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ABSTRACT: The ’escape from flatland’ concept has gained
significant traction in modern drug discovery, emphasizing the
importance of three-dimensional molecular architectures, which
serve as saturated bioisosteres of benzenoids. Bicyclo[1.1.0]butanes
(BCBs), known for their high ring strain and numerous reactivities,
offer a simple yet effective method for synthesizing these bicyclic
frameworks. Although (3 + 2) annulations involving BCBs have
been extensively studied, the 1,3-dipolar cycloaddition of BCBs leading to (3 + 3) annulation has received limited attention. Herein,
we report the Lewis acid-catalyzed 1,3-dipolar cycloaddition of BCBs with isatogens allowing the synthesis of biologically relevant
tetracyclic 2-oxa-3-azabicyclo[3.1.1]heptanes. Moreover, the reaction can be performed in a one-pot process by the in situ
generation of isatogens from 2-alkynylated nitrobenzenes. Additionally, preliminary mechanistic and photophysical studies of the (3
+ 3) annulated products and experiments toward the asymmetric version of this reaction are also provided.
KEYWORDS: bicyclic scaffolds, (3 + 3) annulation, Lewis acid catalysis, strain release chemistry, nitrones, indoxyls

■ INTRODUCTION
From several years, chemists have been enthralled by the
concept of “escape from flatland”, igniting significant interest
and exploration. Traditionally, planar aromatic ring systems
have been ubiquitous in drug discovery endeavors.1−3 Thus,
the utilization of C(sp3)-rich three-dimensional (3D) scaffolds
as bioisosteric replacements for planar aromatic ring systems
has demonstrated remarkable benefits by replacing aromatic
rings with saturated bicyclic frameworks.4−7 The introduction
of these saturated bicyclic frameworks not only influences the
pharmacokinetic properties but also leads to enhanced
potency, improved solubility, high lipophilicity, and increased
metabolic stability of the resulting compounds.1−3 Therefore,
there is a resurgence of interest in developing synthetic
methods for the efficient construction of these coveted 3D
scaffolds. One of the prevalent strategies for the synthesis of
bicyclic scaffolds is the utilization of bicyclo[1.1.0]butanes
(BCBs) as the reactive precursors.8−13

Recently, the utilization of BCBs has gained prominence for
constructing bicyclic scaffolds due to their remarkable
reactivity, compact structure, and high strain energy (66.3
kcal/mol). BCBs enable the synthesis of a diverse range of
bicyclic hydrocarbon scaffolds, facilitating the imitation of
ortho-, meta-, and para-disubstitution patterns found in
benzene derivatives (Scheme 1a).8−16 One of the predominant
modes of reactivity demonstrated by BCBs is their
participation in cycloaddition reactions, facilitating the
construction of intricate bicyclic scaffolds. The strain-release-
driven (3 + 2) annulations have been the focal theme of

research among these cycloaddition processes, particularly for
their utility in synthesizing bicyclo[2.1.1]hexane structures. In
this field, significant progress was made independently by
Glorius and group17 and Brown and group,18 who discovered
methods for intermolecular (3 + 2) annulation between
alkenes and BCBs using photocatalysis. Adding to these
advancements, Li and group19 and Wang and group20

demonstrated an innovative approach using a pyridine-boryl
radical system to catalyze the formal (3 + 2) annulation of
alkenes with BCBs.
Recent advances in BCB chemistry have primarily focused

on photocatalysis- and radical-based methods. However, Lewis
acid catalysis has emerged as a straightforward yet effective
approach for facilitating annulations involving BCBs. Leitch
and group pioneered this area by introducing Lewis acid
catalysis for the formal (3 + 2) annulation between N-
arylimines and BCBs, resulting in the formation of
azabicyclo[2.1.1]hexanes (Scheme 1b).21 Moreover, Studer
and group applied a similar Lewis acid-catalyzed strategy to
demonstrate the formal (3 + 2) annulation of ketenes with
BCBs, resulting in bicyclo[2.1.1]hexanes, thus further expand-
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ing the scope of this approach.22 In addition, Glorius and
group showed that aldehydes could also serve as coupling
partners in the formal (3 + 2) annulation of BCBs.23 In parallel
developments, Deng and Feng independently reported the
dearomative (3 + 2) annulation of indoles with BCBs,
catalyzed by Lewis acids, to synthesize bicyclo[2.1.1]-
hexanes.24,25

