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Abstract. The tyrosine kinase called pp125 FAK is be- 
lieved to play an important role in integrin-mediated 
signal transduction, pp125 FAK is associated both func- 
tionally and spatially with integrins, which are the cell 
surface receptors for extracellular matrix components. 
Although the precise function of pp125 FAK is not 
known, two possibilities have been proposed: pp125 yAK 
may regulate the assembly of focal adhesions in spread- 
ing or migrating cells, or pp125 FAK may participate in a 
signal transduction cascade to inform the nucleus that 
the cell is anchored. To test these models in living cells, 
a peptide representing the focal adhesion kinase 
(FAK)-binding site of the 131 tail was coupled to carrier 

protein and injected into cultured cells to competitively 
inhibit the binding of pp125 FAK to endogenous integrin, 
thus inhibiting activation of pp125 FAK on a cell-by-cell 
basis. In addition, an antibody directed against an 
epitope adjacent to the focal adhesion targeting se- 
quence on pp125 FAK was microinjected, as an alterna- 
tive means of inhibiting pp125 FAK activation. It was ob- 
served that when rounded cells were injected with 
either the integrin peptide or the anti-FAK antibody, 
the cells rapidly began to apoptose, within 4 h after in- 
jection. These results indicate that pp125 FA~ may play a 
critical role in suppressing apoptosis in fibroblasts. 

T rIE focal adhesions of cultured cells have been 
known for decades as sites of tight structural attach- 
ment of the cell membrane to the underlying extra- 

cellular matrix (ECM). 1 In addition, the focal adhesion has 
become recognized as an important site of signal transduc- 
tion (for review see Damsky and Werb, 1992; Schwartz, 
1992; Juliano and Haskill, 1993; Lo ~nd Chen, 1994; Clark 
and Brugge, 1995). Information that ~is conveyed from the 
outside to the inside of the cell at the focal adhesion can 
affect complex cell behaviors such as migration, prolifera- 
tion, differentiation, and cell survival. 

Integrins are the transmembrane receptors for the 
ECM, and, as such, they play a critical role in both the cell 
attachment and the signal transduction functions of the fo- 
cal adhesions. Integrins are requisite heterodimers, and 
considerable effort has been focused on assigning func- 
tional roles to the integrin 0t and 13 subunits. Current evi- 
dence strongly suggests that the 13 subunit is principally re- 
sponsible for targeting integfins to the focal adhesion (for 
review see Sastry and Horwitz, 1993). However, both of 
the integrin subunits appear to play a role in integrin- 
mediated signal transduction. Binding of integrins to the 
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ECM results in the activation of a number of biochemical 
pathways that could convey information to the inside of 
the cell. These include increased intracellular pH, tran- 
sient Ca ++ influx, and increased activity of specific ki- 
nases, including the tyrosine kinase pp125 FAK (for review 
see Clark and Brugge, 1995). 

pp125 FAK is associated both functionally and spatially 
with integrins (for review see Otey, 1996). The tyrosine 
phosphorylation and the kinase activity of pp125 FAK are 
up-regulated when integrins bind to the extracellular ma- 
trix (Guan and Shalloway, 1992; Burridge et al., 1992; Korn- 
berg et al., 1992), but the activation of pp125 FAK is depen- 
dent upon clustering of the integrins (Guan et al., 1991; 
Kornberg et al., 1991; Pelletier et al., 1995), not simply oc- 
cupation of the ligand-binding site. This suggests that a 
conformational change in integrin is involved in activating 
pp125 FAs:. The precise downstream function of pp125 FAK 
is not known, but two possibilities have been proposed: 
pp125 FAK may regulate the assembly of focal adhesions in 
spreading or migrating cells, or pp125 FAK may participate 
in a signal transduction cascade to inform the nucleus that 
the cell is anchored to the extracellular matrix, thus sup- 
pressing apoptosis. 

