The transport of organic compounds such as osmolyte
taurine, antibiotic blasticidin S, and chemotherapeutic cisplatin
is dependent on the incorporation of LRRC8D into VSOR
anion channels. Thus, cisplatin would pass through LRRC8D-
containing VSOR anion channels. Consistently, the structural
study using the cryo-electron microscopy revealed that LRRC8D
homo-hexamers have a wider pore compared with LRRC8A
(Nakamura et al., 2020). Intriguingly, ovarian cancer patients
with low LRRC8D expression significantly exhibited poor
prognosis in cisplatin therapies (Planells-Cases et al., 2015).

Some ATP-dependent active transporters are involved in the
cisplatin efflux. ATP7A and ATP7B are known to be P-type
ATPases to export an excess of copper (Li et al., 2018). These
transporters located at the trans-Golgi network sequester copper
from the cytosol and the accumulated copper in the trans-Golgi
network might be released from the cell via a secretory vesicle
pathway (Suzuki and Gitlin, 1999). ATP7A and ATP7B similarly
transport cisplatin and regulate cisplatin sensitivity (Samimi
et al., 2004). Interestingly, these transporters mainly existed at
the trans-Golgi network in the cisplatin-sensitive cancer cells but
distributed in more peripherally located vesicles in its cisplatin-
resistant cells (Kalayda et al., 2008). These results suggest that
cisplatin regulates the rapid trafficking of these transporters
between the trans-Golgi network and the secretory vesicles.
Moreover, several cisplatin-resistant cancer cells exhibited an
increased expression of ATP7A and ATP7B (Katano et al., 2002).
Multidrug resistance-associated protein 2 (MRP2), a member
of the ATP-binding cassette (ABC) transporter family, also
exports cisplatin as a conjugate with glutathione (Koike et al.,
1997; Kawabe et al., 1999) and contributes to the cisplatin
resistance (Taniguchi et al., 1996; Cui et al., 1999; Hinoshita
et al., 2000). MRP2 localizes in the apical membrane of various
cells and the ability of MRP2 to transport cisplatin confers the
cisplatin resistance (Borst et al., 1999). Besides, cancer patients
with a high level of MRP2 expression showed less sensitivity
to cisplatin therapies (Korita et al., 2010; Yamasaki et al.,
2011; Halon et al., 2013). Thus, the active transporters such as
ATP7A/B and MRP2 regulate cisplatin efflux, although the ways
to transport cisplatin are different. These results suggest that the
expression of these ATP-dependent cisplatin exporters decreases
intracellular cisplatin accumulation, resulting in the cisplatin
resistance of cancer cells.

INCREASED DNA DAMAGE REPAIR IN
CISPLATIN RESISTANCE

Accumulated cisplatin forms interstrand and intrastrand cross-
link with DNA, resulting in DNA damage. Two different
pathways generally contribute to DNA repair: nucleotide excision
repair (NER) and mismatch repair (MMR). The NER removes
the bulky DNA adducts induced by cisplatin. On the other
hand, the MMR corrects single-strand DNA errors during DNA
replication. The protein expression involved in the NER and
MMR processes positively and negatively correlates with the
cisplatin resistance, respectively. The following reviews describe
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FIGURE 1 | Membrane transporters involved in the regulation of cisplatin
accumulation.

the detailed mechanism of the NER and MMR process in the
cisplatin resistance (Martin et al., 2008; Rocha et al., 2018; Damia
and Broggini, 2019).

INACTIVATED APOPTOTIC SIGNALING
PATHWAY IN CISPLATIN RESISTANCE

Apoptosis, a programmed cell death observed in old and
unwanted cells, is characterized by morphological and
biochemical features such as initial cell shrinkage (called
apoptotic volume decrease: AVD), cell membrane blebbing,
cytochrome c release, chromatin condensation, caspase
activation, DNA fragmentation, and apoptotic body formation
(Maeno et al., 2000; Saraste and Pulkki, 2000; Okada et al.,
2001; Barros et al., 2003). Cisplatin activates multiple signaling
pathways such as reactive oxygen species (ROS), a tumor
suppressor gene p53, and mitogen-activated protein kinases
(MAPKs) to induce these phenomena.