In addition to the (3 + 2) annulation of BCBs for the direct
access to bicyclo[2.1.1]hexanes, strategies for the construction
of bicyclo[3.1.1]heptane (BCHep) frameworks using BCBs
under photocatalysis and Lewis acid catalysis have been
known.26−31 One of the effective approaches for the synthesis
of BCHeps involves the reaction of 1,3-dipoles with BCBs.
However, 1,3-dipolar cycloaddition with the central C−C
bond of BCB for the synthesis of hetero-BCHeps has received
only limited attention. One of the seminal reports, by Deng
and co-workers,32 describes a formal 1,3-dipolar cycloaddition
between BCBs and nitrones (Scheme 1c).32−40 It is worth
noting that the heteroatom-incorporated bicyclic scaffolds
often exhibit favorable properties compared to their all-carbon
counterparts.41,42 Consequently, there is growing interest
among chemists in developing efficient methodologies for
synthesizing these heteroatom-substituted bicyclic molecules.
While exploring suitable 1,3-dipoles, we encountered the

utilization of isatogens as dipoles in dipolar cycloaddition

reactions43−45 and observed the tolerance under Lewis acid
conditions.46,47 Herein, we envisioned the Lewis acid-catalyzed
1,3-dipolar cycloaddition of isatogens with BCBs, a strategy
that could furnish a variety of intricate tetracyclic indoxyl
derivatives via a (3 + 3) annulation (Scheme 1d).48−51 The
significance of this approach is underscored by the prevalence
of the indoxyl core in numerous natural alkaloids, many of
which demonstrate a wide range of medicinal properties
(Scheme 1e).52−55 These structures have also found
applications in fluorescence sensing technologies,56 high-

Scheme 1. Bicyclic Scaffolds as Benzene Bioisosters, BCBs in Cycloaddition Reactions, and Importance of the Indoxyl Core

Scheme 2. Identification of the Suitable BCB Substrate

Table 1. Optimization of the Reaction Conditions

entry variation of the initial conditionsa yield of 7a (%)b

1 none 77
2 Yb(OTf)3 instead of Sc(OTf)3 18
3 Bi(OTf)3 instead of Sc(OTf)3 28
4 Cu(OTf)2 instead of Sc(OTf)3 55
5 TfOH instead of Sc(OTf)3 49
6 DCE instead of CH2Cl2 76
7 toluene instead of CH2Cl2 62
8 THF instead of CH2Cl2 11
9 1.5 equiv of 4a instead of 1.2 equiv 86
10c 0 °C to rt instead of 30 °C 75
11c 5 mol % of Sc(OTf)3 91(88)

aInitial conditions: 1a (0.10 mmol), 4a (0.12 mmol), Sc(OTf)3 (10
mol %), CH2Cl2 (2.0 mL), 30 °C for 2 h. bThe 1H NMR yield of the
crude products was determined using 1,3,5-trimethoxybenzene as the
internal standard and the isolated yield was given in parentheses. c1.0
equiv of 1a, 1.5 equiv of 4a, CH2Cl2 (0.05 M).
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lighting their versatility in both medicinal chemistry and
materials science.