Recently, the integrin 13 subunit was shown to bind di- 
rectly to pp125 FAK in vitro (Schaller et al., 1995). The map- 
ping of a binding site for pp125 FAt< within the 13-integrin 
cytoplasmic tail has suggested a novel way in which to in- 
vestigate the function of pp125 FAK in living cells. A pep- 
tide corresponding to this sequence was generated for in- 
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jection into living fibroblasts. We reasoned that the short 
integrin peptide would occupy the integrin-binding site on 
pp125 FAK, but it would not convey the conformationally 
dependent activation signal to pp125 FAx. Thus, through 
competition with endogenous integrin, the peptide would 
specifically interfere with the integrin-dependent activa- 
tion of pp125 FAK. In this paper we report that rounded 
cells injected with this peptide rapidly begin to apoptose 
within 4 h after injection. These results indicate that 
pp125 FAK plays a critical role in suppressing apoptosis in 
fibroblasts. 

Materials and Methods 

Cell Culture 
Primary cultures of fibroblasts were isolated from lO-d-old chicken em- 
bryos. Briefly, the head, wings, limbs, and internal viscera were removed, 
and the remaining embryonic tissue was incubated in trypsin-EDTA solu- 
tion (GIBCO BRL, Gaithersburg, MD) for 15 rain at 37"C. Tissue was dis- 
persed by trituration, and then diluted with complete medium (DME 
supplemented with 10% FBS, 100 U/mi penicillin, and 100 g.g/ml strepto- 
mycin) to inhibit further digestion. The isolated cells were collected by 
centrifugation, resuspended in complete medium, transferred to tissue- 
culture dishes, and maintained in complete medium at 37"C. Chicken em- 
bryo fibroblasts (CEFs) from the second to twelfth passage were used in 
all experiments. 

Microinjection and Immunofluorescence 
Synthetic peptides designated SP1 (CKLLMIIHDRREFA), SP2 (CFAK- 
FEKEKMNAKW), SP3 (CKWDTGENPIYKSA), SP4 (CAV'ITVVNP- 
KYEGK), and SCR (CDFIMEKHARRIL) were either obtained from 
the Protein Chemistry Laboratory (University of North Carolina at Chapel 
Hill) or purchased from Quality Controlled Biocbemicals (Hopkinton, 
MA). Methods of synthesis and purification were described previously 
(Otey et al., 1993). Peptides were synthesized with an NH2-terminal cys- 
teine for use in coupling to carrier protein and were conjugated to BSA at 
a ratio of 70-100 mol of peptide per tool of BSA using a heterobifunc- 
tional coupling agent (suifo-MBS; Pierce Chemical Co., Rockford, IL). 
The peptide-BSA conjugates were dialyzed into injection buffer (75 mM 
KCI, 10 mM potassium phosphate buffer, pH 7.5) and concentrated to N2 
mg/ml using a Centricon-30 (Am.icon Corp., Danvers, MA) apparatus. An 
mAb to pp125 vAx, 2A7 (a gift of Dr. J. Thomas Parsons, University of Vir- 
ginia), and an isotype-matched mAb to an unrelated chromosomal pro- 
tein, 3F3 (gift of Michael Campbell and Dr. Gary Gorbsky, University of 
Virginia), were purified from ascites fluid on a recombinant protein G col- 
uum or on a protein A-Sepharose column, concentrated to 2 mg/ml, and 
dialyzed into microinjection buffer. Immediately before injection, the 
peptides and antibodies were centrifuged and filter sterilized. Fab frag- 
ments of the 2A7 monoclonal were generated from column-purified anti- 
body on a fiein column, using the Immnnopure IgG 1 Fab and F(ab')2 
preparation kit (Pierce Chemical Co.) and following the protocol pro- 
vided by the manufacturer. Purified Fab fragments were concentrated and 
dialyzed as described above. 

CELLoeate eoverslips (Eppendorf, Madison, WI), which are etched 
with a lettered-grid and used to map the injected cells, were coated with 
50 I~g/ml human plasma fibronectin (Sigma Chemical Co., St. Louis, MO). 
Cultured CEFs were trypsinized, resuspended in complete media, washed 
twice in serum-free media, and plated onto the coated coverslips in serum- 
free medium. The CEFs were injected with synthetic peptides or antibod- 
ies within 15 rain after plating, so that they were attached but still round at 
the time of injection. Injeetious were performed using either an Eppen- 
dorf microinjector 5246 connected to a mieromanipulator and inverted IM 
35 microscope (Carl Zeiss Inc., Tbornwood, NY), or an Eppendorf Trans- 
jector 5246 and Mieromanipulator 5171 connected to a Zeiss Axiovert 135 
microscope. After injection, the cells were either returned to the incuba- 
tor for 4-6 h, or one field was videotaped continuously for 6 h, while the 
cells were maintained at 3"/°C on a heated microscope stage. The cells 
were then fixed (4% formaldehyde in PBS) and labeled as described below. 
For the SP1 and SCR peptides, double-blind injections were performed. 

