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After one pandemic year of remote or hybrid instructional modes, univer-
sities struggled with plans for an in-person autumn (fall) semester in
2021. To help inform university reopening policies, we collected survey
data on social contact patterns and developed an agent-based model to
simulate the spread of severe acute respiratory syndrome coronavirus 2 in
university settings. Considering a reproduction number of R0 = 3 and 70%
immunization effectiveness, we estimated that at least 80% of the university
population immunized through natural infection or vaccination is needed
for safe university reopening with relaxed non-pharmaceutical interventions
(NPIs). By contrast, at least 60% of the university population immunized
through natural infection or vaccination is needed for safe university reopen-
ing when NPIs are adopted. Nevertheless, attention needs to be paid to
large-gathering events that could lead to infection size spikes. At an immu-
nization coverage of 70%, continuing NPIs, such as wearing masks, could
lead to a 78.39% reduction in the maximum cumulative infections and a
67.59% reduction in the median cumulative infections. However, even
though this reduction is very beneficial, there is still a possibility of non-
negligible size outbreaks because the maximum cumulative infection size
is equal to 1.61% of the population, which is substantial.
1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks have
led to unprecedented restrictions on higher education institutions worldwide.
From March 2020 to August 2021, most universities in the USA suspended in-
person operations and employed remote or hybrid instructional modes. During
the summer months of 2021, buoyed by the wider vaccine availability, a growing
number of universities were planning for an in-person autumn (fall) semester. As
there would be people returning to campus through out-of-state or international
travel, it was hard to project the vaccination coverage at the beginning of the
coming semester. In addition, despite the high effectiveness of coronavirus dis-
ease 2019 (COVID-19) vaccines, many institutions have not required a vaccine
mandate. Prior studies have provided various estimations for vaccination hesi-
tancy and suggested that COVID vaccination hesitancy appears high in certain
population subgroups such as young adults [1–4]. For example, Latkin et al. [1]
found that 60.6% of people aged 18–29 years old were vaccine hesitant during
14–18 May 2020. Sharma et al. [3] reported that 47.5% of participants were hesi-
tant to get vaccinated based on questionnaires distributed to college students at a
southern US university in February and March 2021. The vaccine hesitancy was
about 42% among French university students, according to a study conducted by
Tavolacci et al. [5] in January 2021. Although vaccine hesitancy has decreased as
more people are getting vaccinated [6], there are still many people who
are reluctant to have a COVID-19 vaccination.
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In addition, COVID vaccine immunity wanes over time. A
study reported that mRNA BNT162b2 COVID-19 vaccine
effectiveness against SARS-CoV-2 reduces from 88% to 47%
after five months of full vaccination [7]. Such vaccine-waning
effects can influence the control measures needed to achieve
herd immunity [8]. Booster shots can help restore immune
responses. Despite the debate surrounding COVID-19 booster
shots, several countries, including the USA, have offered
booster doses of COVID-19 vaccines to adults.

Facing such challenges, universities struggle with plans to
resume normal operations while mitigating the risks of
SARS-CoV-2. Since the pandemic started, over 700 000 cases
have been reported concerning American colleges and uni-
versities [9]. Several US-oriented modelling studies have
been conducted to guide decision-making on testing strat-
egies, mask usage, social distancing and class sizes during
university reopening [10–16]. Focusing on the impact of test-
ing, contact tracing and remote courses on epidemic
dynamics, Gressman & Peck [11] modelled daily interactions
among a 22 500-person urban university population and
divided students into groups based on course schedules.
Bahl et al. [12] developed a detailed agent-based suscep-
tible–exposed–infected–recovered (SEIR) model with a
university population of 2380, focusing on small, closed-com-
munity residential colleges. In their model, each agent
randomly moves between nodes in a graph based on a
fixed hourly schedule. They simulated friend groups, but
were not able to incorporate contact tracing functionality
because of the model structure. Junge et al. [10] incorporated
16 800 agents and simulated a discrete day-by-day dynamic
interaction graph. Under an average reproduction number
R0 ¼ 3, they found that vaccine coverage over 80% makes it
possible to resume in-person instructions safely. Owing to
data unavailability, many of these models simulate contacts
based on random mixing or assumptions regarding class
schedules and common locations. SARS-CoV-2 transmission
in universities is a global issue, and research on this topic is
fast paced. Contact patterns could vary along with the uni-
versity settings and geographical locations, and there are
models applied to other countries, such as UK-oriented
studies [17,18] and a Canada-oriented study [19]. Previous
studies have shown that contact networks could significantly
impact the accuracy of epidemic predictions and the effective-
ness of control strategies [20–22], highlighting the importance
of data collection on real-world contact patterns. Similar to
the models in [10–12], each individual in our model follows
a schedule to move to different locations and can have con-
tacts with other individuals that are in the same location.
The main difference between our work and previous studies
is that our model is tailored in such a way as to use the social
contact survey data we collected about social interactions in a
US university as much as possible.

