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Abstract

Stemona sessilifolia (Miq.) Miq., commonly known as Baibu, is one of the most popular

herbal medicines in Asia. In the Chinese Pharmacopoeia, Baibu has multiple authentic

sources and there are many similar herbs sold as Baibu in herbal medicine markets. The

existence of counterfeits of Baibu brings challenges to its identification. To assist in its accu-

rate identification, we sequenced and analyzed the complete chloroplast genome of S. ses-

silifolia using next-generation sequencing technology. The genome was found to be

154,037 bp in length, possessing a typical quadripartite structure consisting of a pair of

inverted repeats (IRs: 27,090 bp) separated by a large single copy (LSC: 81,949 bp) and a

small single copy (SSC: 17,908 bp). A total of 112 unique genes were identified, including

80 protein-coding, 28 transfer RNA and four ribosomal RNA genes. In addition, 45 tandem,

27 forward, 23 palindromic and 104 simple sequence repeats were detected in the genome

by repeated analysis. Compared with its counterfeits (Asparagus officinalis and Carludovica

palmata) we found that IR expansion and SSC contraction events of S. sessilifolia resulted

in two copies of the rpl22 gene in the IR regions and a partial duplication of the ndhF gene in

the SSC region. An approximately 3-kb-long inversion was also identified in the LSC region,

leading to the petA and cemA genes being presented in the complementary strand of the

chloroplast DNA molecule. Comparative analysis revealed some highly variable regions,

including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32,

accD_psaI, rps2_rpoC2, trnS-GCU_trnG-UCC, trnT-UGU_trnL-UAA and rps16_trnQ-UUG.

Finally, gene loss events were investigated in the context of phylogenetic relationships. In

summary, the complete plastome of S. sessilifolia will provide valuable information for the

distinction between Baibu and its counterfeits and assist in elucidating the evolution of S.

sessilifolia.
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Introduction

Radix Stemonae, also known as Baibu, is one of the most popular herbal medicines used in

many Asian countries, including China, Korea, Japan, Thailand and Vietnam. It has been used

for the treatment of various respiratory diseases such as bronchitis, pertussis and tuberculosis

[1, 2]. It was also used for killing cattle parasites, agricultural pests and domestic insects [3, 4].

Stenine B, one of the major chemical ingredients of Baibu, has been considered as a potential

drug candidate for use against Alzheimer’s disease due to its significant acetylcholinesterase

inhibitory activity [5]. Owing to the important medicinal value, extensive genetic, biochemical

and pharmacological studies on Baibu are needed.

According to the Pharmacopoeia of the People’s Republic of China (2015 edition), the root

tubers of Stemona tuberosa, S. japonica and S. sessilifolia were all considered to be authentic

sources of Baibu. Although these three species have all been employed as the raw materials of

Baibu, we cannot ignore their inherent differences. For example, alkaloids from the genus Ste-

mona are the major components responsible for Baibu’s antitussive activities. However, the

chemical composition and content of the different members of the genus S. tuberosa, S. japon-
ica and S. sessilifolia vary greatly [6, 7]. These three species differ in their antitussive, anti-bac-

terial and insecticidal activities [8]. Therefore, it is critical to determine the exact origin of the

plant material used as Baibu.

The existence of multiple authentic sources and the similarities between species increase

the difficulty for correctly identifying Baibu. In some areas of China, another herbal medicine,

Aconitum kusnezoffii Rchb., is also known as Baibu. However, the therapeutic activity of A.

kusnezoffii is significantly different from the authentic sources of Baibu described in the Chi-

nese Pharmacopoeia. Research has even reported that this alternative might result in toxicity

when A. kusnezoffii is taken in larger quantities [9]. In addition, counterfeits in the herbal

market also bring challenges to the correct identification of Baibu. Due to their similar mor-

phologic features to the authentic sources of Baibu, many counterfeits such as Asparagus offici-
nalis, A. filicinus and A. acicularis are often sold as Baibu in the herbal market [10]. Therefore,

the distinction between Baibu and its counterfeits is critical for its beneficial usage as a medici-

nal herb.

Compared to morphological characteristics, a DNA barcode is deemed to be a more effi-

cient and effective method for identifying a particular plant species. Typical barcodes such as

ITS, psbA-trnH, matK and rbcL have been used to distinguish different plant species [11–13].

