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Abstract
The fundamental commonality across pharmacotherapies for the epilepsies is the modulation of neuronal excitability. This
poses a clear challenge—patterned neuronal excitation is essential to normal function, thus disrupting this activity leads to
side effects. Moreover, the efficacy of current pharmacotherapy remains incomplete despite decades of drug development.
Approaches that allow for the selective targeting of critical populations of cells and particular pathways in the brain have the
potential to both avoid side effects and improve efficacy. Chemogenetic methods, which combine the selective expression of
designer receptors with designer drugs, have rapidly grown in use in the neurosciences, including in epilepsy. This review will
briefly highlight the history of chemogenetics, their applications to date in epilepsy, and the potential (and potential hurdles to
overcome) for future translation.
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Much of pharmacology for the last three-quarters of a century

has focused on finding, designing, and optimizing increas-

ingly selective ligands for drug targets. Chemogenetic

approaches1 have turned this on its head. Chemogenetic stra-

tegies focus on engineering neurotransmitter receptors to

decrease or eliminate affinity for endogenous ligands and to

produce high-affinity interactions with synthetic ligands or

designer drugs. Ideally, these designer drugs avoid interac-

tions with native receptors, providing a means of selectively

activating receptor signaling in target cells while avoiding

impacts on other physiological processes. As Armbruster and

colleagues described in their first paper on Designer Recep-

tors Exclusively Activated by Designer Drugs (DREADDs),2

it has been a process of “evolving the lock to fit the key”—

although, as I discuss below, there has been a fair bit of

redesigning of the keys as well.

From the very start, the power of this technology has been

evident—the ability to drive or suppress activity in a selective

population of cells. Chemogenetic actuators (receptors)

are typically delivered to the brain using either transgenic stra-

tegies or through viral vector-based approaches. When

expressed, these receptors allow for the selective activation

or inhibition of brain regions of interest in cell-type and

pathway-specific manners. Selective control over discrete

populations of cells has been a central quest of neuropharma-

cology for the better part of a century—the fundamental goal

being to modulate only what needs to be modulated while

leaving other brain functions intact. In the context of epilepsy,

this translates to turning off the cells responsible for a seizure

while avoiding the myriad of side effects associated with anti-

seizure drugs. The advantages and pitfalls of chemogenetic

approaches have been described extensively elsewhere,3 and
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many tutorials and reviews outline their utility,1 including epi-

lepsy.4-7 Here, I review, in brief, the history of chemogenetic

approaches and focus on their application to epilepsy as a

potential modality for treatment and some of the challenges

and opportunities that lie ahead.

A (Brief) History of Chemogenetics

The history of chemogenetics is reviewed in extensive detail

elsewhere, so I summarize it only briefly here.3 The first che-

mogenetic approach was described in 1991. While exclusively

used in vitro,8 this approach foreshadowed the development of

second, third, and fourth generation constructs, which have

been deployed extensively in vivo. The second-generation che-

mogenetic tools, receptors activated solely by synthetic ligands

(RASSLs), were all engineered from native G-protein coupled

receptors: the human kappa opioid receptor, the melanocortin-4

receptor, and the serotonin 4B receptor.9-12 While the potential

for these tools was clear, the most widely deployed of these, the

hROi (human RASSL Opioid Gi) induced a range of physio-

logical effects in vivo in the absence of agonist delivery—

suggesting constitutive signaling, which limited its utility, and

underscoring the need for further tool development.