SARS-CoV-2 is still evolving, and researchers are devoted
to retrieving its epidemiological parameters [23–25]. Recent
studies have reported non-exponential distributions for critical
transition times between different disease states, such as the
infectious period [26,27]. However, most epidemic models
have been developed based onMarkovian processes with tran-
sition times following exponential distributions. Such
unrealistic assumptions could impair the accuracy of model
predictions, and non-Markovian models that accept arbitrary
distributions for the transition times of the individual between
different compartments have started to draw attention from
scholars [28–30]. Previous studies have highlighted that
agent-based modelling (ABM) has offered a practical way to
incorporate details about heterogeneous contact networks,
compared with other computational models. However, pre-
vious studies did not explicitly mention the advantage of
ABMs over computational models with respect to non-
exponential transition times. Emerging methods focus on
non-Markovian models, but they are often associated with
complicated derivations based on differential equations. By
contrast, although often at a higher computational cost, non-
exponential distribution parameters, if available, can be
easily incorporated into ABMs, which is critical for epidemic
forecasting.

In this study, we develop an ABM to examine the mitigation
strategies needed for safe university reopening in the 2021
autumn semester. The model incorporates a social contact
network based on survey data. Considering different immuniz-
ation effectiveness, we simulate SARS-CoV-2 spreading in a
university population under two scenarios: (i) relaxation of
non-pharmaceutical interventions (NPIs) and (ii) adoption of
NPIs, such as wearing masks. In addition, we perform a
thorough model calibration and accurate sensitivity analyses
on immunization effectiveness. The outcomes are valuable to
understand the impact of initial immunity levels on the future
epidemic spread, thereby helping inform university-reopening
policies.

The contributions of this paper are summarized as follows:

— We develop an ABM incorporating non-Markovian tran-
sition times and real contact networks based on surveydata.

— With 70% immunization effectiveness and R0 ¼ 3, we
estimate that at least 80% of the university population
immunized through natural infection or vaccination is
needed to ensure a healthy campus with relaxed NPIs.

— We observe that the implementation of NPIs can dramati-
cally reduce the maximum cumulative infection, and
continued NPIs are recommended to mitigate risks of
large-gathering events.

2. Survey data
To parametrize the model, we conducted a social contact
survey administered to all students, faculty and staff at
Kansas State University between 2 December 2020, and
25 January 2021. We sent emails to 6196 faculty and staff
members and 20 755 students, and received responses from
3581 participants. The survey asked the participants to
report their typical social interaction patterns during the
semester. The survey data contain information about age seg-
ment, role at the university, housing status and number of
close contacts categorized by duration ranges in a week.
More specifically, close contacts are referred to as the
people the participants meet at a distance of less than 2 m.
We also gathered information about visit frequency, duration
and the number of contacts at different locations.