■ RESULTS AND DISCUSSION
The preliminary studies were focused on finding a suitable
BCB substrate for this 1,3-dipolar cycloaddition. First, phenyl
ester-substituted BCB 2a was treated with the isatogen 1a in
the presence of Sc(OTf)3 and CH2Cl2 as solvents (Scheme 2).
However, the expected product 5a did not form; instead, BCB
was decomposed to the cyclobutene derivative. Then, phenyl
ester BCB was changed to pyrazole-substituted BCB 3a, but
the desired product 6a was still not formed. Interestingly, when
pyrazole BCB was replaced with monosubstituted ketone BCB

4a, the anticipated product 7a was formed in 77% isolated
yield. Hence, the optimization studies were then conducted
using keto BCB 4a.57,58

When the isatogen 1a was treated with BCB 4a in the
presence of 10 mol % Sc(OTf)3 and 2.0 mL of CH2Cl2 at 30
°C for 2 h, the desired product 7a was obtained in 77% yield
(Table 1, entry 1). Variations of the different Lewis acid
catalysts did not enhance the yield of 7a (Table 1, entries 2−
4). Also, employing TfOH as the catalyst resulted in the
formation of 7a in 49% yield (Table 1, entry 5). The solvent
screening indicated that DCE afforded 7a in comparable yields,
while toluene and THF furnished 7a in reduced yields (entries
6−8). When the reaction was performed using 1.5 equiv of 4a,
the product 7a was formed in an improved yield of 86% (entry

Scheme 3. Substrate Scope of the 1,3-Dipolar Cycloaddition of Isatogens with BCBsa

aGeneral conditions: 1 (0.2 mmol), 4 (0.3 mmol, 1.5 equiv), Sc(OTf)3 (5 mol %), CH2Cl2 (4.0 mL), 30 °C for 2 h. Yields of the isolated products
are given.
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9). Notably, initiating the reaction at 0 °C and then warming
to 30 °C was not helpful (entry 10). Interestingly, performing
the reaction using 5 mol % Sc(OTf)3 instead of 10 mol %
afforded the desired product 7a in 91% yield (entry 11). It is
likely that a higher concentration of Sc(OTf)3 leads to the
conversion of BCB to the cyclobutene derivative. Hence, entry
11 was taken as the optimized condition, which was used for
the substrate scope evaluation.59,60

With the identified reaction conditions in hand, the substrate
scope of this 1,3-dipolar cycloaddition reaction of isatogens
with BCBs was investigated. Initially, we examined the
compatibility of various isatogen derivatives 1 with BCB 4a
(Scheme 3). Isatogens bearing different substitutions at the 4-
and 5-positions of the benzene ring demonstrated efficacy
under the optimized conditions, affording moderate to good
yields of the tetracyclic indoxyl products (7a−7e). The
structure of 7a was confirmed by X-ray analysis of the
crystals.61 Various isatogens possessing electron-releasing,
electron-neutral, or electron-withdrawing groups at the 6-
position of the ring reacted well to give the anticipated
products in good yields (7f−7i). Subsequently, we investigated
the influence of the aryl moiety at the 2-position of isatogen.
Isatogens with various para-substituted aryl moieties at the 2-
position proved to be viable substrates under the present
conditions, yielding the desired products in moderate to high
yields (7j−7o). Both meta- and ortho-substituted aryl moieties
were smoothly engaged in the 1,3-dipolar cycloaddition,
delivering the expected products in good yields (7p−7s). In
addition, not only the phenyl moiety but also the 2-naphthyl-
and 2-thienyl-derived isatogens delivered the anticipated
product in good yield (7t, 7u). Furthermore, the presence of
alkyl substitution at the 2-position of the isatogen did not alter
the product formation (7v, 7w).
The scope of the reaction was then explored by employing

variously substituted BCBs such as 4. In addition to 2-
naphthyl-substituted keto BCB 4a, 1-naphthyl-substituted BCB
also furnished the 1,3-dipolar cycloadduct 7x in 73% yield.
Various keto-containing BCBs, featuring substitutions at para-
and meta-positions on the phenyl ring, demonstrated
effectiveness as substrates for this (3 + 3) annulation reaction
(7y−7ai). Moreover, keto BCBs with a disubstituted aryl
moiety or heteroaryl ring afforded the tetracyclic indoxyl
product in good yields (7aj, 7ak). Furthermore, butyl-
substituted BCB also yielded the desired cycloaddition product
7al in 54% yield. Gratifyingly, when the reaction was
performed with 1,3-disubstituted BCB ketones bearing aryl
and alkyl moieties, the (3 + 3) annulation products were
formed in good yields (7am−7ap), thus expanding the scope
of the present 1,3-dipolar cycloaddition.
Interestingly, this Lewis acid-catalyzed 1,3-dipolar cyclo-