The third generation tools, DREADDs, were described in

20072 and have since been widely adopted. These receptors

were produced by directed molecular evolution, which resulted

in variants of the human muscarinic receptor that no longer

responded to acetylcholine, and instead responded to

clozapine-n-oxide (CNO), a metabolite of the antipsychotic

drug clozapine. Muscarinic-receptor-based DREADDs were

developed that couple to Gi, Gas, and Gq G-protein signaling

cascades and to arrestin signaling cascades.2,13,14 An additional

Gi-coupled kappa opioid receptor DREADD was also devel-

oped, which enabled chemogenetic multiplexing—that is,

targeting multiple populations of cells in the same subject, with

different drugs used to activate each receptor.15 As with the

hROi, although to a far lesser degree, there has been a report

of ligand-independent effects of DREADDs. These effects

include changes in signaling through the endogenous

receptorome.16 The degree to which these undesired effects

occur likely depends on the expression level of the DREADD,

with high levels of expression more likely to trigger undesired

ligand-independent effects.17

In parallel to the development of G-protein coupled

receptor-based chemogenetic tools, several groups have devel-

oped ion channel-based approaches. Adoption of the

ivermectin-sensitive glutamate-gated chloride channel

(GluCl), which is expressed in nematodes, but not mammals,18

was limited by the relatively large construct size needed to

accommodate the 2 subunits of the channel. More recently,

pharmacologically selective actuator molecules (PSAMs) were

developed from the binding domain of the alpha7 subunit of the

nicotinic acetylcholine receptor and the pore-forming region of

the serotonin 5-HT3 or glycine receptor.19 The 5-HT3-based

PSAM is a cation channel, providing a means to selectively

activate neurons, while the glycine receptor PSAM is an anion

channel, providing a means of suppressing neurons. Together,

the constellation of G-protein coupled and ion-channel based

chemogenetic actuators offer a wide range of methods for driv-

ing intracellular signaling, perturbing ionic homeostasis, and

ultimately, activating or silencing select neuronal populations.

However, prolonged activation of glycine receptor-based

PSAMs has been reported to cause excitatory effects due to a

shift in the neuronal chloride gradient.20 This is a familiar story

in epilepsy where dysregulated chloride homeostasis is a

mechanism proposed in some cases to underlie ictogenesis and

contribute to drug failure; this may suggest caution in using

PSAMs in epilepsy.

Pharmacology of Chemogenetic Agonists

In pharmacology, there are 2 types of drug effects—those we

know about and those we’ve yet to discover. In the case of

chemogenetic actuators, their selectivity is only as good as the

selectivity of the drugs we use to activate them. Clozapine-n-

oxide, the initial ligand described for muscarinic-based

DREADDs, has several unexpected effects. CNO is metabo-

lized to other neuroactive compounds, including clozapine,21

and as a result, CNO in DREADD-naı̈ve animals produces

dose-dependent behavioral changes. Moreover, it has been sug-

gested that the in vivo activation of DREADDs after CNO

administration is not due to CNO, which is poorly penetrant

to the brain, but rather a metabolic production of clozapine.21-24

Deciphering which effects are DREADD-mediated, and which

are due to off target effects of DREADD agonists is an impor-

tant consideration.

Several alternate DREADD agonists have been proposed,

including clozapine, Compound-21,25,26 perlapine, and

olanzapine.27 These compounds also display neuroactive

effects. Clozapine and olanzapine are antipsychotic drugs,

Compound-21 suppresses the activity of dopamine neurons,26

and perlapine is a sedative.28 While no off-target effects of

dezchloroclozapine have been reported to date, history sug-

gests that there may well still be effects to be uncovered.29

Ion-channel-based chemogenetic tools have a more limited

range of agonists: GluCl channels are activated by ivermectin,

which carries risks of side effects, and PSAM constructs are

potently activated by varenicline, a partial agonist of nicotinic

receptors, as well as a handful of varenicline derivatives.19

From a basic science perspective, selectivity wins the day—

the more precise the tools, the more precise the findings. How-

ever, from a clinical perspective, several of these compounds

are attractive precisely because they have other uses. While

clozapine is approved for use in humans, it is limited by severe

but rare agranulocytosis and neutropenia.30 However, olanza-

pine and varenicline are also approved for use in humans and

have well-established safety and tolerability profiles. Ulti-

mately, it becomes a question of how selective is selective

enough. For example, varenicline activates PSAMs at concen-

trations at least 2 orders of magnitude lower than those required

to activate nicotinic receptors suggesting that dosing that

avoids activating endogenous receptors may be possible.
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Olanzapine, by contrast, activates muscarinic DREADDs at

concentrations similar to those at which it blocks native recep-

tors.27 While this increases the possibility of off-target effects,

if these side effects are tolerable (and not counterproductive),

olanzapine may remain a target of high translational potential.

