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Microarrays in infection and immunity
Jennifer A Maynard1,2, Ryan Myhre1 and Benjamin Roy1
Over the past decade, microarrays have revolutionized the

scientific world as dramatically as the internet has changed

everyday life. From the initial applications of DNA microarrays

to uncover gene expression patterns that are diagnostic and

prognostic of cancer, understanding the interplay between

immune responses and disease has been a prime application

of this technology. More recent efforts have moved beyond

genetic analysis to functional analysis of the molecules

involved, including identification of immunodominant antigens

and peptides as well as the role of post-translational

glycosylation. Here, we focus on recent applications of

microarray technology in understanding the detailed chemical

biology of immune responses to disease in an effort to guide

development of vaccines and other protective therapies.
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Introduction
Remarkably, live rotavirus vaccines, which were intro-

duced in 2004, were developed using essentially the same

empirical methods for attenuation as the Sabin polio

vaccine nearly 50 years earlier: loss of virulence through

multiple passages in non-human cells. The vaccine seems

to be safe and effective and is desperately needed to

prevent the 600 000 deaths annually that are attributed

to rotavirus [1]. But its history underscores that, despite the

profound role of vaccines in reducing human and animal

morbidity and mortality, the field has relied on techno-

logical advances in other areas to spur its own development.

In particular, the dual advances of genomic sequencing and

microarray design have resulted in a renaissance of research

in immunity and infectious diseases.

The applications of microarrays span from the bench to

the bedside, providing tools that require less effort,
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expense and sample than other technologies and which

are also highly multiplexed, building on established

pattern-recognition techniques and statistics [2]. In this

review, we do not discuss technical aspects common to all

arrays (e.g. statistical analysis and immobilization chem-

istry) because these are extensively reviewed elsewhere.

Instead, we limit ourselves to novel applications

in infection and immunity using four variants of array

technology: DNA, antigen, peptide–MHC complex

(pMHC) and carbohydrate (Figure 1). Collectively,

these technologies are already advancing our understand-

ing of the interplay between immunity and disease, pro-

viding a rational basis for the design of vaccines and agents

that interfere with disease progression (Table 1).

Genome arrays for disease surveillance,
diagnosis and characterization
Since the days of Pasteur, pathogen identification has

been accomplished using a combination of culture and

serological techniques, all of which are labor-intensive,

require highly trained personnel and incur a delay of

hours to days before a conclusion can be reached. Further-

more, many organisms are refractory to culture, whereas

serotyping is limited by the availability of specific antisera

— a situation especially problematic when emerging or

evolving pathogens are considered. Because of the avail-

ability of numerous genome sequences and the need to

contain rising healthcare costs, DNA microarrays that can

simultaneously probe clinical and environmental samples

for the presence of conserved viral and bacterial

sequences, specific virulence factors and antimicrobial

resistance genes, and can even identify point mutations,

present a novel alternative (Figure 2) [3,4].

This concept is elegantly illustrated by the pan-viral

DNA microarray (Virochip), which comprises highly con-

served 70-mer oligonucleotides from every partially and

fully sequenced viral genome in GenBank (as of June

2004). The third generation chip includes 22 000 oligo-

nucleotides, representing �277 000 sequences [5,6].

Patient samples are collected by nasal lavage, the ribo-

nucleic acids are purified, reverse-transcribed, amplified

by random-primer PCR, and finally incubated with the

array under stringent binding conditions. Using such an

array, deRisi and colleagues were able to correctly

identify a range of viruses from the RNA of infected

tissue culture cells and human samples [5]. More impress-

ively, the array was subsequently used to identify, isolate

and even sequence �1000 bases of a virus now known as

the severe acute respiratory syndrome coronavirus (SAR-

S-CoV) [7–9]. Originally designed as an experimental
www.sciencedirect.com
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Figure 1

Opportunities for arrays in infection and immunity. Aspects of a pathogen that are now accessible to array analysis include the genetic material

(transmissible elements and gene variants) and the binding specificity and temporal expression of carbohydrates and lectins involved in, for

instance, host cell attachment. The antigenicity of surface exposed and secreted molecules can also be assessed at the genome-wide scale to

aid in vaccine and diagnostics development. From the host perspective, arrays can reveal immune cell responses in terms of transcriptional

responses, antibody-binding specificity, T cell–pMHC reactivity and the functional consequences of T cell activation.
research tool, the Virochip also seems to be capable of

viral diagnosis in a clinical setting [6,10].

