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Nomogram based on clinical and laboratory 
characteristics of euploid embryos using 
the data in PGT‑A: a euploid‑prediction model
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Abstract 

Background:  The evaluation of embryo morphology may be inaccurate. A euploid prediction model is needed 
to provide the best and individualized counseling about embryo selection based on patients and embryo 
characteristics.

Methods:  Our objective was to develop a euploid-prediction model for evaluating blastocyst embryos, based 
on data from a large cohort of patients undergoing pre-implantation genetic testing for aneuploidy (PGT-A). This 
retrospective, single-center cohort study included data from 1610 blastocysts which were performed PGT-A with 
known genetic outcomes. The study population was divided into the training and validation cohorts in a 3:1 ratio. The 
performance of the euploid-prediction model was quantified using the area under the receiver operating characteris-
tic (ROC) curve (AUC). In addition, a nomogram was drawn to provide quantitative and convenient tools in predicting 
euploid.

Results:  We developed a reliable euploid-prediction model and can directly assess the probability of euploid with 
the AUC (95%CI) of 0.859 (0.834,0.872) in the training cohort, and 0.852 (0.831,0.879) in the validation cohort, respec-
tively. The euploid-prediction model showed sensitivities of 0.903 and specificities of 0.578.

Conclusions:  The euploid-prediction model is a reliable prediction model and can directly assess the probability of 
euploid.
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Background
In vitro fertilization (IVF) has been a common infertility 
treatment for infertile couples. The selection of embryos 
for transfer has relied upon standard morphology grad-
ing as the first-line method [1]. As elective single embryo 
transfer (eSET) has been widely advocated, extending 
embryo culture to the blastocyst stage allows for better 
evaluation of the implantation potential of the embryo 
[2]. The high incidence of chromosome aneuploidy in 

human embryos is a major reason for implantation fail-
ure and miscarriage [3]. The prevalence of aneuploidy is 
greater earlier in gestation than live birth because chro-
mosomal abnormalities account for a large proportion of 
early miscarriage [4]. However, morphologic assessment 
cannot accurately ascertain the embryo’s chromosome 
status.

The application of trophectoderm biopsy and preim-
plantation genetic testing for aneuploidy (PGT-A) has 
recently been used worldwide to improve IVF outcomes. 
Indications for patients undergoing PGT-A include 
advanced maternal age, recurrent pregnancy loss, or 
recurrent implantation failure. Trophectoderm biopsy of 
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5–10 cells is required to obtain embryonic genetic mate-
rial. One randomized controlled trial (RCT) showed a 
significant increase in ongoing pregnancy rates and live 
birth rates with the use of PGT-A than morphology alone 
[5].

With the use of various techniques, especially next-
generation sequencing (NGS), the sensitivity and resolu-
tion of copy number variation genome-wide have been 
increased [6]. However, a major limitation of PGT-A is 
invasive and time consuming and sophisticated in terms 
of operation [7]. Recent study showed time-lapse imag-
ing as a non-invasive approach for superior method of 
embryo selecting, however, this technology is not cheap 
[8]. Much attention has been focused on improving 
methods for morphological selection of embryos with 
high implantation potential.

Prediction models are developed by using the combi-
nation of features to help clinical decision-making [9]. 
However, in the context of euploidy embryo selection, 
the clinical application of the prediction model in IVF is 
limited because the algorithms usually do not combine 
comprehensive maternal and embryonic characteristics. 
In addition, most studies only evaluate embryos that 
were transferred, however, the implantation potential of 
embryos that were not transferred has been eliminated.

Given the previous findings, we hypothesized that mor-
phokinetic parameters could predict euploid embryos. 
This study combines both clinical and embryonic fea-
tures for euploid embryo prediction. Our study is based 
on the data from a large cohort of patients treated with 
PGT-A at the blastocyst stage. The objective of the study 
was to develop a nomogram based on clinical and labora-
tory characteristics that could predict the probability of 
euploid embryos.

Materials and methods
Study design and population
Institutional review board approval of the Northwest 
women’s and children’s hospital was obtained (number 
2021002). Patients undergoing PGT-A from April 2016 to 
June 2019 at the department of the assisted reproductive 
center of Northwest Women’s and Children’s Hospital 
were reviewed for inclusion in the dataset. 409 patients 
in 398 IVF cycles were included. A total of 1610 blasto-
cyst embryos met all inclusion criteria. Exclusion criteria 
included patients with no available embryos and oocyte 
recipients.

