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Abstract

Background

The emergence of resistance against artemisinin combination treatment is a major concern

for malaria control. ACTs are recommended as the rescue treatment, however, there is lim-

ited evidence as to whether treatment and re-treatment with ACTs select for drug-resistant

P. falciparum parasites. Thus, the purpose of the present study is to investigate the impact

of (re-)treatment using artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL)

on the selection of P. falciparum multidrug resistance-1 (Pfmdr1) alleles in clinical settings.

Methods

P. falciparum positive samples were collected from children aged 12–59 months in a clinical

trial in DR Congo and Uganda. Pfmdr1 single nucleotide polymorphisms (SNPs) analysis at

codons N86Y, Y184F, and D1246Y were performed at baseline and post-treatment with

either AL or ASAQ as a rescue treatment using nested PCR followed by restriction fragment

length polymorphism (RFLP) assays.

Results

The pre-treatment prevalence of Pfmdr1 N86 and D1246Y varied significantly between the

sites, (p>0.001) and (p = 0.013), respectively. There was borderline significant directional

selection for Pfmdr1 184F in recurrent malaria infections after treatment with AL in Uganda

site (p = 0.05). Pfmdr1 NFD haplotype did not significantly change in post-treatment
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infections after re-treatment with either AL or ASAQ. Comparison between pre-treatment

and post-treatment recurrences did not indicate directional selection of Pfmdr1 N86, D1246

alleles in the pre-RCT, RCT and post-RCT phases in both AL and ASAQ treatment arms.

Pfmdr1 86Y was significantly associated with reduced risk of AL treatment failure (RR =

0.34, 95% CI:0.11–1.05, p = 0.04) while no evidence for D1246 allele (RR = 1.02; 95% CI:

0.42–2.47, p = 1.0). Survival estimates showed that the Pfmdr1 alleles had comparable

mean-time to PCR-corrected recrudescence and new infections in both AL and ASAQ treat-

ment arms.

Conclusion

We found limited impact of (re-)treatment with AL or ASAQ on selection for Pfmdr1 variants

and haplotypes associated with resistance to partner drugs. These findings further supple-

ment the evidence use of same or alternative ACTs as a rescue therapy for recurrent P.fal-

ciparum infections. Continued monitoring of genetic signatures of resistance is warranted to

timely inform malaria (re-)treatment policies and guidelines.

Introduction

Global malaria control efforts have expanded significantly. However, malaria remains a major

health challenge with approximately 212 million new cases and 429,000 malaria-related mor-

tality in 2015[1]. The success is mainly attributed to scaling up of coverage with insecticide-

treated nets (ITNs) and deploying artemisinin-based combination therapies (ACTs) for the

treatment of uncomplicated Plasmodium falciparum malaria [2]. The efficacy of ACTs depends

on the synergistic action of short-acting artemisinin derivatives and a longer acting partner

drug that eliminates the residual parasite load[3]. However, recent reports have documented

diminishing efficacy of ACTs in Great Mekong Sub-region (GMS), raising serious concerns

regarding the future of malaria control and elimination [4–6]. Despite these reports, ACTs

remain largely efficacious with adequate cure rates in sub-Saharan Africa (SSA) [7,8]. In order

to maintain ACTs as the cornerstone for malaria treatment, it is crucial that the artemisinin

derivatives and their longer acting partner drugs retain high efficacy. Currently, the most used

partner drugs in SSA are amodiaquine and lumefantrine which are combined with artesunate

(artesunate-amodiaquine, ASAQ) or artemether (artemether-lumefantrine, AL).

Treatment failure is a complex problem interplay of several factors ranging sub-optimal

drugs exposure, poor adherence to treatment, host-genetics factors and/or the emergence of

drug resistance. Recrudescence rates are low in most countries in Africa and ACTs retain high

efficacy as the first-line therapy for malaria treatment, the few reported recurrent infections

are commonly new infections [7,8]. ACTs are increasingly an integral part of malaria control

and are the recommended “rescue treatment” or “second-line treatment” for the treatment of

recurrent P.falciparum infections in addition to Quinine+antibiotic [9]. However, the emer-

gence of resistance/tolerance against the long-acting partner drugs, such as amodiaquine and

lumefantrine, may consequently affect the efficacy of the ACTs and increase the odds for

emerging resistance to the short-acting artemisinin-derivatives. Monitoring is, therefore, cru-

cial to understanding the development of a drug-mediated selection of Pfmdr1 alleles in the

patients that are treated and re-treated with ACTs as a rescue treatment. In the Democratic
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Republic of Congo, uncomplicated malaria cases are treated with ASAQ as the first line while

in Uganda, AL is the recommended regimen.

Amodiaquine (AQ) is a slow-acting 4-aminoquinoline antimalarial drug with a terminal

plasma half-life between 9–18 days, acting through its active metabolite desmethyl amodia-

quine [10]. Lumefantrine is an arylamino-alcohol drug with a half-life of 3–5 days and has

shared structural similarity to mefloquine and quinine[10]. The molecular targets and mecha-

nisms of action of lumefantrine are yet to be fully unravelled [11]. However, deteriorating clin-

ical outcomes of various antimalarial drugs, including some of the partner drugs, in particular

to 4-aminoquinoline such as chloroquine (CQ), amodiaquine (AQ) and piperaquine (PQ) and

aryl-amino alcohol based drugs (lumefantrine, quinine and mefloquine) is alarming as may

increase rates of treatment failures.