For experiments on spread cells, CEFs were plated onto fibronectin- 

coated, CELLocate coverslips in complete media and allowed to spread. 
After 2 h, the complete medium was replaced with serum-free medium, 
and the cells were injected with either the peptide or mAb. Injected cells 
were returned to the incubator for 4-6 h, and then fixed (4% formalde- 
hyde) and labeled (see below). 

To analyze the stress fiber formation in injected cells, cells were fixed 
and labeled with rhodamine-conjugated phalloidin (Sigma Chemical Co.). 
Apoptosis of injected cells was detected with the ApopTag in situ detec- 
tion kit according to the protocols described by the manufacturer (Oncor, 
Gaithersburg, MD). Labeled cells were observed on a microscope (E. 
Leitz, Inc., Rockleigh, N J) equipped with differential interference con- 
trast and epifinorescence optics. 

Scanning EM 
CEFs were injected with the SP1 or SCR peptide, as described above. At 
2-4 h after injection, the cells were fixed in glutaraldehyde, critical point 
dried, shadowed with gold palladium, and observed in a scanning electron 
microscope (6400, JEOL USA, Peabody, MA). 

Flow Cytometry 
Single-cell suspensions of N107 CEFs were incubated in either complete 
medium or serum-free medium at 370C. Aliquots of 106 cells from each ex- 
perimental condition were removed at hourly intervals, washed in cold 
PBS, and fixed for 15 min in 1% formaldehyde in PBS. The cells were 
washed in cold PBS, postfixed in 70% ethanol at -20"C, washed again in 
PBS, and stained with the Apoptag in situ detection kit, following the di- 
rections provided by the manufacturer (Oncor). Flow cytometry analysis 
was performed on a FACScan ® flow cytometer (Becton Dickinson Immu- 
nocytometry Systems, Mountain View, CA). Data from 104 cells per sam- 
ple were collected and analyzed using LYSIS II software (Becton Dickin- 
son & Co.). 

Results 

Synthetic peptides representing slightly overlapping re- 
gions of the ~rintegrin cytoplasmic tail were generated 
(Table I). In vitro coprecipitation assays have shown that 
pp125 FAK binds directly to the [~1 cytoplasmic tail in the re- 
gion represented by the SP1 peptide (Schaller et al., 1995). 
A randomly ordered version of SP1, designated SCR, was 
generated for use as a control. The synthetic peptides were 
coupled to carrier protein and used for microinjection of 
single cells to determine if activation of pp125 FAK is re- 
quired for cells to spread and to assemble focal adhesions 
and stress fibers. 

Cells were plated onto fibronectin and injected while 
they were still rounded (i.e., within 15 rain after plating). 
Cells were maintained in serum-free medium during the 
course of the microinjection experiment to prevent the ac- 
tivation of pp125 FAK by serum factors. As shown in Fig. 1, 
cells that were injected with SP1 while rounded failed to 
spread by 4 h after injection (see arrows in b) and did not 
form stress fibers (c) or focal adhesions (data not shown). 
In contrast, neighboring uninjected cells on the same cov- 
erslip had fully developed stress fiber arrays by 4 h after 
injection. Cells that were injected while rounded with the 
control peptide spread normally (Fig. 1 e) and assembled 
both stress fibers (Fig. 1 f) and focal adhesions (data not 
shown) by 4 h after injection. 

In comparing the SPl-injected cells and their uninjected 
neighbors, it was noted that the nuclear morphology of the 
injected cells was condensed and lobular, which is charac- 
teristic of cells undergoing apoptosis. To determine if the 
SPl-injected cells were indeed becoming apoptotic, we 
used the criterion of DNA fragmentation, assayed with the 
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Table L Sequences of Short Peptides Den'ved from ~]-lntegrin Cytoplasmic Tail 

752 762 772 782 792 

~-KLLMIIHDRREFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKYEGK 
. 

