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Association between mobility patterns and COVID-19 
transmission in the USA: a mathematical modelling study
Hamada S Badr, Hongru Du, Maximilian Marshall, Ensheng Dong, Marietta M Squire, Lauren M Gardner

Summary
Background Within 4 months of COVID-19 first being reported in the USA, it spread to every state and to more than 
90% of all counties. During this period, the US COVID-19 response was highly decentralised, with stay-at-home 
directives issued by state and local officials, subject to varying levels of enforcement. The absence of a centralised 
policy and timeline combined with the complex dynamics of human mobility and the variable intensity of local 
outbreaks makes assessing the effect of large-scale social distancing on COVID-19 transmission in the USA a 
challenge.

Methods We used daily mobility data derived from aggregated and anonymised cell (mobile) phone data, provided by 
Teralytics (Zürich, Switzerland)  from Jan 1 to April 20, 2020, to capture real-time trends in movement patterns for 
each US county, and used these data to generate a social distancing metric. We used epidemiological data to compute 
the COVID-19 growth rate ratio for a given county on a given day. Using these metrics, we evaluated how social 
distancing, measured by the relative change in mobility, affected the rate of new infections in the 25 counties in 
the USA with the highest number of confirmed cases on April 16, 2020, by fitting a statistical model for each county.

Findings Our analysis revealed that mobility patterns are strongly correlated with decreased COVID-19 case growth 
rates for the most affected counties in the USA, with Pearson correlation coefficients above 0·7 for 20 of the 25 counties 
evaluated. Additionally, the effect of changes in mobility patterns, which dropped by 35–63% relative to the normal 
conditions, on COVID-19 transmission are not likely to be perceptible for 9–12 days, and potentially up to 3 weeks, 
which is consistent with the incubation time of severe acute respiratory syndrome coronavirus 2 plus additional time 
for reporting. We also show evidence that behavioural changes were already underway in many US counties days to 
weeks before state-level or local-level stay-at-home policies were implemented, implying that individuals anticipated 
public health directives where social distancing was adopted, despite a mixed political message.

Interpretation This study strongly supports a role of social distancing as an effective way to mitigate COVID-19 
transmission in the USA. Until a COVID-19 vaccine is widely available, social distancing will remain one of the 
primary measures to combat disease spread, and these findings should serve to support more timely policy making 
around social distancing in the USA in the future.
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Introduction
A cluster of cases of pneumonia of unknown cause in 
Wuhan, China, was first reported on Dec 31, 2019,1 and a 
week later identified as the disease now called COVID-19.2 
COVID-19 has since spread rapidly around the world, 
nearing 10 million confirmed cases and more than 
500 000 deaths reported in 188 countries and regions as 
of June 25, 2020.3 The first case of COVID-19 in the USA 
was reported on Jan 20, 2020, in Snohomish County, 
WA, and as of June 25, COVID-19 has been reported in 
every US state and more than 3000 US counties.4,5 Until 
the widespread availability of a vaccine, social distancing 
alongside personal protective measures, such as hand-
washing and wearing a mask, will remain the primary 
control mechanisms for mitigating the spread of 
COVID-19.

In China, a nationally coordinated effort limiting 
travel and social interaction effectively mitigated the 

spread of the disease.6,7 Crucially, by contrast with the 
nationally mandated directives put in place in China, 
the US directives to shelter in place and temporarily 
close non-essential businesses and schools were made 
at the state and local level throughout March and 
April, 2020 (appendix pp 2, 12–13). This distributed 
decision-making process and variable en forcement 
resulted in an outbreak mitigation response that was 
highly variable in both space and time. Adding to this 
complexity is the varying intensities of the outbreak 
around the USA, with some counties nearing their peak 
and others remaining in the early stages of an epidemic.5 
Together, these issues pose a significant challenge to 
evaluating the effectiveness of social dis tancing policies 
in the USA. To address this issue, we used real-time 
mobility data derived from cell (mobile) phone data to 
quantify the progression of social distancing within 
the USA. Subsequently, we examined the relationship 
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of the data to the rate of emerging COVID-19 cases in 
25 US counties, with the highest number of reported 
cases as of April 16, 2020 (table; appendix p 3).