P. falciparum multidrug resistance transporter 1 (Pfmdr1) gene occurs on Chromosome 5 and

encodes for P-glycoprotein homologue 1 (Pgh1) protein located in the digestive vacuole of the par-

asite. Pfmdr1 is of interest because of the described role of the polymorphisms at codon N86Y,

Y184F, S1034C, N1042D, and D1246Y in drug resistance. The polymorphisms were associated

with altered parasite susceptibility to several classes of antimalarials [11–15]. Drug pressure due

to artemisinin derivatives partner drugs was shown to exert directional selection of Pfmdr1 86Y,

Y184 and 1246Y variants in amodiaquine(AQ) and while AL and Mefloquine (MQ) inversely

selected for N86, 184F D1246 variants [12,16–18]. Similar observations were documented in in
vitro and ex vivo susceptibility assays [19–21]. Pfmdr1 SNPs exert altered susceptibility profile to

other antimalarials including mefloquine(MQ), chloroquine(CQ) and quinine(QN) [13,14].

Interestingly, it was recently shown that Pfmdr1 86Y increases parasite susceptibility to dihy-

droartemisinin, which is the active artemisinin metabolite of artemisinin derivatives[15].

In addition, Pfmdr1 haplotypes are an important determinant in modulating the level of

resistance. Early treatment failures(ETF) that occur between day 2–3 post-treatment with AL

and DHA-PQ, were more significantly shown to harbour Pfmdr1 NFD haplotype in the previ-

ous study [22]. Furthermore, Pfmdr1 haplotypes are differentially selected, for instance,

Pfmdr1 YYY haplotype (86Y, Y184 and 1246Y) was shown to be selected after exposure to arte-

sunate-amodiaquine(ASAQ) while AL inversely exerted selective pressure of Pfmdr1-NFD
haplotype(N86, 184F and D1246) [16,23]. The observation was further exemplified by Malm-

berg et al [24] that well demonstrated the ability of the parasites harbouring Pfmdr1 NFD hap-

lotype to withstand a 15-folds concentration of lumefantrine compared to Pfmdr1 YYY in re-

infecting parasites [24]. Also, evidence suggests an association between the Pfmdr1-NFD and

increased risk of gametocyte carriage following treatment with AL [23]. In addition, variation

in Pfmdr1 copy number (CNVs) has been shown to modulate drug sensitivity pattern of the

partner drugs, mefloquine, lumefantrine and piperaquine, confined in the SEA in the Great

Mekong sub-region [12,25,26].

We investigated the impact of subsequent treatment courses with ACTs, either the same or

alternative, on the selection of Pfmdr1 polymorphisms in clinical settings in DR Congo and

Uganda.

Material and methods

Study design and participants

The protocol and the outcome of the clinical trial for this molecular analysis were published

separately [27,28]. Briefly, the trial was a bi-centre, open-label, randomised, three-arm phase 3

trial (2:2:1 ratio) conducted in Lisungi health centre in DR Congo, and Kazo health centre in

Uganda in 2012–2014. In the pre-randomized controlled (Pre-RCT) phase of the trial, the

patients were treated with the first-line treatment as per respective country i.e. artesunate-
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amodiaquine (ASAQ) in DR Congo and artemether-lumefantrine (AL) in Uganda and fol-

lowed up for 42 days. Patients who experienced malaria between day 14–42 were enrolled in

randomised control trial (RCT) phase and assigned either ASAQ, AL or Quinine+clindamycin

(QnC). The patients that presented with clinical or parasitological failure post day 14 were

recruited in post-randomization control (post-RCT) trial phase and were re-treated according

to the country malaria treatment guideline [28].

Sample collection

P. falciparum microscopically positive samples for this study were collected in Uganda and DR

Congo as part of the QuinACT clinical trial described above [28]. We analysed samples in pre-

RCT phase, RCT phase and post-RCT phases from ASAQ and AL arms of the QuinACT trial.

The samples from QnC arm were excluded because Pfmdr1 is not associated with Quinine

resistance. Fingerprick samples of blood were collected on filter paper (Whatman 3MM, Maid-

stone, UK), air-dried, labelled and stored in a desiccator containing silica gel until further

processing.

DNA extraction

DNA isolation from dried blood spots was done using QIAmp DNA Mini Kit as per manufac-

turer’s instructions (Qiagen1, Hilden, Germany). Isolated DNA was stored at -20˚C until fur-

ther use in the downstream applications.

PCR and RFLP assays

The extracted samples were amplified by outer and nested PCR protocols for amplification of

Pfmdr1 genes targeting single nucleotide polymorphisms (SNPs) at codons N86Y, Y184F and

D1246Y followed by restriction fragment length polymorphism (RFLP) digestion using

restriction enzymes as previously described [29].

Data analysis

Data management and analyses were performed using Stata, version 13(StataCorp, College

Station, TX, USA). Prevalence of Pfmdr1 N86Y, Y184F and D1246Y alleles and haplotypes

were calculated and compared between the treatment arms and sites. Mixed alleles are pre-

sented in prevalence data, however, excluded when constructing the Pfmdr1 haplotypes. Chi-

square or Fisher exact tests were used to assess the associations between categorical variables.

McNemar’s test or exact McNemar’s test were used to determine the directional selection for

Pfmdr1 alleles in patients with P.falciparum recurrent infections in matched analysis between

pre-treatment and post-treatment in the different trial phases. Risk Ratios (RR) and adjusted

odds ratios (aORs) with 95% confidence intervals (CIs) were used to assess the association

between Pfmdr1 SNPs or haplotypes and treatment outcomes. Multivariate logistic regression

was used to determine factors associated with PCR-corrected treatment failures and new infec-

tions adjusted for such as age, site, anaemia, fever, and parasite density. The cumulative risk of

treatment failure or new-infections by Pfmdr1 alleles and haplotypes were analysed using

Kaplan-Meier survival analysis and the comparison was made by using log-rank test. P-values

were considered significant at�0.05.