However, these DNA barcodes did not always working effectively, especially when trying to

distinguish closely related plant species. Such a phenomenon may be attributed to the fact that

a single-locus DNA barcode still lacks adequate variations generally observed in closely related

taxa. Compared with a general DNA barcode, the chloroplast genome can provide more abun-

dant genetic information and higher resolutions when identifying plant species. Some

researchers have proposed using the chloroplast genome as a species-level DNA barcode [14,

15].

The chloroplast is an organelle which is present in almost all green plants. It is central to

photosynthesis and plays a vital role in sustaining life on earth by converting solar energy to

carbohydrates. Besides photosynthesis, the chloroplast also plays critical roles in other biologi-

cal processes, including the synthesis of amino acids, nucleotides, fatty acids and many second-

ary metabolites. Furthermore, metabolites synthesized in chloroplasts are often involved in

plants’ interactions with their environment, such as their response to environmental stress and

defense against invading pathogens [16–18]. Due to its essential roles in the cellular processes

and its relatively small genome size, the chloroplast genome is a good starting point for resolv-

ing phylogenetic ambiguity, discriminating closely between related species and revealing the
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plants’ evolutionary process [19–21]. To date, over 5000 chloroplast genomes from a variety of

land plants are available. Phylogenetic analyses have demonstrated the effectiveness of the

chloroplast genome in inferring the phylogenetic identity of plants as well as having the ability

to distinguish between closely related plant species [22, 23].

Unfortunately, the taxonomic coverage of the sequenced chloroplast genome is somewhat

biased. For example, until now, the chloroplast genome of S. sessilifolia has not been reported.

The lack of chloroplast genome information prohibited studies aimed at understanding the

evolutionary processes in the family Stemonaceae. Here, we report the full plastid genome of S.

sessilifolia. Based on the sequence data, we performed a multi-scale comparative genome anal-

ysis among S. sessilifolia, A. officinalis and Carludovica palmata (the major counterfeits of

Baibu). We investigated the difference among these three species from three aspects, including

general characteristics, repeat sequences and sequence divergence. We also characterized the

significant changes, including genome rearrangements, IR expansion and SSC contraction, in

the plastid genome of S. sessilifolia, A. officinalis and C. palmata.

Lastly, we investigated the gene loss events in Stemonaceae and its closely related families

(Asparagoideae, Velloziaceae, Cyclanthaceae and Pandanaceae). The results reported in this

work will provide valuable information for species distinction of herb materials that are used

as Baibu. Furthermore, it lays the foundation for elucidating the evolutionary history of plant

species in the family Stemonaceae.

Materials and methods

Plant materials and DNA extraction

Fresh young leaves of S. sessilifolia from multiple individual plants were collected from the

Institute of Medicinal Plant Development (IMPLAD), Beijing, China, and stored at -80˚C for

chloroplast DNA extraction. All samples were identified by Professor Zhao Zhang, from

IMPLAD, Chinese Academy of Medical Sciences & Peking Union Medical College and

voucher specimens were deposited in the herbarium of the institute. S. sessilifolia is not an

endangered or protected species and specific permission for the collection of S. sessilifolia was

not required. Total DNA was extracted from 100mg of fresh young leaves using a plant geno-

mic DNA kit (Tiangen Biotech, Beijing, Co., Ltd.). Finally, 1.0% agarose gel and a Nanodrop

spectrophotometer 2000 (Thermo Fisher Scientific, United States) were used to evaluate the

purity and concentration of the extracted DNA, respectively.

Genome sequencing, assembly and annotation

According to the standard protocol, the DNA of Stemona sessilifolia was sequenced using Illu-

mina Hiseq25000 platform, with insert sizes of 500 bases for the library. A total of 5,660,432

paired-end reads (2 × 250bp) were obtained, and low-quality reads were trimmed with Trim-

momatic software [24].

In order to extract reads belonging to the chloroplast genome, we downloaded 1,688 chlo-

roplast genome sequences from the GenBank and constructed a Basic Local Alignment Search

Tool (BLASTn) database. All trimmed reads were mapped to this database using the BLASTN

program [25], and reads with an E-value> 1E-5 were extracted. The reads were first assembled

using the SPAdes software with default parameters [26]. The contigs were then subjected to

gap closures using the Seqman module of DNASTAR (V11.0) [27]. Finally, the quality of the

assembled genome was evaluated by mapping the reads to the genome using Bowtie2 (v2.0.1)

with default settings [28]. For further evaluation, all the barcode sequences of S. sessilifolia
available from the GeneBank were download (S1 File), including matK (1), petD(1), rbcL (1),

rpoC1 (1), rps16 (1), rps19-rpl22-psbA (1), trnL (3) and trnL-trnF (2) The numbers enclosed in
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parentheses represent the number of the barcode sequence. The BLAST program was used to

calculate the identity differences between the chloroplast genome sequence of S. sessilifolia and

other barcode sequences. As a result, the barcode, rps19-rpl22-psbA, which is located at the

boundary of LSC/IRb, was identifies to have a value of 100%. All the other barcode sequences

also gave identity values of 100%, indicating the high reliability of the chloroplast genome

sequence.