addition of BCB can also be done using a one-pot strategy;
thereby, the need to isolate the isatogen substrates can be
avoided. The isatogens are typically prepared from the Au-
catalyzed cycloisomerization of 2-nitroalkynes 1′ and are
known for their in situ trapping in cycloaddition reac-
tions.43−45,62,63 This one-pot process allows direct access to
tetracyclic indoxyl derivatives from 2-nitroalkynes 1′ employ-
ing BCBs 4 (Scheme 4). When nitroalkyne 1a′ was treated
with BCB 4a under the one-pot reaction conditions, the
corresponding tetracyclic product 7a was formed in 55% yield.
Thereafter, the differently substituted 2-nitroalkynes were
examined, and in all cases, the reaction furnished the desired (3
+ 3) product in moderate yields (7k, 7t, 7u). Later, this one-

pot strategy was extended with the variation on BCBs with
electronically different aryl groups, and in all cases, the
corresponding target tetracyclic indoxyl products were formed
in moderate yields (7ac, 7ag, 7ak).
This 1,3-dipolar cycloaddition involving BCB is not only

limited to isatogens as 1,3-dipoles but can also be extended to
other cyclic nitrones, which performed well under the
optimized reaction conditions to give the anticipated products
in good yields (7aq, 7ar) (Scheme 5). Also, the acyclic nitrone

delivered the desired (3 + 3) annulation product 7as in 62%
yield. Moreover, the isatin-derived keto-nitrones also reacted
with BCB 4a under the optimized conditions to furnish the
desired (3 + 3) annulated products 7at and 7au in 95 and 77%
yields, respectively.
Given the fact that BCBs are a distinct class of donor−

acceptor (D−A) cyclopropanes with a significantly higher
strain energy compared to typical D−A cyclopropanes (27
kcal/mol), they often display similar reactivity to D−A
cyclopropanes in many reactions.64−68 To explore this
similarity, an intermolecular competition experiment was
conducted between BCB 4a and cyclopropane 8a with the
isatogen 1a under Lewis acid conditions (Scheme 6). When

Scheme 4. Reaction of In Situ-Generated Isatogens with
BCBs

Scheme 5. Reaction with Other Cyclic/Acyclic Nitrones
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the reaction was performed under optimized conditions and
quenched after 15 min, the (3 + 3) annulated product 7a from
BCB 4a was obtained in 43% yield, while the product 9a from
D−A cyclopropane 8a was formed in only ∼3% yield. After 30
min, the yields of 7a and 9a were 69 and 6%, respectively.
These findings demonstrate that BCBs react ∼10 times faster
than D−A cyclopropanes when treated with isatogens, likely
due to their higher strain energy.
Moreover, to examine the substituent effect for this 1,3-

dipolar cycloaddition reaction, a Hammett analysis69 was done
by calculating the reaction rates for individual substrates with
different para-substituents on the aryl moiety present at the 2-
position of isatogen (Figure 1a). Kinetic studies revealed that
isatogens bearing 4-OMe or 4-Me groups at the aryl moiety at
the 2-position react faster than the 4-CO2Me- or 4-Cl-
substituted ones. A negative linear correlation was observed
when log(kX/kH) was plotted against σ, indicating a linear free-
energy relationship (ρ = −0.6). This study likely is an
indication that a positive charge was formed in the transition

state during the cycloaddition process. A related negative
correlation was observed recently by Zheng and co-workers in
the reaction of BCBs with vinyl azides.30