In the electronic supplementary material, figure S1 depicts
the age, housing status and the number of close contacts in a
week by duration ranges. We can see that 50.70% of partici-
pants reported being in the age category 18–24, followed by
15.90% of participants in the age category 25–35. Regarding
housing status, 9.82% of students live in sororities or
fraternities (here, sororities refer to buildings where female
undergraduates live and fraternities refer to buildings where
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Figure 1. Structure of the person agent in the model.
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male undergraduates live), 21.00% live in on-campus housing
and the remaining students live in off-campus apartments or
houses. The majority of faculty and staff (98.91%) choose off-
campus housing options. In the survey, we explicitly indicate
that examples of contacts who regularly meet for more than
4 hours per week are roommates, family members or co-
workers. Contacts between 1 and 4 h per week may refer to
friends or classmates, and contacts between 15 min and 1 h
per week could be friends or others that the participant
might occasionally meet. Overall, the contact patterns categor-
ized by role reveal that students living in sororities or
fraternities have more contacts while faculty and staff have
fewer contacts. For example, regarding the duration of more
than 4 h per week (electronic supplementary material, figure
S1, yellow), the median number of contacts for students
living in sororities or fraternities is eight contacts compared
with faculty and staff with two contacts. More statistics
about the survey data can be found in the electronic
supplementary material.
3. Model
The model developed mainly consists of two types of agents,
namely person and location agents. During initialization, we
create 26 000 person agents, representing 20 000 students and
6000 faculty and staff. Each person agent is assigned to one
role category of (i) faculty and staff, (ii) student living on-
campus, (iii) student living off-campus, or (iv) student
living in a sorority or fraternity. The age distributions of
these four role categories obtained from the survey data are
detailed in the electronic supplementary material, table S1,
which shows that age distributions vary among the role cat-
egories. For example, 98.73% of students living on-campus
are aged 18–24, while 72.66% and 19.28% of students living
off-campus are aged 18–24 and 25–35, respectively. Accord-
ingly, we used these four age distributions to characterize
the agents in the corresponding role category, instead of
using the age distribution over the whole campus population.
Each location agent plays one role of (i) recreation centre or
any gym or other shared exercise spaces; (ii) union, dining
centres and coffee shops on-campus; (iii) bars, restaurants
and coffee shops off-campus; (iv) stores and other types of
services off-campus; and (v) other types of social gathering
such as sport, religious and social events.
3.1. Daily activities
Figure 1 depicts the structure of the person agent. Each
person agent has contact with people it regularly meets in
the three contact lists and meets other people at the five
types of locations. More specifically, the people within each
person’s contact lists are randomly selected from the
whole population during model initialization and remain
unchanged throughout each simulation run. By contrast,
the people each person meets at specific locations are
dynamic, as the contact will only occur if two agents are
within the same location. At different times of the day, each
person agent visits these locations based on the visit fre-
quency, the duration and the number of contacts, which are
sampled from custom distributions in AnyLogic defined
using the survey data. The frequency of a value sampled is
dependent upon the number of times this value occurs in
the survey data.
3.2. Disease transmission
In line with [31,32], each individual has a state reflecting its
health status: susceptible (S), exposed (E, infected but not
infectious), asymptomatic (IA), symptomatic differentiated
by mild (I1s ), severe (I2s ) and critical illness (I3s ), recovered
(R) and dead (D). Contacting an infectious individual, a sus-
ceptible individual could become infected and transition to
the exposed state based on the transmission probability per
contact b and risk factors of the contacts. An individual in
the exposed state will transition to the infectious state IA
after a period lognormal distributed with a mean of 4.5 days
and a standard deviation of 1.5 days [33–36]. Infected individ-
uals may develop symptoms based on age-dependent
probabilities [37,38]. The probabilities that symptomatic
cases develop into mild, severe or critical illness are also
age dependent [38]. The length of time for an individual to
transition from state IA to symptom onset (I1s , I

2
s or I3s ) follows

a lognormal distribution with a mean of 1.1 day and standard
deviation of 0.9 days [25,27]. The recovery time for asympto-
matic cases and mild symptomatic cases is a period sampled



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210920

4
from a lognormal distribution with a mean of 8 days and a
standard deviation of 2 days [39]. Individuals with severe
and critical illness recover after a period sampled from a log-
normal distribution with a mean of 18.1 days and a standard
deviation of 6.3 days [37]. Accounting for outside trans-
missions due to non-university contacts, we assume the
university population has few contacts with local commu-
nities, and more details can be found in the electronic
supplementary material.

3.3. Testing, quarantine and isolation
When an individual has mild symptoms (state I1s ), it may get
a SARS-CoV-2 test based on a 70% probability [12]. Individ-
uals in the critical or moderate symptomatic state (I2s or I3s )
may get tested with a 95% probability [12]. The delay for
returning test results is uniformly distributed between 0
and 2 days. An individual will be isolated for 10 days after
testing positive. If the individual shows symptoms, the time
spent in isolation will count starting from its first day show-
ing symptoms. In addition, a percentage of contacts of a
positive case can be identified via contact tracing and be
quarantined after a delay uniformly distributed between 0
and 3 days [40]. During the quarantine period, the agents
may get tested after showing symptoms based on the above
probabilities and will be isolated once they test positive.
The agent will stop daily activities in both quarantine and
isolation states.