Ovarian stimulation and hCG trigger
The use of the protocol for ovarian stimulation was 
chosen based on the evaluation of the ovarian reserve 
tests including antral follicle count (AFC), basal FSH 
(bFSH), and anti-Mullerian hormone (AMH). The GnRH 

antagonist and GnRH agonist long protocols have been 
described elsewhere [10]. Briefly, for the GnRH antago-
nist protocol, recombinant follicle-stimulating hormone 
(rFSH) was started at 150 – 225 IU/day as gonadotro-
pin stimulation on day 2 of the menstrual cycle. The 
dose of rFSH could be adjusted up to a maximal dose 
of 450 IU/day according to ovarian response. 250 mg of 
GnRH antagonist was added when the dominant follicle 
exceeded 12–14 mm. For the GnRH agonist long proto-
col, patients received 0.05–0.1 mg of GnRH agonist from 
the mid-luteal phase of the previous cycle until the hCG 
trigger. After menstrual bleeding, when the pituitary 
desensitization had reached, gonadotropin stimulation 
was started as GnRH antagonist protocol. When two or 
more leading follicles reached 17 mm, hCG triggering for 
final oocyte maturation was performed. Oocyte retrieval 
was performed 36 h after the hCG trigger.

Insemination and embryo culture
Insemination of retrieved oocytes was done by intracy-
toplasmic sperm injection (ICSI). All the embryos were 
placed in pre-equilibrated culture dishes (EmbryoSlide, 
Vitrolife) under oil at 37 °C and 5.5% CO2 in air in the 
time-lapse incubator (EmbryoScope, Vitrolife). Laser-
assisted breaching of the zona pellucida was performed 
on day 3. Embryos were cultured to the blastocyst stage 
in the standard incubators at 37 °C. Embryos were moni-
tored with the Primo Vision time-lapse system. Imaging 
frequency was set to 10-min intervals with multiple focal 
planes recorded every 60 min.

Trophectoderm biopsy
The embryos were assessed on day 5 and 6, and the tro-
phectoderm (TE) biopsy was performed. Biopsied TE 
cells were then stored at − 20 °C for future whole genome 
amplification (WGA) and next-generation sequencing 
(NGS). After the biopsy, blastocysts were vitrified to be 
replaced in the subsequent frozen-thawed embryo trans-
fer cycle.

Embryo scoring
Embryo morphology was assessed by two well-trained 
embryologists as described elsewhere [11]. Assessment 
of fertilization is carried out about 16-18 h (day 1) after 
fertilization. Oocytes are classed as fertilized if two pro-
nuclei (2PN) are present and the second polar body has 
been extruded. Other oocytes are classified as abnor-
mally fertilized (0PN, 1PN, 3PN). After the evaluation on 
day 1, zygotes are left in culture for a further 48 h, and 
the cleavage embryo quality will be observed at 72 (day 
3) hours after oocyte retrieval. The embryos are scored 
according to a combination of blastomere number, blas-
tomere size, and fragmentation. Based on the uniformity 
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of the blastomeres, the embryos without significant dif-
ferences in blastomere volume were classified as grade 
I, embryos with one to two significant differences were 
classified as grade II, and embryos with two or more sig-
nificant differences were classified as grade III. Based on 
an embryo’s fragmentation, four grades were classified: 
grade I, embryos with < 10% fragmentation; grade II, 
embryos with 10–20% fragmentation; grade III, embryos 
with 20–30% fragmentation; and grade IV, embryos with 
> 30% fragmentation. Embryo grades were scored com-
prehensively according to the above three criteria. Each 
blastocyst evaluation was performed according to Gard-
ner Grade Standard on day 5 or 6 [12]. Briefly, blastocysts 
were given a score from 1 to 6 based on the expansion 
degree and hatching status. 1 = early blastocyst with less 
than half of the volume of the embryo. 2 = blastocyst with 
half or greater volume of the embryo. 3 = full blastocyst 
completely filling the embryo. 4 = expanded blastocyst 
larger than the early embryo. 5 = hatching blastocyst with 
the trophectoderm starting to herniate through the zona. 
6 = hatched blastocyst. For blastocysts graded as 3–6, the 
development of the inner cell mass (ICM) was assessed 
as A, B, and C. A = tightly packed, many cells. B = loosely 
grouped, several cells. C = very few cells. Trophectoderm 
(TE) was evaluated as A, B, and C. A = many cells form-
ing a cohesive epithelium. B = few cells forming a loose 
epithelium. C = very few, large cells.