Although the success of the Virochip is impressive, sig-

nificant hurdles remain for broad application of this

technology, primarily in terms of sample amplification

and probe design [11,12]. Other arrays under develop-

ment operate at three levels of detail, each of which can

be used in surveillance, diagnostic or vaccine develop-

ment programs to answer the following questions:

Which organisms are present?

Arrays at this level include the Virochip and other micro-

arrays for more specialized detection of viruses of the

central nervous system [13] respiratory pathogens [14],

and for bacterial strain identification [15��,16,17]. Impor-

tantly, these chips have demonstrated the ability to detect

bacteria in the viable but non-culturable state and are

amenable to automation [18].

Which genes are present?

Clinically, the presence of genes or mutations that confer

antibiotic resistance influences treatment options
Table 1

Recent applications of arrays in infection and immunity

Array format Biomarker

discovery

Diagnostic

profiles

DNA – [7,15��,19,22,49]

Antigen/ORFeome [51,55,57�] [52,54,56�,58��,124]

pMHC [65�,66] –

Glycan – [79,91�,97,126]

Lectin – [105]

a Refers to the number of unique elements (e.g. DNA oligonucleotides) ind

www.sciencedirect.com
[19,20�,21], whereas transmissible virulence factors and

serotypes can be used for strain identification and to

indicate the pathogenic potential of the organism

[15��,22]. Similarly, genes that are differentially present

in pathogenic versus commensal or live attenuated strains

can guide vaccine development [23].

Which gene variants are present?

Surveillance and molecular epidemiological programs are

developing focused arrays to track antigenic drift, antici-

pate dominant serotypes and monitor the genomes of live

attenuated vaccine strains [24�,25,26]. For instance, the

low-density FluChip can distinguish all influenza A

hemagglutinin and neuraminidase subtypes, and tiled

resequencing arrays can detect single nucleotide poly-

morphisms within these genes [24�,27�,28,29].

The complement to specific pathogen hybridization is

interrogation of host transcriptional responses [30,31],

primarily using peripheral blood mononuclear cells.

The premise is that all coronaviruses will induce similar

host responses, and these responses will be distinguish-

able from those induced by, for instance, bacterial sepsis.
Vaccine

candidates

Surveillance/

epidemiology

Number of

unique elementsa

– [15��,20�,24�,27�] 55–22 000

[50,125] – 22–232

[67��] – 7

[80�,81�,90,93,127] [95��] 9–200

– – 9–21

ividually produced and immobilized on the array.

Current Opinion in Chemical Biology 2007, 11:306–315
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Figure 2

Arrays used to study infection and immunity. (a) DNA arrays. (i) Immobilized DNA sequences can be chosen to represent highly conserved regions

from a broad range of organisms, as in the pan Virochip, and used for disease diagnosis. Alternatively, the DNA chosen can be more specialized,

detecting clinically relevant genes (e.g. antibiotic resistance and export pump genes, key antigens for serotyping and virulence factors capable of

horizontal transmission). Sample nucleic acids are purified, fluorescently labelled and allowed to specifically hybridize with immobilized

complementary DNA. (ii) Use of resequencing arrays provides single base pair information, which is useful when tracking genetic drift and single

nucleotide polymorphisms. (b) Antigen arrays to monitor humoral immunity. Open reading frames (or peptides) from a genome are expressed