Previous studies have evaluated the connection between 
travel and transmission of COVID-19, but these studies 
were restricted to examining the disease in China. In 
addition to the aforementioned work by Kraemer and 
colleagues,7 Zhao and colleagues8 found a positive 
association between confirmed cases and the quantity of 
domestic passenger travel within ten cities outside of 
Hubei province. Tian and colleagues9 found evidence that 
social distancing measures in cities throughout China 
delayed case transmission. Chinazzi and colleagues10 used 
a transmission model to project the effect of travel 
limitations on the spread of COVID-19 in China; they 
found travel restrictions to the affected areas had modest 
effects, and that trans mission re duction interventions 
were more effective at mitigating COVID-19 spread. These 
studies are encouraging, and suggest social distancing 
measures should successfully mitigate infection trans-
mission outside of China; how ever, this has not yet been 
shown. Qualitative studies and projections exist for social 
distancing helping to reduce the spread of COVID-19 in 
countries such as Italy and the USA but, to date, a 
quantitative analysis has not yet been done outside of 
China.11–13 We therefore evaluated the effect of social 
distancing on the spread of COVID-19 in the USA—the 
country that has reported the most confirmed cases and 
deaths because of COVID-19 globally.

Methods
Data collection and analysis
To quantify the amount of social distancing in each US 
county, we defined a mobility ratio (MR) for each day (t) 

and county (j), which quantified the change in mobility 
patterns as a proxy for social distancing. MR reflects the 
change in the number of individual trips made in each 
county per day, relative to ordinary behavioural patterns 
(ie, before COVID-19). To compute this measure, we 
used daily origin–destination trip matrices at the US 
county level derived from aggregated and anonymised 
cell phone data obtained from Teralytics (Zürich, 
Switzerland). This effort aligns with work14 supporting 
the use of aggregated mobility data to monitor the 
effectiveness of social distancing interventions. The data 
consisted of the number of unique daily trips made 
between origin–destination pairs of US counties, each 
day, from Jan 1 to April 20, 2020. MR is the sum of the 
total trips incoming, outgoing, and within each county 
on a given day, divided by the same measure on a baseline 
day. The baseline value is specific to each day of the week 
and taken as the average from Jan 8 to Jan 31, 2020, when 
travel patterns were stable (appendix p 4). We interpreted 
this metric as a proxy for social distancing on the basis of 
the assumption that when individuals make fewer trips, 
they physically interact less. MRj

t was calculated as 
follows:

where Vi
t
j represents the number of trips from county 

i to j on day t, and t0 represents the baseline measure. The 
trips were all-directional; therefore, the number of trips 
from i to j did not equal the number of trips from j to i. 
This metric accounts for movements both between and 
within counties; thus, it includes changes in typical 

Research in context

Evidence before this study
Our study considers the relationship between the emerging 
dynamics of COVID-19 transmission and mobility in 
the USA; therefore, we took into consideration the few 
publications that address this issue from a robust, data-driven 
perspective. We used Google Scholar, PubMed, and medRxiv to 
search for articles relating mobility to coronavirus, using the 
terms “Covid-19,” “SARS-CoV-2,” “coronavirus,” “mobility”, 
“travel”, and “social distancing”. The studies identified from this 
search concluded that travel reduction had a positive effect on 
reducing the transmission of COVID-19. However, the only 
studies that used data to reach this conclusion were done using 
information from China; thus, empirical evidence about the 
efficacy of social distancing is still needed to understand its 
effect on COVID-19 transmission in the USA.

Added value of this study
Our results are consistent with COVID-19 transmission research 
to date—namely, that decreased mobility has a significant, 

positive relationship with reduced case growth. Although 
social distancing has consistently been shown to have positive 
effects on COVID-19 transmission in China, our work extends 
these results to the USA. Our study does not rely on assumed 
infection rates, assumed compliance aligned with timing of 
policies, or modelled or synthetic data, but rather uses 
real-world mobility data and reported case counts to 
empirically estimate the relationship between the 
two variables in the USA.

Implications of all the available evidence
Our work shows that social distancing helps to reduce the 
spread of COVID-19, and should remain part of personal and 
institutional responses to the pandemic until a vaccine is 
widely available.

MRj = –
∑i ≠ jVij + ∑i ≠ jVji + Vjj 
∑i ≠ jVij  + ∑i ≠ jVji  + Vjj 

t

t
t

tt

0 t0 t0

For Teralytics see 
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commuting patterns and microlevel (within county) 
movements (eg, travel to local grocery stores, shopping 
centres, gyms, and schools).