Database
Relevant data, including clinical and embryonic features, 
as well as treatment outcomes for all PGT cycles, were 
extracted from electronic patient records and recorded 
in a database. In total, 52 continuous variables (for exam-
ple, age), categoric variables (for example, stimulation 
protocol), or discrete variables (for example, number of 
embryos).

Statistical analysis
Data were analyzed with the use of the statistical pack-
ages R (The R Foundation; http://www.r-project.
org;version 3.4.3) and Empower (R) (www.empower-
states.com, X&Y solutions, inc. Boston, Massachusetts). 
Categorical data are represented as frequencies and per-
centages; variables in these measures were compared 
between the study groups using chi-square or Fisher’s 
exact tests. The ordinal categorical variable is analyzed by 
the Kruskal-Wallis test. Continuous data are expressed 
as mean ±  standard deviation, compared with one-way 
analysis of variance (ANOVA). The study population was 
divided into the training and validation cohorts in a 3:1 
ratio. In the model-development phase, we first perform 
a univariate logistic regression analysis of all variables 
in the training cohort. For the variables at a statistically 

significant level (p < 0.05), we carried out a variance infla-
tion factor (VIF) test, and excluded the variables caus-
ing potential multicollinearity according to the criteria 
of VIF > 5. We conducted an extreme gradient boosting 
(XGBoost) model to analyze the contribution (gain) of 
each variable. We selected clinical and laboratory vari-
ables to construct a predictive model through multivari-
able logistic regression. We constructed the area under 
the receiver operator characteristics (ROC) curve (AUC). 
Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) are also presented. We 
also formulated nomograms for the practical application. 
The performance of the nomogram was quantified with 
respect to calibration and discrimination for external 
validation.

Results
A total of 1610 embryos were biopsied, 1545 had known 
ploidy status (641 were euploid). The overall euploid rate 
was 39.8%. Baseline characteristics of the study popu-
lation by training and validation cohort are shown in 
Table 1. We observed a significant difference between the 
two cohorts of uneven cleavage embryos. The embryos 
in the training cohort were more uneven on D3. A cor-
relation matrix constructed is shown in Supplemental 
Table 1. We calculate the correlation value.

Variable importance in the prediction model
The variable importance is a scaled measure to have a 
maximum value of 100. The predictors with variable 
importance of the top 20 are shown. Metaphase II (MII) 
oocyte rate, follicle-to-oocyte index (FOI), and follicular 
output rate (FORT) were the most important predictor 
variables in the prediction model (Supplemental Fig. 1).

Development and validation of the prediction model
In the model-development phase, the euploid-predic-
tion model developed according to female age, male age, 
parent abnormal chromosome, infertility type, infertil-
ity duration, follicular output rate (FORT), follicle-to-
oocyte index (FOI), MII oocyte rate, cleavage rate, 2PN 
rate, blastocyst formation rate, AFC, the cell number of 
D3, uneven cleavage embryos, embryo fragmentation of 
D3, the timing of embryo biopsy, expansion degree of 
D5, inner cell mass of D5, trophectoderm grade of D5, 
gonadotropin (Gn) dosage, and Gn duration showed 
good discriminatory power with AUC of 0.859 (95% 
CI, 0.834–0.872), the sensitivity of 90.31%, specificity of 
57.84%, accuracy 89.59%, positive predictive value (PPV) 
of 75.13% and negative predictive value (NPV) of 80.92% 
(Table 2).

In the model validation phase, we observed good dis-
criminatory powers with the AUCs of 0.852 (95% CI, 
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0.831–0.879), the sensitivity of 92.15%, specificity of 
50.33%, accuracy 89.24%, positive predictive value (PPV) 
of 73.21% and negative predictive value (NPV) of 84.05%.