Ethical considerations

The study was approved by the Ethical Committee of the University of Antwerp, Belgium, the

Uganda National Council for Science and Technology, Uganda and the Ethics Committee of
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the School of Public Health, University of Kinshasa, DR Congo. Informed consent was

obtained from all participants through their parents or legal guardians [27]

Results

Demographic and clinical characteristics of patients

A total of 755 samples were analysed for Pfmdr1 SNPs polymorphisms in pre-RCT, RCT and

post-RCT phases. Of those, proportions of the successfully genotyped samples were; 732/755

(97%), 729/755 (96.6%) and 736/755 (97.5%) in codon 86, 184 and 1246 respectively. Of

those, a total of 242 patients with uncomplicated P.falciparum infections were randomised to

either ASAQ (n = 114) or AL (n = 128) (Table 1). The proportion of males and females

enrolled was similar between both study sites and also by treatment randomization

(Table 1). The mean weight was 12.7kg and 12.0kg in DR Congo and Uganda, respectively

and was also similar between treatment arms. In terms of the clinical characteristics, the geo-

metric mean parasitemia was comparable by site and treatment allocation. The proportion of

the treatment allocation for patients receiving AL vs ASAQ was 56.5% vs 43.5% and 50% vs
50% in Congo and Uganda, respectively. The bednet ownership was approximately 50% for

each site and was marginally higher in AL (58.7) vs ASAQ (41.3) treatment arm, (p = 0.07),

(Table 1).

Baseline prevalence of Pfmdr1 alleles and combined Pfmdr1 haplotypes by

the site during the RCT phase

Overall, in DR Congo the Pfmdr1 SNPs results revealed that about half of the parasites har-

boured Pfmdr1 N86, whereas in Uganda it was high almost at fixation point(52.8% vs 91%),

(χ2 = 38.26, p<0.001). The mutant Pfmdr1 86Y was found at high proportion in DR Congo in

comparison to Uganda (37.9% vs 7.5%). Pfmdr1 Y184 (wildtype) variant was observed at high

proportions at both sites (56.5% vs 67.2%), (χ2 = 5.04, p = 0.08). The prevalence of Pfmdr1
D1246 was significantly higher in DR Congo in comparison to the Ugandan site (88.9% vs
73.9%), (χ2 = 8.65, p = 0.013). Logically, the Ugandan site harboured higher prevalence of the

Pfmdr1 1246Y (9.2% vs 20.9%). The prevalence of the Pfmdr1-NFD and non-NFD haplotypes

did not seem to vary between the sites (χ2 = 0.06, p = 0.81), (Table 2).

Selection of Pfmdr1 alleles and haplotypes associated with ASAQ and AL

resistance in different trial phases

The analyses of the matched samples at baseline (D0) in comparison to the post-treatment

recurrence infections (PCR-corrected recrudescent and new-infections) at the pre-RCT, RCT

and post-RCT phases were performed using McNemar’s test for isolates at Pfmdr1 at codon

86, 184, and 1246 (Table 3). Following treatment with ASAQ in DR Congo in the pre-RCT,

there was no evidence to suggest directional selection for Pfmdr1 86Y (p = 0.32), Y184

(p = 0.13) and 1246Y (p = 0.27) alleles in the recurrent infections. Likewise, in the RCT phase

where the patients were re-treated with the same treatment (ASAQ) or the alternative treat-

ment (AL), there was no apparent selection of certain Pfmdr1 alleles, albeit the sample size was

low. Similar results were found for the post-RCT phase.

Similarly, in Ugandan site, no significant evidence for directional selection of Pfmdr1 N86

(p = 0.07) and D1246 (p = 0.6) in patients with recurrent infections treated with AL treatment

in the pre-RCT phase. However, there was there was marginal evidence to suggest a directional

selection of Pfmdr1 184F (p = 0.0555), (Table 3). For the RCT phase, patients who received

same AL as a rescue treatment and those received alternative treatment, ASAQ, no significant
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selection for the Pfmdr1 allele was detected, (Table 3). Also, similar findings were observed in

post-RCT where patients with recurrent infections and treated using AL. However, the sample

size was low to provide statistical power for the recurrent infections in the RCT and Post-RCT

phase.

Table 1. Patients demographic and clinical characteristics at baseline of the randomisation phase of the QuinACT trial in DR Congo and Uganda sites.

Characteristics Study sites Treatment allocation

Total (n = 242) DR Congo (n = 108) Uganda (n = 134) AL(n = 128) ASAQ(n = 114)

Number (%) male 129(53.3) 60 (46.5) 69(53.5) 68(50.9) 61(53.5)

Weight (kg) (median [IQR]) 12.5(9.0–20.5) 12.7(9.0–18.0) 12.0(9.0–20.5) 12.5(9.0–20.5) 12.35(9.0–19.0)

Age (months) (median[IQR]) 34(25.0–48.0) 34(26.5–49.5) 34.0 (24–44) 34.5(24.5–48.0) 34.0(25.0–44.0)

No. of patients in age groups:

<23 months¥ 53(21.9) 21(19.4) 32.0(23.9) 31.0(58.5) 22.0(41.5)

24–35 months 79(32.6) 37(34.5) 42.0(31.3) 37.0(46.8) 42.0(53.2)

36–47 months 49(20.3) 17(15.7) 32.0(23.9) 25.0(51.0) 24.0(49.0)

48–60 months† 61(25.2) 33(30.6) 28.0(20.9) 35.0(57.4) 26.0(42.6)

Temperature (˚C) (median [IQR]) 37.8(36.1–41.8) 38.1 (36.2–41.3) 37.8(36.1–41.8) 37.9(36.2–41.8) 37.8(36.1–41.4)

Treatment allocation

Artemether Lumefantrine (AL) n (%) 128.0(52.9) 61(56.5) 67.0(50.0) - -

Artesunate Amodiaquine (ASAQ) n (%) 114.0(47.1) 47(43.5) 67.0(50.0) - -

Bednet ownership□, n (%) 121.0(50.0) 60.0(49.6) 61.0(50.4) 71.0(58.7) 50.0(41.3)