SPI-CKLLMIIHDRREFA 

S P 2 - CFAFEKEKMNAKW 

SP3-CKWDTGENPIYKSA 

SP4-CAVTTVVNPKYEGK 

Four synthetic peptides (SP1-SP4) were genexated from the amino acid sequence of the full-length, [3j-integrin cytoplasmic domain (shown with residue numbers listed above). 
Each peptide was synthesized with an additional NH2-terminal cysteine residue (,) to facilitate coupling to a carrier protein. 

ApopTag in situ detection kit. ApopTag reagents fluores- 
cently label free DNA ends so that apoptotic nuclei are in- 
tensely stained. In addition, we were able to evaluate nu- 
clear morphology by phase microscopy for all of our 
injected and noninjected cells. As shown in Fig. 2, cells 
that had been injected with either SP1 or SCR peptide 
while still rounded were allowed to recover for 4 h, and 
then fixed and stained with the ApopTag kit. Injection of 
SP1 into rounded ceils resulted in both nuclear condensa- 
tion (Fig. 2 b) and strong ApopTag labeling (Fig. 2, a-c), 
while cells injected with SCR had normal nuclei that failed 
to stain with ApopTag (Fig. 2, d-f). Necrotic cells, such as 
the rounded cell located at the top of the field in Fig. 2 b, 
did not label with ApopTag reagents. 

To investigate more thoroughly the specificity of this ef- 
fect, cells were also injected with peptides SP2, SP3, and 

- i  

..... 

SP4. As shown in Table I, these peptides represent the 
membrane-distal regions of the 131 cytoplasmic tail. Previ- 
ously, these peptides were shown to have no binding activity 
for pp125 FAK in peptide-bead precipitation assays (Schaller 
et al., 1995). These three peptides were coupled to carder 
protein, injected into rounded CEFs, and stained with the 
Apoptag kit. As shown in Fig. 3, only the SP1 peptide in- 
duced a significant amount of apoptosis in the injected cells. 

A second criterion for identifying apoptotic cells is ex- 
tensive blebbing of the plasma membrane. Scanning EM 
was used to examine the membrane morphology of pep- 
tide-injected cells. Fig. 4 a shows an SPl-injected cell, 
which displays many small plasma membrane blebbs. Fig. 
4 b shows control injected cells, which had the same 
smooth, fully spread morphology at 4 h after injection as 
the uninjected cells in neighboring areas of the coverslip. 

Figure 1. Cultured chick embryo fibroblasts were injected while rounded with either the SP1 peptide (a-c) or the randomly scrambled, 
SCR peptide (d-f). In a, the cells marked by the arrows were injected with SP1. At 4 h after injection, these cells were stilI rounded (b, 
arrows) and did not contain actin stress fibers, as shown by rhodamine-phalloidin labeling (c, arrows). Neighboring uninjected cells 
spread normally and contained fully developed stress fibers. Cells injected with the SCR peptide (d, arrows) spread normally by 4 h af- 
ter injection (e, arrows) and contained a typical array of actin stress fibers (f, arrows). Bars: (a--c) 25 ~m; (d-f) 50 i~m. 
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Figure 2. Cells injected with SP1 while rounded became apoptotic. The cells marked by arrows in a were injected with SP1, fixed at 2 h 
after injection (b, arrows), and labeled with the ApopTag in situ detection kit. As shown in c, apoptotic nuclei are strongly fluorescent 
and condensed. In contrast, cells injected with control peptide (d, arrows) were spread at 2 h after injection, and their nuclei failed to la- 
bel with ApopTag (f). Bar, 25 ixm. 