The ROC of the prediction model in the training and 
validation cohort was plotted in Fig.  1. The nomogram 

of the model was drawn to provide quantitative and con-
venient tools in predicting euploid embryos by clinical 
and laboratory characteristics (Fig.  2). The nomogram 
was subjected to bootstrapping with 500 resamples. Find 
the score for each variable for an individual embryo on 

TABLE 1  Baseline characteristics of training and validation cohort

FORT Follicular output rate, FOI follicle-to-oocyte index

Arithmetic mean (95% CI)/N (%) calculated using EmpowerStats (www.​empow​ersta​ts.​com) and R. Kruskal-Wallis rank test for continuous variables

Training cohort (n = 1233) Validation cohort (n = 312) P-value

Female age (y) 30.40 ± 4.06 30.39 ± 4.29 0.980

Male age (y) 31.89 ± 4.68 31.80 ± 4.55 0.756

Infertility duration (y) 2.36 ± 2.18 2.48 ± 2.36 0.393

Infertility type 0.933

  Primary infertility 422 (34.23%) 106 (33.97%)

  Secondary infertility 811 (65.77%) 206 (66.03%)

AFC (n) 13.70 ± 5.42 13.03 ± 5.15 0.049

Chromosomal abnormality 354 (28.71%) 78 (25.00%) 0.192

FORT (%) 87.24 83.84 0.415

FOI (%) 74.83 73.48 0.892

MII oocyte rate (%) 74.28 76.43 0.226

Cleavage rate (%) 80.03 81.19 0.193

2PN rate (%) 78.32 79.39 0.115

Blastocyst formation rate (%) 64.34 64.73 0.987

Gn dosage (IU) 2203.78 ± 750.40 2276.20 ± 833.32 0.137

Gn duration (days) 10.31 ± 1.82 10.30 ± 1.67 0.890

Euploid rate (%) 513 (41.61%) 128 (41.03%) 0.853

No. of day3 cells 8.08 ± 1.56 8.21 ± 1.66 0.188

Uneven cleavage embryos 501 (40.63%) 106 (33.97%) 0.031

Embryo fragmentation of D3 0.517

  0 513 (41.61%) 141 (45.19%)

  5–10 466 (37.79%) 110 (35.26%)

   > 10 254 (20.60%) 61 (19.55%)

Timing of embryo biopsy 0.630

  D5 AM 701 (56.85%) 174 (55.77%)

  D5 PM 325 (26.36%) 90 (28.85%)

  D6 207 (16.79%) 48 (15.38%)

Expansion degree of D5 0.554

  2 7 (0.57%) 2 (0.64%)

  3 299 (24.25%) 75 (24.04%)

  4 893 (72.42%) 227 (72.76%)

  5 24 (1.95%) 3 (0.96%)

  6 10 (0.81%) 5 (1.60%)

Inner cell mass of D5 0.064

  A 9 (0.73%) 3 (0.96%)

  B 832 (67.48%) 231 (74.04%)

  C 392 (31.79%) 78 (25.00%)

Trophectoderm grade of D5 0.930

  A 6 (0.49%) 2 (0.64%)

  B 358 (29.03%) 92 (29.49%)

  C 869 (70.48%) 218 (69.87%)

http://www.empowerstats.com
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the uppermost rule (“Points”). Add all scores together 
and find the sum of the scores on the “Total points” rule.

Calibration curves
The calibration curve of the full model was plotted to 
evaluate the consistency between the predicted probabil-
ity of euploid and actual results are presented in Supple-
mental Fig. 2. The bias curve is close to the ideal line in 
the figure, and good agreement can be observed between 
the prediction and observation.

Discussion
This training cohort included 1233 embryos with the 
euploid rate of 41.61%. We established a euploid-pre-
diction model to predict euploid embryos for patients 
undergoing IVF. Most studies focused on clinical out-
comes of the women, however, we established a euploid 
prediction model for non-invasive embryo selection with 

high AUC. The model exhibited relatively good discrimi-
natory power and the verification was also satisfactory. 
Furthermore, our model can be used to patient-specif-
ically rank blastocysts on euploid. The training and test 
sets were randomly selected multiple times to reduce the 
impact of discrepancies.