Haemoglobin in g/dL, (range) 10.3(6.0–14.4) 10.4(6.2–14.4) 10.2(6.0–14.1) 10.4(6.0–14.4) 10.3(6.5–14.1)

GMP density (95% CI) 32137(26588–38843) 34997(27361–44765) 30003(22648–39748) 33200(25270–43617) 30984(23773–40385)

IQR = Interquartile ranges, AL = artemether-lumefantrine, ASAQ = artesunate-amodiaquine, GMP = geometric mean parasite density. The characteristics were

comparable, except; Bednet ownership (p = 0.007)□ and Number of patient in age group (48-60months)† and (<23 months)¥ as stratified per treatment allocation,

(p = 0.02) and (p = 0.008), respectively, were statistically different.

https://doi.org/10.1371/journal.pone.0191922.t001

Table 2. Baseline prevalence of Pfmdr1 polymorphisms and haplotypes among isolates from DR Congo and Uganda site in the randomisation phase.

SNPs codon Pfmdr1 variants Baseline prevalence at RCT P-value

DR Congo (n = 108) Uganda (n = 134)

n/N % [95%, CI] n/N % [95%, CI]

c86 N86 (Wildtype) 57/108 52.8[43.4–62.2] 122/134 91.0[86.2–95.9]

N86Y(Mixed) 10/108 9.3[3.8–14.7] 2/134 1.5[0–3.5] <0.001

86Y (Mutant) 41/108 37.9[28.8–47.1] 10/134 7.5[3.0–11.9]

c184 Y184(Wildtype) 61/108 56.5[47.1–65.8] 90/134 67.2[59.2–75.1]

Y184F(Mixed) 3/108 2.8[0–5.9] 7/134 5.2[1.5–9.0] 0.08

184F (Mutant) 44/108 40.7[31.5–50.0] 37/134 27.6[20.0–35.2]

c1246 D1246 (Wildtype) 96/108 88.9[83.0–94.8] 99/134 73.9[66.4–81.3]

D1246Y (Mixed) 2/108 1.9[0–4.4] 7/134 5.2[1.5–9.0] 0.01

1246Y (Mutant) 10/108 9.2[3.8–14.7] 28/134 20.9[14.0–27.8]

c86-c184-c1246 NFD haplotype† 18/62 29.0[17.7–40.3] 29/94 30.9[21.5–40.2] 0.81

Non-NFD haplotype† 44/62 71.0[59.7–82.3] 65/94 69.1[59.8–78.5]

RCT = randomisation phase of the clinical trial; Pfmdr1 = P.falciparum multidrug resistance 1 gene; SNPs = Single nucleotide polymorphisms; n = sample size; NFD =

Combination N86–184F-D1246 combination.
†Haplotypes excluding mixed alleles.

P-values are based on the Pearson’s Chi-square test. Significant values are presented in bold type.

https://doi.org/10.1371/journal.pone.0191922.t002
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Table 3. Drug-mediated directional selection of the Pfmdr1 alleles at codon 86, 184, and 1246 in isolates collected from children with recurrent malaria infections

following (re-)treatment with AL or ASAQ.

Phase Pfmdr1
variants

Genotype

change

ASAQ treatment arm AL treatment arm

Discordant allele at recurrence

compared to baseline (Dx/D0 (%))

MacNemar χ2(P-

value)

Discordant allele at recurrence

compared to baseline (Dx/D0 (%))

MacNemar χ2 (P-

value)

Pre-

RCT‡
Pfmdr1 N86 N!Y 28/59(47.5) 1.0(0.32) 10/109(9.2) 2.79(0.07)

Pfmdr1 86Y Y!N 21/31(67.7) 19/20(95.0)

Pfmdr1
F184

F!Y 13/32(40.6) 2.3(0.13) 22/99(22.2) 3.67(0.055)

Pfmdr1
184Y

Y!F 22/58(37.9) 11/25(44.0)

Pfmdr1
D1246

D!Y 9/97(9.3) 1.92(0.17) 15/94(16.0) 0.27(0.6)

Pfmdr1
1246Y

Y!D 4/5(80.0) 18/26(69.2)

RCTa Pfmdr1 N86 N!Y 1/11(9.1) 1.0† 0/13(0) 0.25†

Pfmdr1 86Y Y!N 1/2(50.0) 3/3(100.0)

Pfmdr1
F184

F!Y 3/4(75.0) 1.0† 1/3(33.3) 1.0†

Pfmdr1
184Y

Y!F 2/11(18.2) 1/11(9.1)

Pfmdr1
D1246

D!Y 4/11(36.4) 0.37† 2/12(16.7) 1.0†

Pfmdr1
1246Y

Y!D 1/3(33.3) 2/3(66.7)

RCTb Pfmdr1 N86 N!Y 1/3(33.3) 0.63† 1/10(10.0) 1.0†

Pfmdr1 86Y Y!N 3/3(100.0) 0/4(0)

Pfmdr1
F184

F!Y 1/3(33.3) 0.50† 0/3(0) 1.0†

Pfmdr1
184Y

Y!F 0/4(0) 0/10(0)

Pfmdr1
D1246

D!Y 0/7(0) 1.0† 0/15(0) 1.0†

Pfmdr1
1246Y

Y!D 0(0) 0(0)

Post-

RCT‡
Pfmdr1 N86 N!Y 1/1(100.0) 1.0† 1/24(4.2) 0.38†

Pfmdr1 86Y Y!N 2/3(0.67) 4/5(80.0)

Pfmdr1
F184

F!Y 0/1(0) 1.0† 1/1(100.0) 1.0†

Pfmdr1
184Y

Y!F 0/2(0) 1/1(100.0)

Pfmdr1
D1246

D!Y 1/4(25.0) 1.0† 1/2(50.0) 1.0†

Pfmdr1
1246Y

Y!D 0(0) 0(0)