Gene annotation of S. sessilifolia chloroplast genome was conducted using CpGAVAS2,

which is an integrated plastome sequence annotator and analyzer [29]. The tRNA genes were

confirmed with tRNAscan-SE [30] and ARAGORN (V1.2.38) software packages [31]. Then

the gene/intron boundaries were inspected and corrected using the Apollo program (V1.11.8)

[32]. The Cusp and Compseq programs from EMBOSS (V6.3.1) were used to calculate the GC

content [33]. Finally, OrganellarGenomeDRAW [34] was used to generate the circular chloro-

plast genome map of S. sessilifolia.

Repeat sequence analysis

Perl script MISA (http://pgrc.ipk-gatersleben.de/misa/) was used to identify simple sequence

repeats (SSRs) with the parameters listed as follows: 74 repeat units for mononucleotide SSRs,

20 repeat units for di- and tri-nucleotide repeat SSRs, and 12 repeat units for tetra-, penta-,

and hexanucleotide repeat SSRs. Tandem Repeats Finder was used with parameters of 2 for

matches and 7 for mismatches and indels [35]. For the minimum alignment score and the

maximum period, size was set to 50 and 500, respectively. Palindrome and forward repeats

were identified by the REPuter web service [36]. The minimum repeat size and the similarity

cut-off were set to 30 bp and 90%, respectively.

Comparative genomic analysis

A total of three species, including S. sessilifolia, A. officinalis (NC_034777), Carludovica pal-
mata (NC_026786), were subjected to multiple sequence alignment using mVISTA with

default parameters [37]. Subsequently, 20 introns and 108 intergenic regions shared by S. sessi-
lifolia, A. officinalis, and Carludovica palmata were extracted using custom MatLab scripts and

used to perform sequence divergence analysis. Firstly, the sequences of each intergenic-region/

intron were aligned individually using the CLUSTALW2 (v2.0.12) [38] program with options

"-type = DNA–gapopen = 10 -gapext = 2". Secondly, pairwise distances were calculated with

the Distmat program in EMBOSS (v6.3.1) using the Kimura 2-parameters (K2p) evolution

model [39]. We attempted to discover highly divergent regions in order to develop novel

molecular markers. To identify the occurrence of genome rearrangement events in the chloro-

plast genome of S. sessilifolia, synteny analysis among the three species mentioned above were

performed using Mauve Alignment [40].

Phylogenetic analysis

A total of 11 chloroplast genomes which are distributed into Stemonaceae (3), Cyclanthaceae

(1), Pandanaceae (1), Velloziaceae (1) and Asparagoideae (5) were retrieved from the RefSeq

database. The protein sequences shared by these chloroplast genomes were used to construct a

phylogenetic tree with Veratrum patulum and Paris dunniana as the outgroup taxa (S1 Table).

Fifty-eight proteins were involved, and all these protein sequences were aligned using the

CLUSTALW2 (v2.0.12) program with options "-gapopen = 10 -gapext = 2 -output = phylip".

Then the Maximum Likelihood (ML) method was adopted to infer the evolutionary history of

S. sessilifolia and the other closely related species. The detailed parameters were
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"raxmlHPC-PTHREADS-SSE3 -f a -N 1000 -m PROTGAMMACPREV–x 551314260 -p

551314260-o Nicotiana_tabacum, Solanum_lycopersicum -T 20".

Results

General characteristics of chloroplast genomes

The HiSeq2500 generated about 3.2 GB of data and the average coverage depth of the assembled

cp genome was 885×. The gene map of S. sessilifolia is shown in Fig 1. This genome has been

deposited in the GenBank (Accession number: MW023922). The chloroplast genomes of S. sessi-
lifolia and two other species share the standard features of possessing a typical quadripartite

structure consisting of a pair of inverted repeats (IRs) separating a large single copy (LSC) and a

small single copy (SSC). This is similar to other angiosperm chloroplast genomes [41].