In both cases, the fact that these compounds are already

approved for clinical use certainly would speed up the transla-

tional timeline.

Applications to Epilepsy

Before DREADDs were used to study epilepsy, epilepsy was

used in part to validate DREADDs.31 The first transgenic mice

expressing Gq-coupled DREADDs displayed limbic seizures

and status epilepticus upon administration of CNO, demon-

strating the power of this approach to drive neural activity

remotely. This approach has recently been revisited using focal

silencing of cortical interneurons as a model for focal onset

neocortical epilepsy.32 While a recent systematic review pro-

vided a full account of papers using chemogenetic approaches

in epilepsy,7 here I highlight some initial findings and subse-

quent studies that represented either novel targeting approaches

in epilepsy or improvement in translational potential.

In 2014, the Kullman laboratory published the first report of

DREADDs used to treat rather than trigger seizure activity.

They reported that focal chemogenetic inhibition of a neocor-

tical focus potently suppressed seizures.33 In 2016, my labora-

tory extended these findings beyond the seizure focus,

demonstrating that chemogenetic silencing of the midline

thalamus potently suppressed amygdala-kindled seizures34 and

the Kokaia laboratory reported DREADD-mediated anti-

seizure effects in hippocampal organotypic slices.35 These

initial therapeutic studies demonstrated the efficacy of

DREADD-mediated strategies across a range of brain networks

and in a range of seizure models.

Subsequent reports extended DREADD-based therapeutic

approaches in epilepsy from chemogenetic silencing to chemo-

genetic activation—selective activation of parvalbumin inter-

neurons in the hippocampus suppresses seizure-like events in

hippocampal slices and behavioral seizures in a focally evoked

model of temporal lobe epilepsy,36 as well as in the acute and

chronic intrahippocampal kainate models and the hippocampal

kindling model in mice.37 The identification of small enhancer

regions that can be used to selectively drive virally delivered

transgenes selectively within GABAergic neurons38 places

selective targeting of inhibitory neurons in human gene therapy

within grasp.