As mentioned above, the VSOR anion channels mediate the
cisplatin influx. On the other hand, the VSOR anion channels also
contribute to the induction of AVD, a hallmark of an early stage
of apoptosis. The AVD is accompanied by a coupled activation
of K+ channels and the VSOR anion channels (Maeno et al.,
2000; Okada et al., 2001; Shimizu et al., 2004). Importantly, the
AVD precedes other apoptotic events because blockers of K+
channels and the VSOR anion channels inhibited cytochrome c
release, caspase activation, and DNA fragmentation triggered by
mitochondria- and death receptor-mediated apoptotic inducers
in various types of cells (Maeno et al., 2000). The VSOR
anion channel activities are also essential for cisplatin-induced
apoptosis in human epidermoid carcinoma KB cells (Ise et al.,
2005). A VSOR anion channel blocker not only suppressed
caspase activation and cell death after exposure to cisplatin but
also lowered the concentration dependence of cisplatin on cell
viability. Intriguingly, the cisplatin-resistant cells including KCP-
4 cells derived from KB cells (Lee et al., 2007), mouse Ehrlich
ascites tumor cells (MDR-EATC: Poulsen et al., 2010), and
human lung adenocarcinoma A549/CDDP cells (Min et al., 2011)
exhibited downregulation of VSOR anion channel activities.

Notably, the expression of LRRC8 members, components of
the VSOR anion channel, is comparable between the parent
KB cells and its cisplatin-resistant KCP-4 cells (Okada et al.,
2017; Shimizu et al., 2020). These results suggest that the
activation signals but not the expression of the VSOR anion
channels are associated with the cisplatin resistance of KCP-4
cells. Histone deacetylases (HDACs) are essential enzymes for
the regulation of gene expression. Their inhibition enhances gene
transcription and reverses aberrant epigenetic changes associated
with cancers (Bolden et al., 2006). Interestingly, HDAC inhibitors
such as trichostatin A and apicidin recovered the function
of the VSOR anion channels in KCP-4 cells, resulting in the
enhanced cisplatin potency (Lee et al., 2007; Shimizu et al., 2008).
This result strengthens that the AVD triggered by cisplatin-
induced activation of the VSOR anion channels is pivotal for the
induction of apoptosis.

We previously demonstrated that staurosporine, a
mitochondria-mediated apoptotic inducer, generated ROS,
resulting in the activation of the VSOR anion channels (Shimizu
et al., 2004). Thus, ROS production is one of the factors
inducing AVD. The mitochondrial electron transport chain in
the mitochondrial inner membrane and the NADPH oxidase
complex (NOX) at the plasma membrane are the major ROS
generators (Liu et al., 2002; Meitzler et al., 2014; Kim et al., 2019).
The mitochondrial electron transport chain generates superoxide
converted to hydrogen peroxide in the intermembrane space or
the matrix of mitochondria. The transmembrane enzyme NOX
produces superoxide from oxygen. Cisplatin exposure induced
the ROS production via the electron transport chain impairment
triggered by direct damage of mitochondrial DNA (Marullo
et al., 2013) and the activation of NOX isoforms at the plasma
membrane (Kim et al., 2010). Some cisplatin-resistant cancer
cells highly expressed superoxide dismutase 1, a superoxide
scavenger, compared with the parent cells (Brown et al., 2009;
Hour et al., 2010). Liu et al. (2020) recently found an increased
expression of mitochondrial apurinic/apyrimidinic endonuclease
1 (mtAPE1) in cisplatin-resistant cancer cells. The mtAPE1
expression negatively correlated with intracellular ROS levels.
These results suggest that the redox homeostasis contributes to
the cisplatin resistance.