Considering the potential of indoxyl-core-containing com-
pounds in fluorescence sensing applications,56 we explored the
photophysical properties of selected indoxyl-fused
bicyclo[3.1.1]heptane derivatives (Figure 1b−d). These
compounds exhibited significant fluorescence in CHCl3
under 365 nm ultraviolet (UV) light irradiation. The UV−
visible (UV−vis) absorption and emission spectra of these
compounds in CHCl3 revealed that varying the substituent
patterns on such tetracyclic indoxyl derivatives allowed fine-
tuning of the corresponding emission maximum wavelengths.
To showcase the synthetic application of the present

methodology, scale-up synthesis and synthetic transformations
of 7a were carried out (Scheme 7). The tetracyclic indoxyl
derivative 7a was obtained in 87% yield through the 1,3-dipolar
cycloaddition reaction performed on 2.0 mmol, demonstrating
the scalability of the present reaction. Treatment of 7a with
LiAlH4 resulted in the reduction of both keto groups to afford
secondary alcohol containing the tetracyclic indoxyl derivative
10a in 63% yield as a single diastereomer. Selective
monobromination of the carbocyclic ring of indoxyl 7a was
accomplished using N-bromo succinimide (NBS) under mild
conditions to afford the bromo derivative 11a in 92% yield.
Interestingly, hydrogenation of 7a using H2 gas in the presence
of Pd/C led to the cleavage of the N−O bond, yielding the
trisubstituted cyclobutane derivative 12a in 71% yield as a
single diastereomer. Treatment of 12a with an aryne generated
from the triflate precursor 13 using KF and 18-crown-6
resulted in a smooth O-arylation to furnish 14a in 59% yield.

Scheme 6. Competition Experiment between BCB and DA-
Cyclopropane

Figure 1. Hammett analysis and photophysical studies.
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Subsequently, attempts were made to develop an asym-
metric version of this newly established 1,3-dipolar cyclo-
addition. Given the utilization of N-oxide ligands with Lewis
acids in asymmetric catalysis,65,66 experiments were performed
to develop the asymmetric (3 + 3) annulation. Initially, when
the isatogen 1a was treated with BCB 4a in the presence of
Sc(OTf)3 and the cyclohexyl amine-derived N-oxide ligand,
the expected tetracyclic indoxyl product 7a was obtained in
45% yield with a 72:28 enantiomer ratio (er) (Scheme 8).
Further attempts to improve the yield and enantioselectivity of
the tetracyclic indoxyl product were unsuccessful.

■ CONCLUSIONS
In conclusion, we have demonstrated the Lewis acid-catalyzed
1,3-dipolar cycloaddition of BCBs with isatogens, resulting in
the formation of biologically significant tetracyclic indoxyl
derivatives.70 The reaction is operationally straightforward,
proceeds smoothly under mild conditions, and shows good
functional group compatibility with a broad scope. The
versatility of this methodology can be extended to other cyclic
and acyclic nitrones. Additionally, the reaction was successfully
carried out from 2-nitroalkynes and BCBs in a one-pot process.
Preliminary studies toward asymmetric 1,3-dipolar cyclo-
addition were also performed. Product functionalizations
were carried out to illustrate the synthetic utility of this
methodology. Efforts to further increase the enantioselectivity

of the asymmetric 1,3-dipolar cycloaddition are currently
ongoing in our laboratory.

■ METHODS

General Procedure for the Lewis Acid-Catalyzed
1,3-Dipolar Cycloaddition of BCBs with Isatogens
To an oven-dried screw-capped test tube equipped with a magnetic
stir bar, Sc(OTf)3 (0.005 g, 0.01 mmol) was added inside the
glovebox. Then, isatogens 1 (0.2 mmol) and 4.0 mL of CH2Cl2 were
added outside the glovebox under a nitrogen atmosphere. After that,
BCBs 4 (0.3 mmol) were added. Then, the reaction mixture was
stirred for 2 h at 30 °C. After 2 h, the solvent was evaporated under
reduced pressure, and the crude residue was preadsorbed on silica gel
and purified by flash column chromatography on silica gel (petroleum
ether-EtOAc as the eluent) to afford 7 in good to excellent yields.
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