Designer Receptors Exclusively Activated by Designer

Drugs-based approaches have also revealed new insights into

local circuit physiology in mice with chronic epilepsy. These

findings range from verification of the long-standing hypoth-

eses regarding proconvulsant roles of newborn neurons in the

hippocampus after epileptogenic insults39,40 to dissection of

the role of hippocampal mossy cells in acute and chronic

seizures,41 to interactions between medial septal input to hip-

pocampal somatostatin neurons.42 At the macrocircuit level,

DREADDs have been used to identify a feedforward role of

parvalbumin neurons within the corticothalamocortical net-

work that generates absence seizures,43 uncovered a feed-

forward pathway from the substantia nigra to the parafasicular

thalamus that can be activated to reduce seizures,44 and selec-

tively identify an amygdala-midline thalamus-prefrontal cortex

circuit necessary for the expression of kindled seizures.45

Designer Receptors Exclusively Activated by Designer

Drugs-based approaches have shown utility in genetic epilep-

sies—chemogenetic activation of prefrontal cortex pyramidal

cells normalized seizure threshold in the Cacna1a haploinsuffi-

cient mouse.46 Similarly, mice with the autism candidate gene,

Ash1L, deleted in the frontal cortex, display seizures that are

rescued by a combination of inhibitory DREADDs in the fron-

tal cortex and systemic diazepam, but not by either treatment

alone.47 This underscores the potential of chemogenetics for

the treatment of genetic epilepsies and highlights the potential

for synergistic therapy with standard pharmacological

approaches. Along these lines, chemogenetic inhibition of subi-

cular pyramidal neurons ameliorated phenytoin resistance in

the phenytoin-resistant kindled rat.48

Beyond seizures, chemogenetics has also been deployed in

preclinical studies as a method to ameliorate cognitive and

emotional dysfunction in epilepsy. For example, DREADD-

based silencing of corticotropin-releasing factor neurons both

suppressed seizures and normalized depression-like comorbid-

ities in the pilocarpine model of temporal lobe epilepsy in

mice.49 In the same model, silencing dentate gyrus granule

cells reduced cognitive dysfunction,50 while in the intrahippo-

campal kainic acid model, hippocampal DREADD-mediate

inhibition normalized risk avoidance behavior.51 Chemoge-

netic silencing of the amygdala has also been reported to

reduce comorbid anxiety in GABRG2 mutant mice with

seizures.52 Given that comorbidities of epilepsy are highly

prevalent,53 often challenging to treat, and complicated by

polypharmacy, chemogenetic approaches may provide a com-

pelling option.

Advancing Toward Translation

As has been noted by others, epilepsy may well be the first

indication to reach a clinical trial for DREADDs.54 Individuals

scheduled for surgical resection as a treatment for epilepsy

present a rare opportunity to test the efficacy of chemoge-

netics—if therapy is ineffective or side effects arise, tissue

resection could proceed as planned. Clinical translation of che-

mogenetics likely depends on the ability to perform gene ther-

apy. In the past 5 years, the approval of adeno-associated virus

(AAV)-mediated gene therapy for inherited retinal dystrophy

and spinal muscular atrophy has significantly raised the pros-

pects of further AAV-based gene therapies. Adeno-associated

virus vectors are far and away the most common methods of

delivery for chemogenetic actuators. Viral delivery to the ner-

vous system is, of course, not without its challenges. The use of

chemogenetic technology in nonhuman primates has proven

more difficult than in rodents. Still, a range of studies have
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now reported promising effects55—although none to date have

done so in the context of epilepsy. Neutralizing antibodies

against AAV vectors,56 impaired intracellular trafficking of

chemogenetic constructs to the cell membrane in primates,57

and the cost and challenges associated with developing

clinical-grade vectors all pose additional hurdles to translating

chemogenetics to epilepsy patients.56

One hurdle that preclinical studies have, however, begun to

address is the efficacy of a range of DREADD agonists and the

durability of DREADD-mediated anti-seizure effects. A series

of studies from Raedt and colleagues in the “4Brain” group in

Ghent have demonstrated sustained suppression of seizures in

the intrahippocampal kainate model through DREADDs target-

ing hippocampal pyramidal cells,58 the long-term suppression

of seizures in the rat kainate model using alternate DREADD

agonists clozapine and olanzapine,59 and efficacy of the

DREADD agonists clozapine and JHU37160 in the mouse

intrahippocampal kainate model.60 Interestingly, in the latter

study, both drugs significantly outperformed levetiracetam at

reducing seizures. Moreover, a recent report demonstrated high

oral bioavailability, blood–brain barrier penetrance, and func-

tional impact of DREADD activation by deschloroclozapine in

macaques, providing perhaps another viable pharmacological

strategy.61

Conclusions

As multiple groups work to move this technology closer to

translation, several intermediate steps may further boost con-

fidence in this approach. This includes tests of efficacy in

epilepsy for new-generation tools such as PSAMs, and proof

of concept in nonrodent species. Extension of chemogenetic

methods in epilepsy to nonhuman primates or a “clinical” trial

in canine epilepsy might provide additional support for this

bridge to translation. The continued application of this technol-

ogy in rodent models will, in parallel, lead to new insights into

the basic mechanisms of the epilepsies. From 3 citations using

chemogenetics in 2008 to a rate of more than a hundred a year a

decade later, the rapid rise of chemogenetics has helped to

usher in (along with optogenetic approaches) a renaissance in

systems-level neuroscience. The potential for chemogenetics in

epilepsy is clear—it provides a method for selective and

“remote” control of neuronal activity. It is primed for continued

impact both at the bench and, in the not-too-distant future, at

the bedside.
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