The activation of a tumor suppresser gene p53 is known to
be essential for cisplatin-mediated apoptosis. As a transcriptional
factor, p53 controls the gene transcription to promote apoptosis
(Fridman and Lowe, 2003). The members of the Bcl-2 family are
one of the transcriptional targets for p53. During apoptosis, p53
promotes the transcription of pro-apoptotic proteins including
Bax, Puma, Noxa, and Bid (Miyashita et al., 1994; Oda et al., 2000;
Nakano and Vousden, 2001; Sax et al., 2002) and suppress that
of anti-apoptotic proteins Bcl-2 (Wu et al., 2001). Interestingly,
cancer patients who respond to cisplatin had a higher frequency
of p53-positive cells than non-responders (Garzetti et al., 1996).
These suggest that the cisplatin efficacy positively correlates with
the function of p53 among cancers. Importantly, half of the
cancer patients carry mutations of p53 (Toledo and Wahl, 2006).

Mitogen-activated protein kinases (MAPKs), serine/threonine
kinases, play pivotal roles in physiological functions such as cell
survival, proliferation, migration, and apoptosis (Dhillon et al.,
2007). In mammalians, members of the MAPK family include
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extracellular signal-regulated kinase (ERK), c-Jun N-terminal
kinase (JNK), and p38 kinase. The activation of these MAPKs
is essential for cisplatin-induced apoptosis. Not only cisplatin
activates all ERK, JNK, and p38 kinase during apoptosis, but
also reduced activation of these MAPKs correlates with the
cisplatin resistance (Brozovic and Osmak, 2007). In cisplatin-
induced apoptosis, the p53 transcriptional activity preceded
the activation of p38 (Bragado et al., 2007). Since all MAPKs
target and phosphorylate p53 at its different positions (Yue and
López, 2020), on the other hand, MAPKs are an upstream signal
of p53-mediated regulation. These results suggest that there
might be the crosstalk between p53 and MAPKs in cisplatin-
triggered signaling pathways, resulting in positive feedback loops
(see Figure 2).

THE ROLE OF THE ACTIN
CYTOSKELETON IN
CISPLATIN-INDUCED APOPTOSIS

The actin cytoskeleton is a principal structure that is essential
for various cellular functions such as intracellular trafficking,
contraction, motility, and apoptosis (Desouza et al., 2012).
The monomer actin, a globular protein (G-actin), forms actin

FIGURE 2 | The proposed signaling pathways in cisplatin-induced apoptosis.
Cisplatin-resistant cancer cells may interfere with the F-actin dynamics,
resulting in the inhibition of the subsequent apoptotic signals. Furthermore,
the disturbed F-actin dynamics could reduce the functional expression of
cisplatin transporters on the plasma membrane, decreasing the cisplatin
accumulation in the cells.

filaments (F-actin) by twisting two strands of G-actin. The F-actin
structure is highly dynamic. The F-actin reversibly polymerizes
and depolymerizes during cellular functions. The Rho family
of small GTPase is an indispensable regulator of the actin
cytoskeleton organization (Mokady and Meiri, 2015). The Rho
GTPases function as molecular switch shifting between two
conformations: a GDP-bound inactive state and a GTP-bound
active state. The increased activities of Rho GTPases regulate
the rearrangement of the actin cytoskeleton organization by
interacting with various effector proteins.

The actin cytoskeleton dramatically changes in the apoptotic
process (Desouza et al., 2012). However, the actin cytoskeleton
organization during apoptosis seems to be complicated. Some
cells showed actin polymerization after apoptotic stimuli
(Ishimoto et al., 2011), whereas the other cells exhibited actin
depolymerization during apoptosis (Udi et al., 2011; Ohno et al.,
2013). Consistently, a stabilizer of F-actin, jasplakinolide, induced
apoptosis (Posey and Bierer, 1999; Odaka et al., 2000). On the
other hand, an inhibitor of actin polymerization, cytochalasin
D, also resulted in apoptotic responses (Suria et al., 1999; Paul
et al., 2002). Surprisingly, both jasplakinolide and cytochalasin D
initiate apoptosis in the same human airway epithelial 1HAEo−
cells (White et al., 2001). These results suggest that the F-actin
dynamics rather than the states of actin cytoskeleton would be
associated with apoptotic induction.