As an alternative method of inhibiting pp125 FAK activa- 
tion, cells were microinjected with an mAb to pp125 FAK 
called 2A7. This antibody binds to the COOH-terminal re- 
gion of pp125 FAK, which contains the targeting sequence 
that is required for efficient recruitment of pp125 FAK to 
the focal adhesions. By injecting rounded cells with the 
2A7 antibody, we expect to interfere with pp125 FAK local- 
ization to sites that contain integrins, thus interfering with 
integrin-mediated activation of pp125 FAK. The results of 
the 2A7 injections were similar to the SP1 peptide experi- 
ments: cells injected with 2A7 while rounded exhibited the 
morphology that is typical of apoptotic fibroblasts (Bran- 
colini et al., 1995; Kulkarni and McCulloch, 1994) and had 
Apoptag-positive nuclei by 6 h after injection (Fig. 5, a and 
b), while cells injected with a control antibody to an unre- 
lated chromosomal protein spread normally and did not 
apoptose (Fig. 5, c and d). The same result was obtained 
when the cells were injected with Fab fragments generated 
from the 2A7 antibody (data not shown). 

We also asked if injection of the SP1 peptide or the 2A7 
anti-FAK antibody would cause fully spread cells to lose 
their adhesions and become rounded. CEFs were plated 
onto fibronectin, allowed to spread for 2 h, and injected 
with either the SP1 peptide or 2A7 antibody. As shown in 
Fig. 6, cells injected with SP1 after they were fully spread 
exhibited normal nuclear morphology (Fig. 6 a), main- 
tained normal actin stress fiber arrays (Fig. 6 b), and ex- 

hibited no detectable loss of adhesion. When these cells 
were labeled with ApopTag reagents, no signs of nuclear 
fragmentation were apparent (data not shown). Similarly, 
injection of 2A7 into spread cells had no detectable effect 
on cellular morphology or adhesion (data not shown). 

Our results suggest that activation of pp125 FAt via inte- 
grins is required for unspread fibroblasts to suppress the 
default pathway of apoptotic cell death. As there has been 
some question regarding the anchorage dependency of 
cultured fibroblasts, we used flow cytometry in combina- 
tion with Apoptag staining to determine if CEFs become 
apoptotic when held in suspension for periods of up to 13 h. 
These experiments were performed both in the presence 
or the absence of serum, to determine if serum factors 
might protect the cells from apoptosis. As shown in Fig. 7, 
44% of the fibroblasts became apoptotic by 13 h in the 
presence of serum, and 77% were apoptotic after 13 h in 
suspension in the absence of serum. These results indicate 
that primary chick embryo fibroblasts do undergo pro- 
grammed cell death when deprived of contact with the ex- 
tracellular matrix, and that factors present in serum may 
serve to protect the cells from the onset of apoptosis. 

D i s c u s s i o n  

Since the initial discovery and characterization of pp125 FAK 
(Guan et al., 1991; Schaller et al., 1992; Hanks et al., 
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Figure 3. The effect of peptide SPI is specific. Synthetic peptides 
SP1, SP2, SP3, and SP4 were coupled to carrier protein, injected 
into rounded CEFs, and analyzed with the ApopTag in situ de- 
tection kit. After injection of at least 100 CEFs with each peptide, 
only SP1 was shown to induce a significant amount of apoptosis 
(97%) in injected cells. 

1992), a number of different functions have been proposed 
for this unusual tyrosine kinase. The observation that 
newly spreading cells contained elevatedtevels of phos- 
photyrosine led to the suggestion that pp125 FAK might 
play a role-in focal adhesion assembly during ceil spread- 
ing. However, in one cell type (mouse aortic smooth mus- 
cle cells), pp125 FAK does not appear to be kinase-active 
when the cells are spreading and beginning to assemble fo- 
cal adhesions (Wilson et al., 1995). This argues that focal 
adhesion assembly is not strictly dependent upon pp125 FAK 
activation. In addition, fibroblast-like cells grown from ex- 
plants of a focal adhesion kinase (FAK) ( - )  mouse were 
able to spread in culture and to form focal adhesions and 
stress fibers (Ilic et al., 1995). Together, these data suggest 
that a role in focal adhesion assembly is not a universal or 
essential function of pp125 FAK. 