recombinantly, purified and immobilized in an array. Serum from an infected, recovered or vaccinated individual is incubated with the array;

bound antibodies are detected by subsequent incubation with a fluorescently labeled secondary antibody. These arrays can be used to rapidly

characterize the protective immunome of an organism, to identify novel vaccine candidates and to compare vaccine-induced humoral responses

with those resulting from natural infection. (c) pMHC arrays to monitor cellular immunity. A variety of soluble peptide–MHC (pMHC) complexes are

immobilized with co-stimulatory antibodies to form an array of artificial antigen-presenting cells. Fluorescently labeled T cell populations can be

incubated with the array to quantify the fraction specific for a given pMHC. Additionally, antibodies can be co-deposited with the pMHC to

capture locally secreted cytokines in a sandwich assay (illustrated here for interleukin 10 and interferon–g). The nature of the cytokines released

reveals the responses of the T cells to stimulation with a particular pMHC. Using secondary antibodies with different fluorescent labels, the assay

can be multiplexed to detect multiple cytokines simultaneously. (d) Glycoarrays and lectin arrays. Monosaccharides, oligosaccharides and

polysaccharides of varying sequence and structure, in addition to glycoproteins and lectins, are immobilized in an array. Fluorescently labeled

proteins, viruses or bacterial cells are applied to the array to assess their carbohydrate-binding specificity; for example, the species specificity

of bird and human influenza variants can be attributed to the glycan-binding propensitites of the respective hemagglutinin variants. In the case

of lectin arrays, these arrays can rapidly assess the nature of the glycans attached to the protein or cell surface.
Thus, transcriptional profiling could be used to diagnose

disease completely independent of any knowledge of the

pathogen or even after the pathogen has been cleared

from the system. Despite preliminary successes [32–34],

this approach has met with several obstacles in terms of

individual heterogeneity and strong stereotyped inflam-

matory responses mediated by the nuclear factor NFk-B,

which obscure pathogen-specific responses [35–37].

Antigen arrays to monitor humoral immunity
Once the genes harbored by an organism have been

identified, the next step is to probe the host immune

responses to the genes products. Which protein antigens

are recognized? And which confer lasting immunity?

Antibody recognition of a set of antigens can sensitively
Current Opinion in Chemical Biology 2007, 11:306–315
diagnose disease [38] and an immunodominant antigen

can be a candidate target for passive or active vaccination

[39]. Antigen arrays are a natural fit for biomarker dis-

covery and complement recent advances in vaccine de-

velopment.

One advance, termed reverse vaccinology, capitalizes on

the available genome sequence of a pathogen that is

refractory to traditional vaccine development strategies

[40–43]. In silico techniques identify conserved open

reading frames (ORFs) predicted to encode surface

exposed or secreted proteins; hundreds of these are

cloned in Escherichia coli, expressed and purified in paral-

lel and used to immunize mice [44]. Proteins that either

protect mice from subsequent challenge or induce sera
www.sciencedirect.com
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that are protective in in vitro assays are pursued. First

applied to serotype B Neisseria meningococcus, researchers

ultimately queried a metagenomic database using

sequence data from eight strains [44,45]. Five antigens

were identified; none of these was broadly protective

alone but together they induced bactericidal antibodies

in mice against 66 of 85 meningococcal strains [45].

A key element of reverse vaccinology is analysis of

immune sera reactivity and it is here that protein antigen

arrays are beginning to play a role [46]. Instead of immu-

nizing mice directly, proteins corresponding to the entire

ORFeome (or fractionated lysate [47]) are spotted onto a

glass slide. Naı̈ve, convalesent or immune sera are applied

to the array, followed by a fluorescent secondary antibody

(e.g. goat anti-mouse IgG). After washing, the array is

scanned and fluorescence intensity is used to indicate

the presence of antibodies that recognize the antigen

immobilized in that spot (Figure 2). In this way, antigenic

proteins can be rapidly recognized, the response of an

individual to vaccination or infection monitored, and

infections past and present diagnosed. Therapeutic mono-

clonal antibodies, destined for passive vaccination, can also

be documented for cross-reactivity on a broad scale [48].