In the case of cisplatin-triggered apoptosis, the actin
cytoskeleton is markedly modified. Table 1 summarizes the
effects of cisplatin on F-actin in various types of cells. Cisplatin
increased cell stiffness via the stabilization of F-actin in
several human prostate cells (Raudenska et al., 2019) and
also depolymerized F-actin in human mammary carcinoma
MCF-7 cells (Zeidan et al., 2008) and porcine oocytes (Zhou
et al., 2019). We observed that cisplatin enhanced the F-actin
staining in KB cells (Figure 3A). Interestingly, cisplatin-induced
F-actin rearrangement is reported to be an initial phase of
apoptosis (Kruidering et al., 1998; Rebillard et al., 2010). Besides,
cisplatin changes membrane organization and fluidity during
early apoptosis (Martinho et al., 2019). Thus, the regulation of
actin cytoskeleton dynamics would be a membrane-associated
signaling pathway in cisplatin-induced apoptosis.

How do actin cytoskeleton dynamics modulate cisplatin-
induced apoptosis? One of the answers is that F-actin regulates
the expression and function of membrane transporters involved
in cisplatin transport. The previous reports demonstrated that
the rearrangement of F-actin increased the expression of cisplatin
importer CTR1 (Abdellatef et al., 2015) and that the translocation
of cisplatin exporters, ABC7A and ABC7B, from the trans-Golgi
network to the plasma membrane is regulated by the formation of
F-actin (Cobbold et al., 2002; Gupta et al., 2016). It is well known
that the actin cytoskeleton regulates the VSOR anion channels,
which contributes to cisplatin influx and sustained cell shrinkage
during early apoptosis. The regulation patterns are dependent
on cell types: the actin polymerization involves the activation
of VSOR anion channels in some cells (Fatherazi et al., 1994;
Zhang et al., 1997; Wei et al., 2003; Catacuzzeno et al., 2014;
Burow et al., 2015), whereas the VSOR anion channel activation
requires the F-actin disruption in the other cells (Levitan et al.,
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TABLE 1 | F-actin regulation triggered by cisplatin in various types of cells.

Cells A state of the actin cytoskeleton Reference

Human prostatic epithelial PNT1A cells. Human prostate carcinoma 22Rv1 and
PC-3 cells.

Increased number and length of F-actin. Raudenska et al., 2019

Human colon carcinoma HT-29 cells Transient actin polymerization at cell edges. Rebillard et al., 2010

Human epidermoid carcinoma KB cells Enhanced staining for F-actin. Figure 3

Human mammary carcinoma MCF-7 cells Disruption of membrane-bound F-actin. Zeidan et al., 2008

Porcine oocytes Impaired assembly of F-actin. Zhou et al., 2019

Primary porcine proximal tubular cells. Porcine renal proximal tubular LLC-PK1 cells. Depolymerization of F-actin. Kruidering et al., 1998

Cisplatin-resistant human ovarian cancer CP70, OVCAR5-CisR, PE06, and
SKOV3-CisR cells.

High density of F-actin networks. Sharma et al., 2012, 2014

Cisplatin-resistant human epidermoid carcinoma KB-CP20 cells. Cisplatin-resistant
human liver carcinoma 7404-CP20 cells.

Cluster type of actin cytoskeleton. Shen et al., 2004

Cisplatin-resistant human epidermoid carcinoma KCP-4 cells. Disrupted F-actin networks. Shimizu et al., 2020

FIGURE 3 | Cisplatin-triggered regulation of the actin cytoskeleton and the VSOR anion channels in human epidermoid carcinoma KB cells. KB cells were exposed
to 15 µM cisplatin for 12 h. (A) Cellular distribution of β-actin in control (left panel) and cisplatin-pretreated (right panel) cells. Scale bars: 20 µm. (B) The
current-voltage relationships of the VSOR anion channel currents in control (Circles: n = 13) and cisplatin-pretreated (Squares: n = 21) cells. ∗P < 0.05.
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1995; Shen et al., 1999; Morishima et al., 2000). Intriguingly, the
cisplatin-induced formation of the F-actin structure enhanced
the activities of the VSOR anion channel currents in KB cells
(Figure 3B). These regulations of membrane transporters by
the actin cytoskeleton organization would change the cisplatin
accumulation, modulating the following apoptotic processes.