Recently, a potential role for pp125 FAK in the suppres- 
sion of apoptosis has been suggested. Epithelial and en- 
dothelial cells, both in vitro and in vivo, were observed to 
have an absolute requirement for attachment to the ECM 
(Meredith et al., 1993; Brooks et al., 1994; Frisch and Fran- 
cis, 1994; Re et al., 1994; Boudreau et al., 1995; Coueouvanis 

and Martin, 1995; Pullan et al., 1996). When integrin-ECM 
interactions are inhibited, these cells undergo apoptosis. 
This type of anchorage dependency has been named 
"anoikis" by Frisch and Francis (1994). Several lines of ev- 
idence suggest that signal transduction events downstream 
of integrin-ligand engagement are involved in suppressing 
apoptosis in anchored cells. For example, attachment of 
mammary epithelium to the ECM via integrins was shown 
to regulate expression of intedeukin-ll3 converting en- 
zyme, a protein associated with apoptotic cell death (Bou- 
dreau et al., 1995). In addition, Meredith et al. (1993) have 
shown that the addition of vanadate, an inhibitor of pro- 
tein tyrosine phosphatases; suppresses apoptosis in de- 
tached endothelial cells. Since activation of pp125 FAK is 
known to contribute to the phosphotyrosine activity asso- 
ciated with integrin-mediated attachment, Ruoslahti and 
Reed (1994) have suggested that pp125 FAK may be a key 
player in suppression of anoikis. This model gained sup- 
port from the recent results of Frisch et al. (1996), who 
showed that constitutive activation of pp125 FAK was suffi- 
cient to rescue MDCK cells from anoikis. Our data sup- 
port the hypothesis that activation of pp125 FAr via inte- 
grin engagement plays a critical role in the suppression of 
apoptosis. 

Injection into rounded cells of the SP1 peptide, but not 
SP2-SP4, resulted in the rapid onset of apoptosis. We can- 
not rule out the possibility that other molecules may be af- 
fected by SP1 injection, since a surprisingly large number 
of proteins have been shown to colocalize with integrins in 
living cells (Miyamoto et al., 1995). To date, however, 
pp125 FAK and paxillin are the only proteins that are be- 
lieved to have a direct physical interaction with the region 
of the 131 cytoplasmic tail represented by the SP1 peptide 
(Schaller et al., 1995). As an alternative approach for in- 
hibiting the activation of pp125 FAg in rounded CEFs, we 
also injected the cells with an anti-FAK mAb called 2A7. 
The 2A7 epitope has been mapped to a region of the 
pp125 FAK COOH terminus that is adjacent to the focal ad- 
hesion targeting sequence. Thus, injection of 2A7 into un- 
spread cells should specifically interfere with the efficient 
recruitment of pp125 FAK into nascent focal adhesions. Al- 
though the SPI peptide and the 2A7 antibody interfere 
with pp125 FAK activation through different mechanisms, 
injection of either reagent gave the same result: cells be- 
came apoptotic within hours. 

J 

Figure 4. Surface morphology 
of injected cells was examined 
as an alternative means for as- 
saying apoptosis. By scanning 
EM, SPl-injected cells were 
seen to display many small sur- 
face blebbs (g, arrow), while 
control injected cells had a 
normal, smooth surface mor- 
phology (h, arrow). Bar, 10 p~m. 
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Figure 5. Cultured chick embryo fibroblasts were injected with an mAb to pp125 FAK (2A7; a and b) or with a control antibody to an un- 
related protein (c and d). Cells injected while rounded with 2A7 were apoptotic by 6 h after injection (a and b). Some 2A7-injected cells 
were observed to extend many fine processes, as shown by the differential interference contrast image in a (arrows). Ceils injected while 
rounded with the control antibody spread normally, exhibited typical nuclear morphology (differential interference contrast image; c), 
and did not become apoptotic (d). Bar, 10 Ixm. 

The majority of cells injected with either the SP1 pep- 
tide or 2A7 antibody remained round and became apop- 
totic in 4--6 h. These results can be interpreted in two ways: 
(a) inactivation of pp125 FAK causes the cells to initiate an 
apoptotic program such that normal cell spreading is pre- 
vented; or (b) inactivation of pp125 FAK inhibits the cells 
from spreading, causing apoptosis. While it is not possible 
for us to distinguish between these mechanisms based 
upon results presented here, we have observed a subset of 
injected cells in which spreading occurs temporarily and is 
followed by rerounding and apoptosis (Hungerford, J., 

and C. Otey, unpublished observations). Future experi- 
ments in the laboratory will be directed toward under- 
standing why this occurs in only a subset of injected cells. 