3.4. Relaxation and adoption of non-pharmaceutical
interventions

As reported in [41–43], NPIs such as wearing masks could
reduce the infection likelihood by at least 50%. Consider
that there was a mask mandate in all the on-campus facilities,
and there was local guidance about wearing masks in public
spaces out of the campus during the autumn semester of
2020. When NPIs are implemented, we keep the risk factor
to be 1 for close contacts (people regularly meet for more
than 4 h), simulating that transmission probability for con-
tacts with roommates, family members and co-workers is
unchanged. In addition, we set the risk factor to be 0.5 for
all the other types of contact to reduce the transmission
probability by half.

3.5. Model calibration
To estimate the unknown parameters, including the trans-
mission probability per contact b, the contact tracing
percentage and the initial number of people in the exposed
state, we use the simulation-based optimization method pro-
vided in AnyLogic software. The OptQuest Engine, which
incorporates metaheuristics to guide its search algorithm
towards better solutions [44], is used as an optimization
engine to minimize the difference between the cumulative
confirmed cases from the simulation and the reported posi-
tive cases that are published weekly in the university
dashboard from 17 August 2020 to 30 October 2020. During
this period, mask usage was mandated to campus and
public spaces in local communities. In the calibration process,
the transmission probability per contact b is set to change
every 7 days. In the electronic supplementary material,
figure S4 shows the number of cumulative confirmed cases
compared with the historical data. The sum of the absolute
deviation of the outputs is 117.5, calculated from
S ¼ P

s
jos � ysj, where os and ys are the median cumulative

confirmed cases and historical data from the dashboard.
The simulated median generation time is 5.96 days, with an
interquartile range of 4.58–7.98 days. With all other agents
in the susceptible state and not considering control measures,
we provide empirical measures of R0 from the simulations,
which is computed as the number of secondary infections
directly associated with the initial exposed cases divided by
the number of initial exposed cases. We find that an infection
transmission probability per contact of 0.05 would return a
median reproduction number of R0 ¼ 3.

3.6. Assumptions for estimating the herd immunization
threshold

We consider a two-dose vaccination allocated to susceptible
people with a time interval of 28 days. The vaccination roll-
out rate is uniformly distributed between 0 and 10 doses
per day. Vaccine efficacy is modelled as the probability that
a vaccinated susceptible agent directly transitions to the
recovered state. Denote the vaccine efficacy of the first dose
as Ve, and the vaccine efficacy of the second dose is calculated
as Ve � 0:956=0:92, based on the report [45] in which vaccine
efficacy is 92% for the first dose and 95.6% for the second
dose. To initialize the epidemics, we randomly select 30 indi-
viduals from the university population, and the selected
susceptible individuals will transition to the exposed state.
During scenario analyses, the initial immunization coverage
α is the percentage of the university population that has
already had prior infection or has been vaccinated by the
start of the semester. At the start of the simulation, the α per-
centage of the population will be selected and set to be in the
recovered state based on a probability, which will be referred
to as immunization effectiveness hereafter. During the simu-
lation period, people can be vaccinated and transition in the
recovered state based on the same probability, namely the
immunization effectiveness. Susceptible individuals could
get infected and eventually become recovered. Note that
once individuals are marked as recovered, they will remain
in the recovered state throughout the simulation run. We
perform 1000 simulation runs for each scenario. In each
simulation run, we record the number of active cases and
cumulative infected cases on a daily basis.
4. Results and discussions
In this section, we present and compare simulation results under
scenarios of NPI relaxation (wearing masks and maintaining
social distancing are optional) and NPI adoption (wearing
masks and maintaining social distancing are mandatory). In
each scenario, we vary the initial immunization coverage, a,
which refers to the percentage of people immunized through
natural infection or vaccination at the start of the autumn
semester.

4.1. Non-pharmaceutical intervention relaxation
Figure 2 shows the heatmap with median percentages for the
cumulative infections by the end of the semester with R0 = 3.
We can see that the initial immunity level a needed for a
safe university reopening is sensitive to the changes in the
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immunization effectiveness. With 70% immunization effective-
ness, a ¼ 60% and a ¼ 80% can lead to 3.13% (1.34–5.09%)
and 0.51% (0.36–0.85%) cumulative infections of the university
population, respectively. With 90% immunization effective-
ness, 60% initial coverage can result in cumulative infections
in 0.63% (0.38–1.04%) of the population, and disease outbreaks
can be controlled relatively well.