Using this function, an MR of 0 indicates no trips were 
made, and a value of 0·5 indicates half the number of 
trips relative to baseline were made on a given day. An 
MR of 1 signifies no change in behaviour relative to the 
baseline period (Jan 8–31, 2020), before COVID-19 
transmission was widely reported in the USA. Any value 
above 1 means that mobility had increased from baseline.

Epidemiological data from the Johns Hopkins University 
Center for Systems Science and Engineering COVID-19 
dashboard, which includes daily data on cases and deaths 
for each US county, were used to compute the COVID-19 
growth rate ratio (GR) for a given county on a given day.5 
The ratio was defined as the logarithmic rate of change 
(number of newly reported cases) over the previous 3 days 
relative to the logarithmic rate of change over the previous 
week. GR for any county j on a day t was calculated 
as follows:

where Cj
t is the number of new cases reported in county j 

on a day t.
GR could take on any non-negative value and is defined 

only when the average number of reported cases per day is 
greater than one over any period (3-day or 7-day moving 
averages). GR equals 0 when an average of one new case 
per day was reported over the last 3 days, and at least seven 
new confirmed cases reported over the last week. 
GR equals 1 when there was no change in the growth rates 
since last week (ie, the average number of new cases per 
day over the last 3 days was the same as the average over 
the last 7 days). A GR below 1 means that the growth rate 
during the last 3 days was lower than that of the last week, 
whereas a value greater than 1 represented a growth rate 
increase in the last 3 days relative to the last week. We used 
moving averages to smooth volatile case reporting data. 
This metric, used in conjunction with the social distancing 
proxy MR, allowed us to grasp the complex and time-
dependent dynamics at play between human mobility and 
COVID-19 spread for each county in the USA.

Using the two aforementioned metrics, we evaluated if 
and how well social distancing affects the rate of 
new infections in the 25 counties in the USA with the 
highest number of confirmed cases on April 16, 2020. 
King County, WA, was excluded because its initial outbreak 
preceded the time period considered in our analysis, and 
was driven by an infection source that differed from other 
outbreaks in the USA. We fitted a generalised linear model 
(GLM) for each county, specifically using lagged MR as 
a predictor of COVID-19 growth rate and tested the 
correlation of MR and GR at different time lags. The 

correlation between MR and GR was computed from 
separate models for each county as well as a combined 
single model for all counties. Additionally, the most 
highly correlated lag range was identified based on the 
(maximum) mean and (minimum) SD of the correlations 
across all counties, based on the Pearson correlation 
coefficient.

Role of the funding source 
There was no funding source for this study. All corres-
ponding authors had full access to all the data in the 
study and shared the final responsibility for the decision 
to submit for publication.

Results
The differences in county-level MR across the USA from 
Jan 24 to April 17, 2020, are illustrated in figure 1, and 

GRj = –t
log  ∑t − 2 —

tCjt

3( (

log  ∑t − 6 —
tCjt

7( (

Correlation 
coefficient

Intercept Slope

Essex, NJ (34013) 0·90 0·86 0·26

New York City, NY* (36061) 0·86 0·94 0·14

Middlesex, NJ (34023) 0·85 0·89 0·24

Cook, IL (17031) 0·85 0·89 0·22

Hudson, NJ (34017) 0·84 0·90 0·23

Nassau, NY (36059) 0·84 0·89 0·22

Union, NJ (34039) 0·84 0·85 0·28

Middlesex, MA (25017) 0·83 0·90 0·24

Suffolk, NY (36103) 0·83 0·85 0·26

Miami-Dade, FL (12086) 0·83 0·86 0·28

Bergen, NJ (34003) 0·82 0·87 0·24

Passaic, NJ (34031) 0·81 0·87 0·26

Suffolk, MA (25025) 0·81 0·90 0·27

Philadelphia, PA (42101) 0·80 0·84 0·33

Wayne, MI (26163) 0·80 0·82 0·32

Westchester, NY (36119) 0·80 0·88 0·22

Monmouth, NJ (34025) 0·76 0·83 0·28

Rockland, NY (36087) 0·74 0·81 0·36

Jefferson, LA (22051) 0·71 0·77 0·38

Oakland, MI (26125) 0·71 0·86 0·27

Orange, NY (36071) 0·66 0·80 0·34

Los Angeles, CA (06037) 0·62 0·89 0·22

Fairfield, CT (09001) 0·61 0·85 0·27

Orleans, LA (22071) 0·61 0·84 0·26

Harris, TX (48201) 0·53 0·78 0·38

All counties 0·71 0·88 0·24

The list is presented by the correlation coefficient in descending order. The last 
row represents the results of a single model for all 25 US counties. All coefficients 
are statistically significant at 95% CI. Federal Information Processing Standards 
code for each county is given. *To be consistent with the Johns Hopkins University 
Center for Systems Science and Engineering COVID-19 dashboard reporting,5 
New York City is used to represent New York County, Queens County, Bronx 
County, Kings County, and Richmond County in one location.