Taken together, our results argue strongly that FAK 
plays a critical role in suppressing apoptosis. It appears 
that if signal transduction via pp125 FAK activation is pre- 
vented, either by interfering with recruitment of pp125 FAK 
to sites where integrins are localized or by inhibiting the 
binding of pp125 FAK to endogenous integrins through 
competition with a peptide, the default pathway is apop- 
totic death. When cells were allowed to spread fully before 

Figure 6. CEFs were allowed to spread completely and were then injected with either SP1 peptide or 2A7 mAb. Cells injected with SP1 
remained spread after 4 h (a), exhibited normal nuclear morphology (a), and maintained actin stress fibers, as labeled by FITC-eonju- 
gated phalloidin (b). Bar, 10 I~m. 
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Figure 7. To analyze anchorage dependency in CEFs, cells were 
maintained in suspension in the presence or absence of serum. 
Aliquots of cells from each experimental condition were analyzed 
for the presence of apoptotic nuclei by flow cytometry of Ap- 
optag-stained cells. CEFs underwent rapid apoptosis when de- 
prived of contact with the ECM, and the rate of apoptosis was in- 
creased in the absence of serum. 

injection with either the SP1 peptide or 2A7 antibody, 
they remained spread and did not become apoptotic. This 
result suggests that once pp125 FAK has been incorporated 
into the focal adhesion complex, the molecule may no 
longer be accessible to bind either the integrin peptide or 
the anti-FAK antibody. Alternatively, additional signaling 
pathways may be functioning in a fully spread cell to in- 
hibit cell death. 

Two recent studies investigating potential mechanisms 
for the cellular regulation of FAK activity have focused on 
the COOH-terminal  domain of FAK. Richardson and Par- 
sons (1996) overexpressed in chicken fibroblasts a trun- 
cated isoform of FAK (pp41/43FP'NK), which is identical to 
the COOH-terminal  domain of full-length FAK. They ob- 
served that the tyrosine phosphorylation of FAK was re- 
duced by FRNK overexpression, suggesting that FRNK 
might act as a competitive regulator of FAK. In cells over- 
expressing FRNK, a delay in cell spreading was also ob- 
served. Gilmore and Romer (1996) used single-cell micro- 
injection to introduce the COOH-terminal domain of FAK 
into cultured human umbilical vein endothelial cells (HUVEC) 
and observed a decrease in cell migration. Both of these 
results support a model in which FAK plays a role in the 
assembly of new focal adhesions. Neither study directly 
tested a role for FAK in suppressing apoptosis, although 
Gilmore and Romer  (1996) observed that in some of their 
experiments up to 40% of the microinjected cells detached 
or died within 24 h. 

Our results were surprising in that other researchers 
have reported that fibroblasts are not strongly anchorage 
dependent (Meredith et al., 1995; Frisch and Francis, 
1994). In addition, when antisense oligonucleotides were 
used to attenuate the expression of pp125 rAK in tumor 
cells, these cells lost their matrix attachment and became 
apoptotic, but no effect was observed in normal fibroblasts 
(Xu et al., 1996). However, it has been demonstrated that 
fibroblasts do apoptose under certain conditions such as 

serum deprivation (Kulkaini and McCulloch, 1994; Ish- 
izaki et al., 1995). Our data and that of others (Malik, R., 
and J.T. Parsons, manuscript in preparation) suggest that 
primary embryonic fibroblast8 are very susceptible to ap- 
optosis (anoikis) when held in suspension. Indeed, embry- 
onic fibroblasts are similar to epithelial cells and endothe- 
lial cells in that apoptosis is a default pathway: active 
suppression of apoptosis is essential for cell survival (Ish- 
izaki et al., 1995). Our flow cytometry data demonstrate 
that, in primary chick fibroblasts, anchorage to a substrate 
is an essential requirement for survival, but serum may 
help to protect unattached cells from undergoing apopto- 
sis for periods of several hours. 

In conclusion, our results suggest that events down- 
stream from the activation of pp125 FAK are required for 
anchorage-dependent cells such as fibroblasts to suppress 
apoptosi8. The current challenge is to understand the steps 
that occur between the integrin-mediated activation of 
pp125 FAz and the downstream effects in the nucleus. 
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