Such arrays are being developed for multiple diseases,

including tuberculosis [49], Yersinia pestis [50], Neisseria
meningitidis [51], leprosy [52] and HIV [53], and also for

autoimmune diseases [38,54] and tumor-associated anti-

gens [55]. Early successes include a vaccinia viral array

consisting of 185 proteins that were probed using sera

from naı̈ve and immunized mice, non-human primates

and humans [56�]. Interestingly, the three species did not

recognize the same subsets of viral proteins. The array

was later used to identify the H3L envelope protein as the

immunodominant antigen in the live viral vaccine [57�],
perhaps paving the way for a less traumatic subunit

vaccine. Similarly, a diagnostic array representing the

entire ORFeome of SARS-CoV and portions of five

additional coronaviruses was developed and tested using

serum from 400 Canadian and 206 Chinese patients

[58��]. The array was shown to be at least as sensitive

as and more specific than enzyme-linked immunosorbent

assay (ELISA) tests for diagnosing SARS, requiring mini-

mal sample processing compared with genome chips.

pMHC arrays to monitor cellular immunity
Cellular responses have always been harder to study than

antibody responses: antigen binding, as opposed to the

high-affinity binding reaction between two soluble mol-

ecules, involves a low affinity tri-molecular interaction

that comprises two membrane-bound molecules and a

post-translationally processed peptide. From the stand-

point of vaccine development or targeted therapies, is it

important to identify not only the amino acid sequence

corresponding to a key peptide epitope but also the

functional T cell responses that result from recognition.
www.sciencedirect.com
Given these constraints, it is hard to imagine a screening

technology that does not involve a cellular readout. Phage

and cDNA display technologies, widely used to study

antibody–antigen interactions, have been difficult to

apply to analysis of T cell receptor (TCR)—pMHC

interactions [59–61]. Non-genetic approaches involve

incubating synthetic peptides with antigen-presenting

cells and T cells, with stimulatory peptides identified

by interleukin 2 release [62]. Computational prediction

methods, especially for class I MHC, are also improving

but still require experimental validation [63]. For epi-

topes that have been identified, enzyme-linked immu-

nosorbent spot (ELIspot) and flow cytometry assays using

tetramerized pMHC have found wise-spread use to

monitor the spatial and temporal presence of cognate

T cells [64].

The opportunities for arrays in analysis of cellular immu-

nity are threefold: (i) to quantify the fraction of T cells in a

population reacting with a given pMHC; (ii) to identify

crucial peptide epitopes from candidate sequences; and

(iii) to assess T cell responses resulting from recognition

of these peptides. Recent reports have devised strategies

to achieve these goals by using pMHC arrays

[65�,66,67��,68]. In their current form, each feature on

the array contains immobilized pMHC molecules, co-

stimulatory antibodies and cytokine capture antibodies.

Thus, a fluorescent T cell recognizing a particular pMHC

will bind to the spot, be activated and secrete cytokines

locally. These cytokines are captured and subsequently

detected using fluorescent antibodies (Figure 2). Not only

can the number of T cells bound to a spot be counted,

replicating flow cytometry assays, but cellular responses

can also be elucidated based on the cytokines released.

Variations in design reveal the detailed consequences of

binding to a single pMHC (using multicolor secondary

antibodies to quantify levels of a series of cytokines) or to

a peptide sequence (using arrays of peptide variants to

identify agonist and antagonist peptides).

After the initial report on use of pMHC microarrays [66],

Stone et al. used a modified approach to match T cell lines

to activating viral epitopes [65�]. In the first clinical

application of the technology, Chen et al. used the array

to analyze patient T cell responses to a peptide vaccine

against melanoma [67��]. Ten patients were immunized,

and CD8+ T cell responses to seven pMHC and 26

secreted factors were measured using an array. Interest-

ingly, the investigators were able to detect fractional T

cell abundances as low as one cell in 10 000 (0.01%) and

they identified a correlation between the functional pro-

file and clinical outcome of the patients.