THE CISPLATIN-RESISTANT CELLS
EXHIBIT ABNORMAL ACTIN
CYTOSKELETON DYNAMICS

Although the mechanism of the cisplatin resistance is quite
complicated, the dynamic changes in the actin cytoskeleton
organization are recently known to be involved in the cisplatin
resistance. Some cisplatin-resistant cancer cells have higher
stiffness than their parent cells sensitive to cisplatin (Sharma et al.,
2012, 2014). In contrast, the other cancer cells with the cisplatin
resistance exhibit the disrupted actin cytoskeleton compared
with their cisplatin-sensitive cells (Figure 4; Shen et al., 2004:
Shimizu et al., 2020). Although little is known about how the
difference of F-actin occurs in the cisplatin-resistant cells, the
different expression of Rho GTPases may contribute. The Rho
subfamily of Rho GTPases composed of RhoA, RhoB, and RhoC
is one of the key regulators of actin cytoskeletal organization
(Aspenström et al., 2004). Cancer cells exhibit distinct expression

levels of these proteins: RhoA and RhoC are highly expressed,
whereas RhoB is downregulated in various human tumors
(Mokady and Meiri, 2015). Interestingly, the decrease in RhoB
expression was associated with the cisplatin resistance in
human laryngeal carcinoma cells (Čimbora-Zovko et al., 2010).
Therefore, the expression balance of these Rho GTPases might
modulate the F-actin dynamics and the subsequent sensitivity
to cisplatin in cancer cells. Notably, the cisplatin-induced p53
transcriptional activity is linked with the Rho GTPase pathways
(Xia and Land, 2007). The epigenetic regulation of Rho GTPases
by p53 may alter the F-actin organization. This pathway would
cause positive feedback loops (see Figure 2), which might
contribute to the chronic changes in the actin cytoskeleton of
cisplatin-resistant cells. In the cisplatin resistance, the barrier
function of the actin cytoskeleton might not be essential, because
the cells with disturbed F-actin exhibit the cisplatin resistance.
The membrane-associated signaling pathways regulated by the
F-actin dynamics may modulate the cisplatin resistance.

THE REGULATION OF VSOR ANION
CHANNELS BY ACTIN CYTOSKELETON
IN CISPLATIN-RESISTANT CELLS

We and others previously demonstrated that some cisplatin-
resistant cancer cells exhibited decreased activities of the VSOR

FIGURE 4 | The relationship between actin network, VSOR activity, and cisplatin-induced apoptosis. Cellular distribution of β-actin in human epidermoid carcinoma
KB cells (left), its cisplatin-resistant KCP-4 cells (middle), and KCP-4 cells treated with 400 nM trichostatin A (TSA) for 30 h (right) are shown in the upper lane.
Scale bars: 20 µm. The degrees of F-actin network, VSOR activity, and cisplatin-induced apoptosis in each cell group are indicated as ++: strongly positive, +:
positive, and –: negative. There is a close relationship between them.
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FIGURE 5 | The molecular mechanism of the cisplatin resistance in human epidermoid carcinoma cells. In the cisplatin-sensitive KB cells, cisplatin induces F-actin
polymerization, enhancing the activation of the VSOR anion channels and K+ channels. Their activation results in sustained cell shrinkage, apoptotic volume
decrease (AVD), leading to apoptosis. On the other hand, the cisplatin-resistant KCP-4 cells exhibit the disruption of F-actins. The deficiency of F-actin
rearrangement after cisplatin treatment attenuates the activation of the VSOR anion channels, causing the cisplatin resistance. KCP-4 cells treated with trichostatin A
(TSA) shows clear F-actins, recovering the VSOR anion channel activities and its cisplatin sensitivity.