We found that MII oocyte rate, FOI, and FORT were 
the most important predictor variables in predicting 
euploid. Previous research suggested the MII oocytes rate 
from large follicles is significantly higher than from small 
follicles [13]. MII oocyte rate rather than the number of 
oocytes retrieved is a more accurate predictor of implan-
tation and clinical pregnancy in IVF cycles [14]. FOI is 
defined as the ratio between the number of oocytes col-
lected at the oocyte retrieval and AFC at the beginning 
of ovarian stimulation. FOI is proposed as a novel param-
eter to assess ovarian response [15]. FOI could reflect the 
dynamic nature of follicular growth and could represent 

TABLE 2  Accuracy of the prediction model in the training and validation cohort

AUC​ Area under the curve

Training cohort (n = 1233) Validation cohort (n = 312)

AUC​ 0.859 (0.834,0.872) 0.852 (0.831,0.879)

Sensitivity, % 90.31 92.15

Specificity, % 57.84 50.33

Accuracy, % 89.59 89.24

Positive predictive value, % 75.13 73.21

Negative predictive value, % 80.82 84.05

Fig. 1  ROC curve of the nomogram to predict euploid. (a) ROC curve in training cohort. (b) ROC curve in validation cohort
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a tool to determine whether the ovarian reserve was ade-
quately exploited during ovarian stimulation. FORT is 
defined as the ratio between pre-ovulatory follicle count 
on hCG and AFC. A previous study showed FORT and 
FOI were different in different ovarian responders [16]. 
FORT can effectively predict pregnancy outcome, and 
not be affected by factors such as age and BMI [17].

A previous study developed a prediction model for 
aneuploidy by a 12 – gene transcriptomic signature using 
data from a small number of embryos (n = 48), however, 
it is not intended for clinical use, but to identify cellular 
pathways and related molecules indicative of the embryo 
ploidy status [18]. Previous research to establish predic-
tive models were problematic due to the limited num-
ber of involved characteristics [19, 20]. Kaufmann et  al. 
reported a neural network predicting model for patients 
undergoing IVF treatment, however, the overall accuracy 
was low, with only 59% [21]. Uyar et al. reported a Sup-
port Vector Machine (SVM) method for the classification 
of embryos according to implantation potentials, with 
an AUC of 0.712 ± 0.032 when 12 features were included 
[22].

XGBoost is a newly developed algorithm, with higher 
calculating speed and accuracy. Many clinical prediction 
models have been established using XGBoost and were 
proved to be better than traditional statistical approaches 
[23–25]. The euploid-prediction model could help doc-
tors to identify ploidy-status with clinical and laboratory 
characteristics. We observed relatively high sensitiv-
ity and NPV, which means a lower likelihood of missing 
euploid; a relatively high PPV, which means a lower likeli-
hood of misjudging embryos with actually euploid. This 
model can be used as a reference for embryo selection in 
patients undergoing IVF.

This study has several advantages. First, based on the 
clinical and laboratory characteristics of embryos, more 
factors were used as predictors to construct the predic-
tion model for ploidy status. Second, we use all embryos 
that underwent PGT-A instead of transferred embryos, 
since not all tested embryos could be transferred into the 
uterus and have pregnancy outcomes. Finally, our pre-
diction model provides a relatively accurate, convenient, 
and noninvasive method for embryo screening, applica-
ble to patients who refuse PGT-A. Therefore, this euploid 

Fig. 2  Nomogram to predict euploid in patients undergoing PGT-A
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prediction model is expected to solve the problem of 
embryo selection in clinical work.

There are some limitations to our study. First, this was 
a retrospective study, so inherent biases and variations 
were inevitable. Therefore, further verification is needed 
to ensure the better robustness of the model. Second, 
models established by different methods should be com-
pared and combined to develop a model with optimal 
prediction performance. Thirdly, this is a single-center 
study, limiting the generalizability of the study, prospec-
tive multi-center studies are needed to further verify the 
current findings. Finally, our prediction model had higher 
sensitivity but substantially lower specificity. These 
results suggest that this euploid prediction model despite 
having good performance may not be useful in accurately 
determining the aneuploidy (due to low specificity). 
However, a recent study has demonstrated a comparable 
cumulative live birth rate in women undergoing conven-
tional IVF and PGT-A, indicating PGT-A may potentially 
encourage the waste of healthy embryos [26]. As the goal 
of PGT-A is to select the best quality embryos for trans-
fer, the high sensitivity of selecting euploid will decrease 
embryo waste.

Conclusions
We built a euploid prediction model based on clinical 
and laboratory characteristics of the embryos to pre-
dict ploidy status, which exhibited relatively satisfactory 
discriminatory powers in verification. Our model may 
help clinicians better select embryos with noninvasive 
methods.
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ing characteristic.
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