ASAQ = Artesunate-amodiaquine; AL = artemether-lumefantrine;
‡ = Treatment were administered according to the country recommended guideline i.e AL in Uganda and ASAQ in DR Congo; Pre-RCT = pre-randomized controlled

trial phase; RCT = randomized controlled trial phase; Post-RCT = post-randomized controlled trial phase;
a = Uganda site;
b = DR Congo site;

n = number of samples at baseline; Dx = Pfmdr1 allele changed in the recurrence infections (all PCR-corrected recrudescent and new-infections);
† = Exact McNemar’s test was used if n<5. The directional selection of the marker was tested by using McNemar’s χ2-test or Exact McNemar’s test for paired pre- and

post-treatment samples. Mixed alleles were excluded from the analysis. Significant values are presented in bold type.

https://doi.org/10.1371/journal.pone.0191922.t003
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Further, we assessed the selection of Pfmdr1 NFD haplotype (N86- 184F-D1246 vs. non-

NFD haplotypes comparing baseline with post-treatment isolates (Fig 1). In the DR Congo-

site, the proportion of the Pfmdr1-NFD haplotypes did not significantly change in isolates

from patients that received either same ASAQ or AL as an alternative drug in the course of the

study (Fig 1). However, for the Ugandan site (with exception of the RCT phase), there was a

marginal reduction in the proportion of isolates harbouring Pfmdr1-NFD haplotype in new

infections in AL treatment arm (p = 0.052), (Fig 1). Although not statistically significant, the

general trend indicates that the proportion of the Pfmdr1 NFD in treatment failure (TF)

slightly increased from the baseline in pre-RCT and RCT in AL retreatment arm (Fig 1A). On

the contrary, retreatment with ASAQ seems to have the opposite effect on the proportion of

NFD haplotype (Fig 1).

Fig 1. Comparison of the distribution of Pfmdr1 NFD and non-NFD haplotypes (95% Confidence intervals) by site in pre- and post-

treatment outcomes in AL and ASAQ treatment arms. Haplotypes present amino acid residues at codon N86Y, Y184F, D1246Y

(N = Asparagine, Y = Tyrosine, F = Phenylalanine, D = Aspartic acid, K = Lysine, T = Threonine). D0 = Day 0, TF = PCR-corrected treatment

failure, ACPR = Adequate clinical and parasitological response.

https://doi.org/10.1371/journal.pone.0191922.g001
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Association between Pfmdr1 alleles and the treatment failure after

treatment with AL and ASAQ in randomization phase

We assessed the relative risk (RR) of treatment failure (PCR adjusted) in the RCT phase and of

various Pfmdr1 alleles and as well, the haplotypes following treatment with AL and ASAQ

(Table 4). The parasites harbouring the Pfmdr1 86Y had significantly lower risk of treatment

failure post AL treatment compared to 86N (relative risk [RR] = 0.34; 95% CI = 0.11–1.05,

p = 0.04), (Table 4). The Pfmdr1 Y184 and D1246 were not associated with risk of treatment

failure after AL treatment, (RR = 0.50; 95% CI: 0.17–1.49, p = 0.26) and (RR = 1.02; 95% CI:

0.42–2.47, p = 1.0), respectively (Table 4). Likewise, the NYY haplotype was not significantly

associated with risk of treatment failure relative to the Pfmdr1 NFD haplotype after exposure

to AL (RR = 1.16; 95% CI: 0.70–1.92; p = 0.59). None of the Pfmdr1 alleles was associated with

ASAQ treatment failure, (Table 4). Similarly, Pfmdr1 NYY and NYD did not seem to affect the

Table 4. Association of Pfmdr1 alleles and haplotypes and risk of RCR-adjusted treatment failure following treatment with Artemether-Lumefantrine and Artesu-

nate-Amodiaquine.

Treatment Pfmdr1 SNPs Treatment outcomes, n (%) RR (95%,CI) P-value
Success, n/N(%) Failure, n/N(%)

AL N86 57/84(67.9) 27/84(32.1) 0.34(0.11–1.05) 0.04†

86Y 24/27(88.9) 3/27(11.1)

Y184 61/87(70.1) 26/87(29.9) 0.50(0.17–1.49) 0.27†

184F 17/20(85.0) 3/20(15.0)

D1246 69/96(71.9) 27/96(28.1) 1.02(0.42–2.47) 1.0†

1246Y 10/14(71.4) 4/14(28.6)

N-F-D¥ 20/24(83.3) 4/24(16.7) 1.71(0.39–7.48) 0.59†

N-Y-Y 5/7(71.4) 2/7(28.6)

N-Y-D 21/29(72.4) 8/29(27.6) 1.66(0.57–4.8) 0.51†

Y-F-D 5/6(83.3) 1/6(16.7) 1.00(0.14–7.39) 1.00†

Y-Y-D 6/9(66.7) 3/9(33.3) 2.0(0.55–7.2) 0.36†

Y-Y-Y 1/1(100.0) 0/1(0) - 1.0†

ASAQ N86 59/79(74.7) 20/79(25.3) 1.03(0.47–2.26) 0.94

86Y 17/23(73.9) 6/23(26.1)

Y184 49/68(72.1) 19/68(27.9) 0.84(0.41–1.70) 0.63

184F 26/34(76.5) 8/34(23.5)

D1246 62/86(72.1) 24/86(27.9) 0.63(0.21–1.86) 0.54†

1246Y 14/17(82.4) 3/17(17.6)

N-F-D¥ 16/23(69.6) 7/23(30.4) 0.54(0.08–3.64) 0.65†

N-Y-Y 5/6(83.3) 1/6(16.7)

N-Y-D 23/36(63.9) 13/36(36.1) 1.18(0.56–2.52) 0.78

Y-F-D 7/7(100.0) 0/7(0) - -

Y-Y-D 7/7(100.0) 0/7(0) - -

Y-Y-Y 0/0(0) 0/0(0) - -

SNP = single nucleotide polymorphisms; ACPR = adequate clinical and parasitological response, Failure = All treatment failure are PCR-adjusted, AL = Artemether-

Lumefantrine; ASAQ = Artesunate-Amodiaquine; RR = Relative Risk; CI = 95% confidence interval;
¥ = Pfmdr1-NFD haplotypes was used as a reference for comparison.
†Fisher-Exact probability test with Yates-correction was used if sample size was <5.