Table: The selected 25 US counties and the associated Pearson 
correlation coefficient and generalised linear model coefficients 
(intercept and slope) between 11-day lagged mobility ratio and 
growth rate ratio
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shown at a daily resolution in the video. For the 25 US 
counties with the highest number of reported cases, 
the MR as of April 17 are shown in the appendix (p 5). The 
MR for these 25 counties ranged from 0·35 in New York 
City to 0·63 in Harris County, TX, which highlights the 
varying MR measures and associated behavioural changes 
around the country. Counties with the most social 
distancing in the first week of April were predominantly in 
New York, New Jersey, and Massachusetts—the locations 
that reported the most COVID-19 cases at the time.

For the set of 11 states corresponding to the top 
25 counties (appendix p 6), similar MR behaviour was 
observed at the state level. The complete list of all US 
states ranked by their respective MR as of April 17 is 
provided in the appendix (p 7). Consistent with county-
level behaviour, there was evidence of different levels of 

social distancing across states, with only Washington DC 
reducing trips to below 50% of the baseline rate, and the 
rest of the 50 states moving around 53–90% of baseline 
levels. Many of the southern states, which implemented 
temporary closure of non-essential business later in 
March or early April, reported higher MRs.

The relationship between the state’s MR trends over 
time and the timing of the state-level social distancing 
directives are illustrated in figure 2 (appendix pp 12–13). 
In addition to the timing of the state-level directives, 
we collected information on the county-level social 
distancing directives that were implemented in each of 
the 25 counties of focus. A list of all local directives and 
respective dates is provided in the appendix (pp 14–18), 
and includes the time between local-level and state-level 
actions. Figure 2 illustrates that social dis tancing began 

Figure 1: Mobility ratio for each US county on Friday, Jan 24, 2020 (top), and on Friday, April 17, 2020 (bottom)
The greyed-out areas in the Midwest are filtered because of low coverage in the Teralytics dataset.14 This includes all counties with total trip counts less than 
two SDs below the mean.

Mobility ratio (%)

0 10 20 30 40 50 60 70 80 90 100

Friday (Jan 24, 2020)

Friday (April 17, 2020)

See Online for video

https://youtu.be/w020G4NU0ps
https://youtu.be/w020G4NU0ps
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in early March, well before the first US state-level stay-at-
home directive (implemented by California on March 19). 
While the county-level directives partly explain the earlier 
decline in MR, which began well before the state-level 
directives were put in place, all states illustrated some 
level of social distancing before county-level directives 
were enacted.

The relationship between state and local directives and 
MR for each of the selected 25 counties is illustrated in 
the appendix (p 8). To explore how internal trips (ie, 
movements within a county) might vary from the 
total county trips (including incoming and outgoing), 

within-county trips only are presented in the x (p 9). 
From the results of this county-level breakdown, locations 
such as Bergen, NJ, Oakland, MI, Orange, NY, and 
Fairfield, CT, implemented local directives much earlier 
than their corresponding states, which better align with 
the start of MR decline in these counties. By contrast, in 
Orleans and Jefferson, LA, where local-level directives 
were imple mented late or not at all, MR was declining 
for weeks without directives in place, suggesting this 
behavioural change was driven by other means. For all 
25 counties, except for Jefferson, LA, local directives were 
implemented at least 3–17 days before the state-level 

Figure 2: Timeseries of MR for US states and the corresponding dates of stay-at-home orders
The dots represent the raw MR data while the plotted lines are smoothed using a generalised additive model. Vertical dashed lines are stay-at-home orders 
(dates listed in the appendix pp 12–13). Some orders occurred on the same day; thus, only eight of 11 orders are visible. MR=mobility ratio.
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stay-at-home directives, with an average difference of 
7·3 days.