In the following, we provide more simulation results with
70% immunization effectiveness. Considering relaxed NPIs,
figure 3 shows the median percentage of cumulative
infections and active cases over time given different initial
immunization coverages. While our main focus is to examine
the epidemic dynamics over the autumn semester, we depict
the simulation results up to day 300 to provide a relatively
complete picture of the epidemic curve. A summary of the
statistics is listed in table 1. When α increases from 50% to
80%, the median value for the peak of infection reduces dra-
matically from 1.57% to 0.15% of the total population and
slightly declines after α = 80%. When α = 80%, the peak
occurs at day 11 with an interquartile range of 7–23.50, and
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the epidemic is well contained. The percentage of cumulative
infections by the end of the semester decreases dramatically
from 7.80% (interquartile range: 4.62–10.98%) for a ¼ 50%
to 0.51% (interquartile range: 0.36–0.85%) for a ¼ 80% . At
the time of the original writing (July 2021), vaccination
rates in some US states remain low. For example, only
36.0% of the state’s population is fully vaccinated in Arkan-
sas. The simulation results show that such a relatively low
vaccination rate could lead to a large number of infections
under relaxed NPIs.

As a piece of additional information, we show the impact of
R0 on cumulative infections and active cases in figure 4. Immu-
nization coverage α= 60% and α = 90% can ensure a relatively
safe reopening for R0 ¼ 2 and 4, respectively. As expected,
the immunization threshold is largely dependent on the value
of R0, indicating the importance of an accurate estimate for R0.
Figure 5. Average daily contacts of the active cases. The figure depicts the
average daily contacts of the active cases for five simulation runs (blue, red,
green, magenta and cyan) with the top five cumulative infections among all
1000 simulation runs. The simulation considers relaxed NPIs with 70% immu-
nization effectiveness, α = 80% and R0 = 3.
4.2. Non-pharmaceutical intervention adoption
Figure 5 plots the average daily contacts of infectious people.
Since social interactions among the agents are based on
empirical distributions, we observe that a high number of
contacts occasionally could occur in certain simulation runs
owing to the stochasticity of the simulations, potentially lead-
ing to a large number of infections. We refer to this
phenomenon as large-gathering events, implying large gath-
erings at which an infectious person could be in contact with
many people.

Figure 6 shows the impact of NPIs on the cumulative
infected cases and active cases given different initial immuniz-
ation coverages. When NPIs are relaxed, the median
percentage of active cases at the end of the semester for
α = 70% is 0.03%, but there are multiple outliers of over
0.50% a day. Similarly, the cumulative infections at α = 70%
have median values of 1.08%, but have multiple outliers
over 5.00% of the university population. For α = 80%, at
which themedian value for the active cases equals 0, themaxi-
mum cumulative infected cases can reach up to 4.78% of
the population. Although such undesired outcomes rarely
happen, this suggests that large-gathering events might
result in large outbreaks.
In comparison, we observe that continuing NPIs can
cause a dramatic reduction in the epidemic size and can sub-
stantially reduce the risks of large outbreaks. When NPIs are
adopted, the median percentages of cumulative infected
cases range from 0.20% to 0.28% for a equalling 80–100%,
and ranges from 0.35% to 0.68% when a falls below 80%.
In addition, compared with scenarios with relaxed NPIs, con-
tinuing NPIs can substantially reduce risks of large
outbreaks. For instance, the number of maximum cumulative
infected cases reduces from 7.45% with the relaxation of NPIs
to 1.61% with the adoption of NPIs for a ¼ 70%.
5. Conclusion
As the autumn semester was approaching, many universities
had announced the plan for an in-person semester, with
relaxed SARS-CoV-2-related guidelines. Without a vacci-
nation mandate policy, the exact immunity level of the



Table 1. Summary statistics. Peak time is the number of days elapsed after the initial infection. For each simulation run, we calculate the peak value and peak
time of active cases. In the table, median values are associated with interquartile ranges. The attack rate is calculated as cumulative infections=
(total population� (1� a� immunization effectiveness)).

initial immunity
level α

peak value of
active cases (%)

peak time (days) of
active cases cumulative infections (%) attack rate (%)

50% 1.57 (1.25–1.93) 120 (96–152.5) 15.53 (13.92–17.02) 23.90 (21.42–26.18)

60% 0.65 (0.31–0.92) 102 (65–148) 7.01 (3.37–9.23) 12.08 (5.82–15.91)