Haplotypes present amino acid residues at codon N86Y, Y184F, D1246Y (N = Asparagine, Y = Tyrosine, F = Phenylalanine, D = Aspartic acid, K = Lysine,

T = Threonine. Significant P-values (95% CI) are presented in boldface

https://doi.org/10.1371/journal.pone.0191922.t004
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risk of ASAQ treatment failure, (RR = 0.54; 95% CI: 0.08–3.64; p = 0.65) and (RR = 1.18; 95%

CI: 0.56–2.52; p = 0.78), respectively, (Table 4).

Predictors for P. falciparum recrudescence and new-infections

Anaemia was a strong predictor of recrudescence in patients treated with AL (aOR = 16.71;

95% CI: 1.86–149.26, p = 0.012), (S1 Table). There was no evidence to suggest the role of

Pfmdr1 SNPs in modulating the risk of recrudescence in this AL treatment arm (S1 Table). In

addition, in the AL treatment arm, Pfmdr1 184F was associated with an increased risk of new-

infections (aOR = 2.92; 95% CI: 0.99–8.53; p = 0.0486). None of the Pfmdr1 variants and were

associated with risk of PCR-corrected recrudescent or new infections in the ASAQ arm. Anal-

ysis of the Pfmdr1-NFD and non-NFD haplotypes did not reveal significant association trend

with either the re-infection or recrudescence in either AL or ASAQ treatment arms, (S1

Table).

Survival estimates to recrudescence and new infections stratified by

Pfmdr1 alleles

The 28-days survival estimates of the Pfmdr1 alleles in relation to the occurrence of recrudes-

cence was conducted for AL (n = 110) and ASAQ (n = 104) treatment arms in the RCT phase.

We noted no difference in AL treatment arm. Time to treatment failure tended to occur

late (> 20days) after AL treatment and was comparable between Pfmdr1 N86 vs 86Y, (27.7

mean days (md); 95% CI: 27.4–28.0 vs 27.4 md; 95% CI: 26.3–28.5; p = 0.97). Similarly, the

mean time to treatment failure in patient harbouring either Pfmdr1 184F and 184Y had com-

parable survival estimates [27.9md; 95% CI: 27.7–28.1 vs 27.3md; 95% CI: 26.4–28.1; p = 0.75).

Similar trend was observed with regard to the Pfmdr1 D1246 and 1246Y, (27.6md; 95% CI:

27.1–27.9 vs 28md; 95% CI: 28–28; p = 0.42), (Fig 2).

Treatment failure tended to occur late (>20 days) after ASAQ treatment arm with close

similarity between Pfmdr1 N86 vs 86Y alleles, (27.5md; 95% CI: 26.9–27.9 vs 27.3md, 95% CI:

Fig 2. Survival estimates of the cumulative risk of treatment failure by Pfmdr1 alleles in patients treated with AL and ASAQ in the

randomisation phase. Fig 2(A1-A3) represent the risk of PCR-adjusted recrudescence in participants who received AL harbouring by Pfmdr1
variant. Similarly, Fig 2(B1-B3) represents the risk of PCR-adjusted recrudescence in participants who received ASAQ by Pfmdr1 variants.

https://doi.org/10.1371/journal.pone.0191922.g002
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26.4–28.2; p = 0.97). Similarly, patients harbouring either Pfmdr1 184F or Y184 also had com-

parable mean-time to recrudescence [(27.6md; 95% CI: 27.1–28.0 vs 27.2md; 95% CI: 26.2–

28.1; p = 0.75). Furthermore, no difference was observed when comparing Pfmdr1 D1246 and

1246Y (27.4md; 95% CI: 26.9–27.9 vs 27.5md; 95% CI: 26.6–28.4; p = 0.42), (Fig 2). A similar

trend was observed when considering new-infections (PCR-adjusted) and crude treatment

failure (PCR-unadjusted) in both AL and ASAQ treatment arms, (S1 Fig).

Discussion

Our data suggest a limited drug-mediated selection of Pfmdr1 alleles after exposure to AL and

ASAQ suggesting a restricted impact on the selection of Pfmdr1 alleles previously associated

with reduced sensitivity to 4-aminoquinolines and aryl-aminoquinolines partner drugs. The

results supplement the evidence on the ACTs as a possible rescue treatment for curing recur-

rent P.falciparum malaria with restricted impact on the selection of drug-resistant malaria par-

asites [27].

We observed significant variation in the baseline Pfmdr1 among the two sites. In Uganda,

the baseline prevalence of the Pfmdr1 N86 was significantly higher while in DR Congo Pfmdr1
86Y was more predominant. However, on both sites, there was no evidence of drug-mediated

selection in either phase except the observed borderline directional selection for Pfmdr1 184F

and borderline significance for Pfmdr1 N86 in recurrent infections after AL treatment

(Table 3). The observed selection could indicate that AL for the Pfmdr1 184F allele in patients

with malaria recurrences and could subsequently increase the circulation of parasite harbour-

ing the Pfmdr1 NFD haplotype known to tolerate high concentrations of lumefantrine [24].