anion channels compared with their parent cells sensitive to
cisplatin (Lee et al., 2007; Poulsen et al., 2010; Min et al.,
2011). In the cisplatin-resistant KCP-4 cells, interestingly, the
downregulation of the VSOR anion channels was associated
with the disruption of F-actin but not the expression of LRRC8
members (Shimizu et al., 2020). Additionally, the inhibition
of actin cytoskeleton dynamics by β-actin knockdown or
cytochalasin D treatment in the parent KB cells decreased the
VSOR anion channel currents and suppressed cisplatin-induced
apoptosis. Intriguingly, treatment of KCP-4 cells with an HDAC
inhibitor trichostatin A, which promotes gene transcription,
induced a marked increase of β-actin. The KCP-4 cells exposed
to trichostatin A exhibited clear F-actin and recovered the
VSOR anion channel activities, resulting in the restoration of
cisplatin sensitivity (Figure 4: Lee et al., 2007; Shimizu et al.,
2020). These results suggest that the defect of the VSOR anion
channel activities by impaired F-actin dynamics contributes to
the cisplatin resistance. Figure 5 illustrates how the VSOR anion
channel modulates the sensitivity to cisplatin in KB and KCP-
4 cells. As described above, the VSOR anion channels play

essential roles in apoptotic induction. The dysfunction of the
VSOR anion channels would decrease the cisplatin influx and
suppress initial cell shrinkage during apoptosis, leading to the
cisplatin resistance.

DISCUSSION/CONCLUSION

The cisplatin resistance of cancer cells is one of the therapeutic
problems. In this review, we summarized the roles of the actin
cytoskeleton and membrane transporters in cisplatin-induced
apoptosis and the cisplatin resistance. Figure 2 indicates the
proposed signaling pathways in cisplatin-induced apoptosis.
Cisplatin generates oxidative stress and modulates F-actin
dynamics, resulting in the activation of the VSOR anion channels.
The following sustained cell shrinkage is reported to activate
the stress-responsive MAPK cascade for the apoptotic induction
(Hasegawa et al., 2012). Cisplatin also induces DNA damage by
cross-linking or in response to generated oxidative stress (Salehi
et al., 2018). The DNA damage activates a transcriptional factor
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p53, which causes the subsequent MAPK phosphorylation to
induce apoptosis. This p53-mediated MAPK activation would be
mediated by the accumulation of ROS (Shi et al., 2014). Besides,
the increased activity of MAPK triggers further activation of
p53 (Yue and López, 2020). On the other hand, the p53
activation would regulate the F-actin dynamics via the Rho
GTPase activities (Xia and Land, 2007; Rebillard et al., 2010).
These signals create positive feedback loops. Thus, the signal
cascade induced by cisplatin would be complex.

Many mechanisms involved in reduced intracellular
cisplatin accumulation, increased DNA damage repair, and
inactivation of the apoptotic signaling pathway contribute to
the cisplatin resistance. We here propose that the regulation
of membrane transporters by the actin cytoskeleton dynamics
has a significant role in the cisplatin resistance. The state of
F-actin may not be critical, because some cisplatin-resistant
cancer cells have different states of the actin cytoskeleton.
The impaired F-actin dynamics may modulate the expression
and function of membrane transporters carrying cisplatin.
Several cisplatin-resistant cancer cells showed decreased
activities of the VSOR anion channels. The actin cytoskeleton
organization would contribute to the functional defect of
the VSOR anion channels. However, we do not know

how impaired actin dynamics modulate the VSOR anion
channel activities in the cisplatin-resistant cancer cells. Further
understandings of the relationship between F-actin dynamics
and the VSOR anion channel function would be attractive.
The VSOR anion channel is responsible for the early events
of apoptosis, such as the cisplatin influx and the sustained
cell shrinkage AVD. Given that reduced activities of the
VSOR anion channels closely correlate with the cisplatin
resistance of cancer cells, the VSOR anion channels may
be one of the potential therapeutic targets to overcome the
cisplatin resistance.
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