These early successes indicate that pMHC arrays

might be used broadly in vaccine and therapeutic

development [68,69]. For instance, they could identify

tumor-associated antigens from a panel of candidates for
Current Opinion in Chemical Biology 2007, 11:306–315
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targeting by TCR therapeutics [70,71] or could identify

viral peptides for inclusion in epitope vaccines. Conver-

sely, the arrays could be used during de-immunization of

therapeutic proteins. Although not yet demonstrated, the

experiment could also be inverted, using soluble TCRs to

capture cells that present specific pMHC for diagnosis or

to assess vaccine-induced cellular immunity.

Carbohydrate arrays
Carbohydrates consist of sugar units, including monosac-

charides, disaccharides, oligosaccharides and polysacchar-

ides, that can be linked to proteins as linear or branched

extensions with varying connectivity. These molecules

can profoundly affect protein folding and solubility,

pathogen infection and immune system responses [72]

and can form the basis of several vaccines (e.g. Haemo-
philus influenzae type b) [73]. However, because of their

intrinsic heterogeneity and non-template-driven biosyn-

thesis, identifying and characterizing the linkage of sugar

groups, for example by HPLC of enzymatically released

carbohydrates, has been difficult. Recent and ongoing

development of glycan arrays has been motivated largely

by the Consortium for Functional Glycomics (http://

www.functionalglycomics.org/) and has been made

possible by several technical breakthroughs, including

advances in carbohydrate immobilization [74–78].

The first arrays consisted of a variety of sugars deposited on

a slide and were used to profile the glycan-binding speci-

ficity of fluorescently-labeled anti-carbohydrate mono-

clonal antibodies, lectins and bacterial toxins [79,80�,
81�,82–88]. These might be useful for future development

of multivalent toxin inhibitors [89] or peptide mimetics for

immunization. Similar arrays have been used to demon-

strate potential cross-reactivity between the immune

response to an attenuated SARS vaccine and a self-

carbohydrate [90]. Moving towards diagnostic glycoarrays,

the GloboH hexsaccharide cancer marker and nine analogs

were arrayed and used to test monoclonal antibodies and

patient sera for GoboH-specific binding [91�].

A major application of these arrays has been to dissect the

chemical biology of pathogen–host cell attachment. A rare

and potently neutralizing antibody, 2G12, protects against

viral challenge in vivo in animal models of HIV infection,

by binding terminal Man a1-2Man residues on gp120 [92].

Carbohydrate arrays have been developed to characterize

the affinity and structural specificity of 2G12 mannose

recognition compared with other mannose-binding or

gp120-binding proteins to develop a carbohydrate tem-

plate for HIV vaccine design [81�,93,94]. With influenza A

viruses, arrays have probed the basis of species specificity

— a crucial aspect when evaluating serotypes for pandemic

potential. The virus invades cells by hemagglutinin bind-

ing to cell surface sialic acid residues, which vary in

structure based on the host species and anatomical

location. Binding of hemagglutinin variants recovered from
Current Opinion in Chemical Biology 2007, 11:306–315
pandemic and circulating strains on a 260-member glycan

array demonstrated differences in recognition of carbo-

hydrate linkages (a2-3 or a2-6, characteristic of avian and

human viruses, respectively), fucosylation and sulfation.

Interestingly, a single amino acid change (Asp255Gly) in

the pandemic 1918 H1 was found to switch specificity from

exclusively a2-6 to mixed specificity, whereas Asp190Glu

conferred complete reversion [95��,96].