70% 0.21 (0.15–0.35) 35 (11–84) 1.42 (0.66–3.12) 2.79 (1.30–6.12)

80% 0.15 (0.13–0.18) 11 (7–23.5) 0.56 (0.39–0.93) 1.27 (0.89–2.11)

90% 0.13 (0.12–0.15) 8 (6–11) 0.37 (0.50–0.28) 1.00 (0.77–1.36)

100% 0.13 (0.12–0.13) 6 (5–9) 0.26 (0.22–0.32) 0.86 (0.72–1.08)

0

2

4

6

8

10

12

14

16

18

20
cu

m
ul

at
iv

e 
in

fe
ct

ed
 c

as
es

 (
%

)

50% 60% 70% 80% 90% 100%

relaxation of NPIs
adoption of NPIs

a
0

1

2

3

4

5

6

ac
tiv

e 
ca

se
s 

(%
)

50% 60% 70% 80% 90% 100%

relaxation of NPIs
adoption of NPIs

a

(a) (b)

Figure 6. Distributions of the cumulative infected cases and active cases in the percentage of the total population by the end of the semester. The figure shows results
under the relaxation of NPIs and the adoption of NPIs considering 70% vaccine effectiveness and R0 = 3. The number of simulation runs for each scenario is 1000.
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university population was largely unknown, considering that
many students, faculty and staff were coming back through
out-of-state or international travel. Our simulation results
suggest that, on average, an immunization coverage of 80%
of the university population could lead to safe university
reopening with relaxed NPIs, R0 ¼ 3 and 70% immunization
effectiveness (figure 4). However, an immunization coverage
below 80% may pose significant risks to the public health of
the university population with the relaxation of NPIs, and
attention needs to be paid to the large-gathering events that
may lead to large infections.

Since the SARS-CoV-2 outbreak, studies have shown that
encouraging people to get vaccinated and continuing non-
pharmaceutical control policies are effective ways to suppress
the disease spread [46–48]. Consistently, we conclude that it is
possible to ensure a healthy campus community associated
with NPIs at lower immunization coverages. At the same
initial immunization coverage of 70%, adoption of NPIs
could lead to a 78.39% reduction concerning the maximum
cumulative infections (figure 6), which reflects the possible
non-negligible infection from large-gathering events. There-
fore, it is recommended that people continue to exercise
social distancing measures for the coming autumn semester.

In this study, we developed an agent-based disease trans-
mission model based on a real contact network structure and
non-Markovian transition time distributions. The contact
network is based on survey data that are specific to the univer-
sity population. However, selection biasmay occur in our study
for students who do not frequently use their university emails.
For the respondents included in the analysis, only 62.50% are
students, which is smaller than the actual percentage, i.e.
77.01% of the university population. This may happen because
our surveys are distributed merely through emails, and faculty
and staff may more frequently engage in communications
through emails. In addition, the distribution date of the
survey questions is during the end of the semester, and those
students who have already gone back home may no longer
pay attention to their university emails. This selection bias
could result in a lower estimation of the immunity threshold
asweobserve, on average, students havemore contacts than fac-
ulty and staff. Although we explicitly mentioned in each of the
survey questions that the contacts of interest are those for a typi-
cal semester and the number of people the participants met at a
distance of less than 2 m, inaccurate estimations may exist
during their recall or misinterpretation of the definition. We
draw our conclusions based on the early estimations of trans-
mission probabilities during the pandemic. Sustaining NPIs
will become even more critically important, given the highly
contagious SARS-CoV-2 variants and waning immunity,
which could lead to worse scenarios. One limitation of our
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model lies in the difficulty of setting the parameters owing to
data unavailability. Therefore, we make several assumptions
and conduct more simulations, the results of which can be
found in the electronic supplementary material. We find that
the number of infections used to initialize the outbreak and vac-
cination roll-out rate has only a minimal impact on the initial
immunization coverage needed for a safe reopening. Another
limitation is that wewere not able to include the impact of holi-
days on contact patterns as we only include the university
population in the model, and students could go to multiple
places during the Thanksgiving (November) break. Nonethe-
less, we believe that the outcome of this study provides
important messages for universities planning for a full reopen-
ing, especially those located in the states with low vaccination
rates.
Data accessibility. Supporting materials and code for the simulations
have been uploaded as part of the electronic supplementary material.

The data are provided in the electronic supplementary material [49].
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