The results mirror the previous finding that demonstrated a strong selection of Pfmdr1 184F

that persisted for a prolonged duration (2months) after treatment with AL, but not ASAQ in

Uganda [30]. Reports in DR Congo suggests a high prevalence of Pfmdr1 86Y, 184F, D1246

[31] while in Uganda evidence suggest a high prevalence of Pfmdr1 N86 in most settings

[17,30]. However, we found no marked difference in the frequency of Pfmdr1 NFD and non-
NFD haplotypes in Ugandan and DR Congo in patients. Although ASAQ is the recommended

first-line treatment in DR Congo, both AL and ASAQ are used in the treatment of uncompli-

cated malaria exerting a balanced selection pressure on Pfmdr1 alleles compared to Uganda

where AL is more widely used. The trend suggests that usage of different or alternating ACTs

may delay the development of resistance by exerting inverse selection pressure on the parasites

[26]. We found significant evidence increased in relative risk of treatment failure (PCR-

adjusted) associated with Pfmdr1-N86 in patients treated with AL, however, none of the

Pfmdr1 alleles was associated with ASAQ treatment failure, (Table 2). The findings are in con-

cordance with a meta-analysis data that suggested 5-folds increased the risk of treatment fail-

ure in the patients treated with AL[26]. However, we could not associate the increased risk of

ASAQ of failure in patients harbouring Pfmdr1 86Y after treatment which compares to other

reports elsewhere [16,26]. None of the Pfmdr1 haplotypes was associated with AL or ASAQ

treatment, however, there were few Pfmdr1 haplotypes detected in post-treatment to allow

meaningful statistical power for comparison.

In multivariate analysis, none of the Pfmdr1 alleles had no significant association with treat-

ment failure or risk of new-infections after treatment with ASAQ. In AL treatment arm,

patients harbouring Pfmdr1-184F had significantly higher risk of new-infection, in line with a

study that reported an association between lumefantrine and Pfmdr1 F184 in ex-vivo assay

[32]. Interestingly, patients with anemia were increasingly at high risk of recrudescence in AL

treatment arm, this may be supported the fact that the risk of acquiring anaemia is high in

patients with high parasite density (<200,000/μL)) which was shown to be an independent
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risk factor for clinical treatment failure by up to 60% for the different antimalarial treatment

[33]. This is further reinforced by the evidence that falciparum infected patients that responded

poorly to the treatment were more likely to recrudesce and consequently increased their risk

of anaemia [34]. However, it is reassuring that, with the high efficacy of AL, the risk of treat-

ment failure and selection of drug-resistant parasites after repeated ACT administration is low

in most endemic settings in SSA. Additionally, Pfmdr1 NFD haplotype showed increasing

trend in the RCT phase in patients with TF administered AL as a rescue treatment, these find-

ings are in line with evidence from previous studies that demonstrated increased level after AL

exposure [13,16]. The comparison of the pre- and post-treatment indicate an increasing over-

all trend indicate that the proportion of the Pfmdr1 NFD in treatment failure(TF) slightly

increased from the baseline in pre-RCT and RCT in AL retreatment arm (Fig 1), however, this

was not statically significant. On the contrary, retreatment with ASAQ seems to have the oppo-

site trend on the proportion of Pfmdr1 NFD haplotype (Fig 1). In most of the countries where

AL is the first-line treatment, the proportion of the Pfmdr1 Y86 seems to decline over time

decreasing the overall proportion of NFD haplotypes, further depicting the opposing drug-

mediated selection of resistant alleles [29,35,36].

With regard to the impact of treatment and re-treatment on selection for drug resistance

markers, we did not observe a directional selection of Pfmdr1 86Y, Y184 and 1246Y in patients

that received ASAQ as their first-line and as an alternative therapy in RCT phase in both sites.

Similarly, the same trend for with regard to the selection of the Pfmdr1 N86 and D1246 in

patients that received AL as the first-line regimen and then randomised to receive the same AL

or ASAQ as a rescue therapy in RCT phase. Generally, there is evidence that (re-) treatment

with same or alternative ACT offers limited impact in terms of selection for Pfmdr1 resistant

alleles and haplotypes as documented in most of the trial phases, pre-RCT, RCT, and post-

RCT. This could be further be supported by other studies that documented related fitness cost

as it was shown by Fröberg et al [37], that demonstrated that although ASAQ selects for

Pfmdr1 mutations associated with ASAQ reduced susceptibility, there is a significant fitness-

cost incurred to the parasite rendering them unfit to compete with the wild type variants. Our

findings, thus, suggest the limited impact of the ASAQ and AL on selection for Pfmdr1 allele

when used as a rescue therapy in (re-)treatment of recurrent infections in real-life settings.

Currently, there are limited systematic studies that evaluated changes of Pfmdr1 alleles and

haplotypes in the context of (re-)treatment approach. In a prolonged follow-up in Uganda,

there was a clear significant selection of Pfmdr1 N86, 184F and D1246 alleles prior treatment

with AL but not after ASAQ treatment [30]. Also, recent findings in Burkina Faso presented

conflicting results on select of Pfmdr1 N86 [38,39]. Other studies suggest increased selection of

the Pfmdr1 alleles prevalence in the parasite population following treatment with AL and

ASAQ [14,18,26,40,41]. The plausible explanation for the observed differences could be the

differences in country treatment policy. Also, the shorter half-life of lumefantrine is unlikely to

have conferred strong directional selection for Pfmdr1 copy number in sub-Saharan African

parasite populations that are known to harbour less copy number compared to SEA where

MQ is widely used [12,26]. I addition, the synergistic action of artemether and lumefantrine

exerted on the parasite could also play a role, artemether has retained the high efficacy due to

the rapid reduction in parasite biomass rendering a relatively low risk to parasite infections

being exposed to the selective pressure of the partner’s drug.

Furthermore, we presume that other factors such as drug bioavailability, transmission

intensity, intrinsic human genetic factors and immunity could also contribute to the observed

outcomes, however, these were not explored in the scope of the present study.