A different approach is the use of these arrays to

detect pathogens directly and indirectly. Bacterial glyco-

conjugates have been arrayed and interrogated with sera in

an effort to determine an individual’s prior exposure to the

corresponding microbe [76]. Similarly, host carbohydrates

and glycoproteins that are used as bacterial receptors have

been arrayed, followed by specific capture of bacteria

binding those receptors. This approach even allowed for

microorganism recovery from arrayed spots for subsequent

growth and antibiotic susceptibility testing [97,98].

Once lectin specificity has been determined (perhaps

using comprehensive glycan arrays), the proteins can

be employed to generate complementary lectin arrays.

Here, the carbohydrate-binding proteins are immobilized

and incubated with fluorescently labeled molecules or

cells to assess the carbohydrate moieties [99–104].

Although this format is still in its early stages, one array

that contains 21 commercially available lectins was used

not only to discriminate between strains of laboratory and

pathogenic E. coli bacteria based on whole-cell binding

patterns, but also to track the temporal expression of

different glycans during the growth cycle [105�]. A limita-

tion is the number of well-characterized lectins and

antibodies available, but mechanisms for creating lectin

diversity exist in nature and could be applied to the

engineering of specific lectin properties [106].

One-third of approved biopharmaceuticals are glyco-

proteins, and the carbohydrate components of these have

long been known to affect functions such as circulating

half life, solubility and, for antibodies, complement

activity and Fc-receptor binding specificity [107]. These

effects have been primary forces in motivating the hom-

ogenization of carbohydrates on protein therapeutics

expressed in recombinant hosts [108–110]. The recent

discovery that naturally occurring antibody glycoforms

vary in their ability to mediate inflammation and cyto-

toxicity (crucial for autoimmune and cancer treatments,

respectively) [111�,112] has provided additional impetus

to control post-translational modifications. Lectin arrays

could aid in characterizing, optimizing and monitoring the

quality of biologic therapies [99].

Emerging technologies
In addition to concerns common to all microarray appli-

cations, advances in several areas are likely to be directly

applicable to studies in infection and immunity.
www.sciencedirect.com
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ne approach is to streamline cloning, expression and

purification of entire ORFeomes for antigen arrays.

Such methods include those borrowed from structural

genomics (e.g. tags for purification and immobilization

[113]) and those that generate proteins directly from

DNA (e.g. spotted viral or cell particles that present the

protein of interest on their surface [55,114], in vitro
transcription and translation of spotted transcriptionally

active DNA to produce and directly capture expressed

protein [56�,115], and spotted lentiviral arrays to

directly transfect overlaid eukaryotic cells [116]).
2. A
 second important area of development is movement

into the array format of technologies that have

expanded capabilities compared with most current

arrays, which measure binding under near-equilibrium

conditions [117]. Newer formats can extract kinetic

(e.g. the BIAcore flexchip), force (e.g. Bioforce

Nanosciences) [118,119] or thermodynamic [120]

parameters associated with the interaction, permitting

rigorous quantitative comparisons and providing

mechanistic insight.
ure 3

plexity of arrays. Depending on the ease or difficulty of producing

material used for array elements, different array formats vary greatly

he number of unique molecules that are assessed. These range from

few as seven (for the newcomer, the pMHC array) to >22 000 (for

A oligonucleotide arrays).
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3. A
 third approach involves high-throughput array-based

analysis of additional post-translational modifications,

such as phosphorylation [121] and lipidation [122,123].
Concluding remarks
Now that many of the technical hurdles have been

addressed, microarrays with new and expanded capabili-

ties (Figure 3) can monitor the genome of a pathogen with

single nucleotide precision, identify antigens that stimu-

late both arms of the immune system, and even investi-

gate the role of post-translational modifications. These

new arrays are being used to probe the interactions

between immunity and disease, and are already resulting

in significant discoveries regarding the molecular mech-

anisms of disease, vaccine development and novel thera-

peutics. Consistent with the history of infectious diseases

and technology, these newer technologies will lead to

many more exciting discoveries.
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