Using MR and GR, we evaluated how social distancing 
influenced the rate of new infections in the 25 coun-
ties with the highest number of confirmed cases on 
April 16, 2020, by fitting a GLM model for each county 
(and one for all counties), using lagged MR as a predictor 
of COVID-19 growth rate. An optimal lag of 11 days, with a 
window of 9–12 days was identified (figure 3; table). 
Furthermore, the correlation remained above 0·7 for up to 
20 days. This lag was the period separating the beginning 
of social distancing and onset of case growth reduction. 
An interval of this length was con sistent with the 
estimated 4-day to 5-day (median) incubation period of 
severe acute respiratory syndrome coronavirus 2 plus 
additional time for reporting.15–17 The CIs shown on the 
curve of figure 3 illustrate that this estimated lag interval 
was robust and consistent across multiple counties.

The county-specific correlations between MR and GR, 
for an 11-day lag, alongside the computed GR, MR, and 
number of daily COVID-19 cases from March 16 to May 4, 
are illustrated in figure 4. The case data show the number 
of new daily cases for all 25 counties increases through 
March, then slows in April in many counties, and begins 
decreasing in some counties. During the same period, 
MR steadily decreases, specifically during the second half 
of March, before stabilising for most locations in early 
April, followed by a slight increase throughout April.

In almost all counties, the initial decline in MR began 
before any formal regulation was put in place (figure 4; 
appendix pp 8–9). The GR showed a general decreasing 
trend for all locations through March, stabilising around 
1 in April, which was consistent with the case curves. All 
correlations were significant at a 95% CI, with Pearson 
correlation coefficients for 20 of the 25 counties above 
0·7 (table). These high correlations suggest that social 

Figure 4: Relationship between MR and GR given 11-day lag (A), with GR (B), progression of MR (C), and new confirmed cases (D)
Correlations found to be significant at a 95% CI. Dates of state-level stay-at-home orders are shown as vertical dashed red lines, and local-level social distancing orders are shown as dashed blue lines. 
The dots represent the raw data, and the plotted lines are smoothed using a generalised additive model. GR=growth rate ratio. MR=mobility ratio.
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distancing had a significant effect on the spread of 
COVID-19. Some exceptions include Orleans, LA 
(correlation coefficient of 0·61), which can be attributed 
to an outbreak that emerged before social distancing was 
common practice, and Harris County, TX (correlation 
coefficient of 0·53), which was probably underestimated 
because of limited testing rates in Texas.18 The results of a 
single model that includes all counties is listed in the 
table, and is consistent with the individual county-level 
analysis. The consistency across results suggests the 
results are robust, and transferable to other locations in 
the USA, thus providing a more generalised finding 
about the effect of social distancing on case growth rates 
within the USA.

We repeated the equivalent evaluation method at the 
state level, using aggregated case reports from all 
the counties within each state. The results were con-
sistent with the county-level analysis, revealing a 9–12-day 
lag window (appendix p 10), and displaying similarly high 
correlations between MR and GR (appendix p 11). The 
lowest correlation, 0·7, was observed for Massachusetts, 
which was likely a result of spatial variability, specifically 
with regards to the state of the outbreak, testing 
capabilities, and varied degrees of behavioural change 
associated with social distancing measures.

Discussion
The USA has enacted a complex combination of 
responses to COVID-19. Government policy varies in 
space, scale, and time (table; appendix pp 14–18), result-
ing in varied patterns of movement and behavioural 
changes throughout the country. Simultaneously, the 
progression and intensity of local outbreaks differs 
markedly by location. This landscape makes quantifying 
the effect of social distancing on COVID-19 spread a non-
trivial task. Nevertheless, our method captured relevant 
trends in human behaviour as it related to the spread of 
the disease. Because our analysis used real-time mobility 
data, we captured the dynamics of social distancing with-
out relying on assumed efficacy of shelter-in-place orders. 
Additionally, we used the real-world frequency of trips, 
not extrapolated transmission rates or travel distances, as 
our mobility indicator. This means our mobility metric 
was driven by how much people actually moved between 
and within counties. Because our case data consist of 
reported cases at the county level, our analysis is a 
powerful comparison of actual human behaviour and the 
documented status of COVID-19 in the USA.

Our results used this real-world data to show a strong 
and statistically significant correlation between social 
distancing, quantified by mobility patterns, and reduction 
of COVID-19 case growth. Importantly, our statistical 
analysis revealed that the effect of social distancing on 
decreasing transmission is not likely to be perceptible 
for at least 9–12 days after implementation, and might 
be longer. This lag time reflects the time for symptoms 
to manifest after infection, worsen, and be reported. 