As a limitation to the present study, the association between risks of treatment failure in

relation to Pfmdr1 genotypes was restricted by the low sample size in the RCT and post-RCT.
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Furthermore, we did not analyse changes in Pfmdr1 copy number variation (CNV) that has

been previously associated with lumefantrine tolerance. In GMS where parasites are resistant

to artemisinin derivatives and partner drugs such as Mefloquine (MQ), increased Pfmdr1
CNVs is reportedly high in contrast to most endemic settings in sub-Saharan Africa [12,26].

Nonetheless, despite the observed occurrence of wild haplotype Pfmdr1 N86, Y184, and D1246

alleles in pre- and post-treatment isolates, AL still maintain high 28-day in vivo efficacy (>90%

PCR-adjusted efficacy rate) in parasite populations in Uganda and elsewhere in sub-Saharan

Africa [8]. In DR Congo, ASAQ retains high sensitivity due to the demonstrated low occur-

rence of the Pfmdr1 YYY and also the rare occurrence of SVMNT haplotype reported else-

where[42]. Overall, there is limited reports evidence of declining ACT efficacy, except the

demonstrated marginal elongation of parasites clearance time (PCT) and cases of treatment

failure in clinical the coast of Kenya and report of imported malaria cases isolated from UK

based travellers returning from Africa [43,44]. The high efficacy is depicted in the recent larger

multicentre studies that demonstrated distinct clusters of parasite population in Africa and

South-East Asian isolates with the limited dispersal of parasites strains carrying Pfkelch-13 key

mutations in Africa settings and these include baseline samples from our QuinACT trial[45–

47]. However, despite these observations, new-infections remain exposed to sub-therapeutic

levels of partner’s drugs due to their relative longer elimination half-lives and this may increase

drug-mediated selective pressure on the Pfmdr1 gene. Additionally, over-prescription and

over-the-counter prescription of ACTs both first-line and the second line should be restricted

to reduce unnecessary drug pressure.

Furthermore, our data suggest no difference in time to PCR-adjusted treatment failure in

both treatment arms in standard 28-days follow-up during the randomisation phase (Fig 2,

and S1 Fig). Also, similar results were observed when considering crude treatment failure

(PCR unadjusted treatment failure) and PCR-corrected new-infections. There was a low risk

of early PCR-adjusted treatment failure supporting the previous reports that the risk of Pfmdr1
associated new-infections occurs later in>20days [26]. In most settings in Africa, the majority

of malaria recurrences are classified as new-infections after PCR-correction. However, we did

not observe significant differences in survival estimates between Pfmdr1 wild variants treat-

ment failure or new-infections in both AL and ASAQ arms as reported elsewhere[26].

In light of our findings, we have demonstrated that AL and ASAQ can be used as a rescue

treatment to treat recurrent falciparum malaria in real-life settings without exerting additional

selection pressure on the Pfmdr1 gene. The observed selection of Pfmdr1 184F in new infec-

tions after treatment with AL warrants further investigations as the drug is increasingly used

for (re-)treatment of recurrent malaria infections in several endemic countries. It may seem,

therefore, plausible to consider the use of alternative ACT with the opposing mechanism of

selection against on the Pfmdr1 gene as a stopgap strategy to counterbalance drug-mediated

should ACT resistance worsen due to selection pressure. For instance, in countries where

treatment policy recommends AL as the first-line therapy, ASAQ or DHA-PQ could be con-

sidered reciprocally to reduce the risk of directional drug-mediated selection of resistant

alleles, a similar strategy has been previously supported [26,37,48]. Additionally, there is

accrued evidence that simultaneous use of multiple first-line ACT therapies (MFT) is an ideal

strategy to delay evolution and spread of resistance against artemisinin derivatives and part-

ners drugs, on-going evaluation will inform on the appropriate models to facilitate the imple-

mentation and management of MFT strategy for the treatment of uncomplicated malaria[49–

51]. Thus, to counterbalance the effect of drug-mediated selection, deployment of alternative

ACTs with antagonistic effect or implementation of strategies like MFT may offer a way to

mitigate resistance against partner drugs. Indeed, a recent clinical trial in Uganda demon-

strated the superiority of ASAQ compared to AL in reducing the risk of recurrences, and this
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was partly attributed to the parasite genetic background [52]. In the meantime, however, using

the same ACT as rescue therapy does not seem to compromise treatment outcomes, presum-

ably due to high efficacy of artemisinin derivatives and the fact that majority of malaria recur-

rences due to new infections. Ensuring patients adherence to (re-)treatment with ACT

regimens and providing accurate malaria diagnosis before antimalarial treatment will

undoubtedly contribute the most to enhancing the continued efficacy of the drugs.

Of note, de facto ACT resistance is yet to spread or emerge in most endemic settings in

Africa, however, future antimalarial drug discovery and clinical trials need to continue evalua-

tion of new treatment combination with opposing mechanisms of selection to reduce the

potential risk for selection in malaria endemic transmission settings where patients are

exposed to frequent treatment and re-treatment with ACTs. Nonetheless, the present study

provides timely and encouraging molecular results on the impact of drug-mediated selection

to support the use the same or alternative ACTs for (re-)treatment in endemic countries. In

conjunction with these strategies, regular monitoring is warranted to provide evidence to

inform policy on the long-term effectiveness of ACT in control and elimination efforts.

Conclusion

In summary, our study demonstrates the limited impact of (re-)treatment with AL or ASAQ

on selection for Pfmdr1 alleles and haplotypes. These findings further supplement the evidence

use of same or alternative ACTs as a rescue therapy for (re-)treatment of recurrent P.falcipa-
rum infections. Continued monitoring of genetic signatures of resistance is warranted to

timely inform malaria (re-)treatment policies and guidelines.
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