Besides emphasising its necessity, this study also 
revealed that social distancing (and outbreak growth 
deceler ation) in the counties most affected by COVID-19 
was driven primarily by changes in individual-level 
behaviour and local-level regulations; the state (and 
federal) actions were implemented either too late (or 
not at all). The motivation behind the individual-level 
behavioural changes requires further study, but could 
possibly be attributed to educational and data-tracking 
resources, as well as media and information sharing, 
which might vary substantially by information source, 
location, and time. These findings show that it is within 
the power of each US resident, even without government 
mandates, to help slow the spread of COVID-19. Crucially, 
if individual-level and local actions were not taken, 
and social distancing behaviour was delayed until the 
state-level directives were implemented, COVID-19 
would have been able to circulate unmitigated for 
additional weeks in most locations, inevitably resulting 
in more infections and deaths. Additionally, the strong 
relation ship between social distancing and reduced case 
growth rates suggests that a return to baseline mobility 
poses a significant risk of increased infections, which 
will probably not appear for up to 3 weeks after the 
mobility increases. However, practices such as hand-
washing, face mask use, and self-isolation when sick 
might help to mitigate future case growth, even under 
more normal mobility patterns, and these behaviours 
might be more widespread in the future than they were 
during the initial months of the pandemic in the USA.

This study has multiple limitations. First, we focused 
on quantifying the relationship between mobility patterns 
and case growth rates; therefore, the role of other poten-
tial mitigating factors (eg, wearing face masks and 
handwashing) that could also have contributed to the 
decline in the case growth rate observed during March 
are not accounted for. However, without detailed county-
level compliance data for each type of mitigating action, 
we were unable to model the relative effect of each factor. 
Similarly, our travel data did not enable us to identify trip 
purpose, and therefore we did not differentiate between 
low-risk and high-risk trips—eg, multiple trips alone to a 
park are probably lower risk than a single unmitigated 
trip to a grocery store. Although these topics are out-
side the scope of this study, they are critical to our unders-
tanding of COVID-19 transmission risk, and require 
further exploration. Second, we used the GR as our 
representative variable for the degree of transmission 
occurring in a region. We believe this variable is an 
intuitive and representative estimate for the spread of 
COVID-19 among a local population, but future exten-
sions of this analysis should explore replacing this 
variable with more traditional transmission indexes 
commonly used in infectious disease epidemiology. 
Third, the case data might have errors due to both 
reporting issues and limited testing capacity, especially in 
early March before widespread testing was underway. 
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We partly address this issue by starting our analysis on 
March 16, as well as using a 3-day moving average for the 
case data. Fourth, the analysis was focused on 25 counties, 
which might be a biased sample of locations; however, we 
believe these locations accurately capture the relation-
ship between mobility patterns and case growth rates. 
The consistency among the estimated model parameters 
presented in the table suggests that the results are 
generalisable and might be transferred to other loca-
tions in the USA and abroad. In addition, our results are 
consistent at both the county and state level. Finally, the 
data used in this analysis do not include sociodemographic 
information; therefore, it might not representatively 
capture all groups, such as older adults and individuals 
with chronic medical disorders and comorbidities, low-
income groups, and other traditionally underserved com-
munities, for whom social distancing might be difficult 
to maintain.

Our results strongly support the conclusion that 
social distancing played a crucial role in the reduction 
of case growth rates in multiple US counties during 
March and April. It might be difficult to recognise the 
value in safe behaviour when the reward is not obvious, 
and the danger is not immediate. This is particularly 
true given the economic and social repercussions of the 
COVID-19 response. Nevertheless, given the absence of 
proven antiviral drugs or a vaccine, social distancing is 
one of the most important and timely ways to combat 
the spread of COVID-19.19,20 These findings also 
highlight the difference in pandemic control policy 
between the USA and China, and should serve to 
support more timely policy making in the USA in the 
future. This finding is particularly relevant as the USA 
begins to loosen stay-at-home orders, once again doing 
so in a highly decen tralised manner. As we continue to 
grapple with the ramifications of the COVID-19 
pandemic on our health, society, and economy, we hope 
that our results will motivate both individuals and 
governments to make safe and data-driven decisions, 
and acknowledge the effect these choices have on all of 
our communities.
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