We then carried out a multi-scale comparative genome analysis of these three chloroplast

genomes from four aspects, including the size, the guanine-cytosine (GC) content, the number

of genes and the gene organization (Table 1). The complete circular chloroplast genomes of S.

sessilifolia, A. officinalis and C. palmata were 154,037, 156,699 and 158545 bp, respectively.

Compared to A. officinalis and C. palmata, S. sessilifolia showed a relatively short SSC region

and a relatively long IR region. We speculated that the chloroplast genome of S. sessilifolia
might undertake IR expansion and SSC contraction simultaneously. There was no significant

difference between S. sessilifolia, A. officinalis, and C. palmata. Such a result may be attributed

to the high conservation of tRNAs and rRNAs. The lengths of the CDS regions of A. officinalis
and C. palmata were found to be shorter than S. sessilifolia, indicating that there were probable

gene loss events in the chloroplast genome of A. officinalis and C. palmata.

As for the GC content, S. sessilifolia showed a higher value in the regions of the LSC and

SSC than A. officinalis and C. palmate, even in the complete chloroplast genome. However, in

the IR region, A. officinalis and C. palmata showed a GC content value larger than S. sessilifo-
lia. The GC content decreased markedly from the first position to the third position in the

codon position scale. Such a result was in line with the phenomenon observed in most land

plant plastomes [42–44].

We identified 112, 110 and 112 genes in the chloroplast genomes of S. sessilifolia, A. offici-
nalis, and C. palmata, respectively. All of these three chloroplast genomes have 28 tRNAs and

four rRNAs. The number of genes with introns in each species is 18, similar to reports in prior

works [45]. Therefore, we may conclude that there were no intron loss events that occurred in

the chloroplast genomes of these three species. Among these 18 genes, 16 of them (10 protein-

coding genes and 6 tRNAs) had one intron each, 2 genes (ycf3 and clpP) have two introns each

and all of the genes with introns are described in S2 Table. The rps12 gene was divided into 5’-

rps12 in the LSC region and 3’-rps12 in IR region. In addition, 20, 22 and 19 genes were pre-

dicted for S. sessilifolia, A. officinalis, and C. palmata in the IR regions, respectively.

The gene organization of the three species were compared and the results are presented in

Table 2. In the upstream and downstream regions of the A. officinalis chloroplast genome, pre-

mature stop codons were discovered in the ycf1 gene, resulting in the loss of this gene. Com-

pared to S. sessilifolia, we found the shorter CDS regions of A. officinalis was directly related to

the loss of this gene. We also found a full-length and a pseudogene of the ndhF gene which

coexists in the chloroplast genome of S. sessilifolia, which indicated the presence of another

SSC contraction event.

Repeat sequence analysis

Simple sequence repeats (SSRs), which are tandem repeat sequences consisting of 1–6 repeat

nucleotide units, are widely distributed in prokaryotic and eukaryotic genomes. A high degree
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Fig 1. Gene maps of the chloroplast genomes of Stemona sessilifolia. Genes inside and outside the circle were transcribed clockwise and counterclockwise, respectively.

The darker gray in the inner circle indicates the GC content. Genes with different functions are characterized with different color bars.

https://doi.org/10.1371/journal.pone.0247736.g001
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of polymorphisms of SSRs has been considered to be effective molecular markers when con-

sidering species identification, population genetics and phylogenetic research [46, 47]. In the

current study, we investigated the distribution of SSRs in the genomes as well as their numbers

and types (Fig 2). As a result, a total of 106, 88 and 107 SSRs were detected in S. sessilifolia, A.

officinalis and C. palmata, respectively. Mononucleotide motifs showed the highest frequency

of SSRs in these species, followed by dinucleotides, tetranucleotides, trinucleotides and penta-

nucleotides, respectively. However, hexanucleotide repeats were also detected only in S. sessili-
folia. As expected, the majority of repeats consisted of A/T and AT/AT repeats which suggest

that these chloroplast genomes are rich in short poly-A and poly-T motifs, while poly-C and

poly-G ones are relatively rare. These SSRs were highly polymorphic, suggesting they present

great potential for the identification of these three species. We then use Tandem Repeats

Finder [35] and REPuter [36] to detect long repeats and found 95, 70, and 95 long repeat

sequences in S. sessilifolia, A. officinalis and C. palmata, respectively. Tandem, forward and

palindromic repeats were present in all these three species with the number of tandem repeats

being the same in all of them. In comparison, the number of forward and palindromic repeats

were different in the three species. These two types of repeats were most common in S. sessilifo-
lia (27 (54%) and 23 (46%), respectively) and least common in A. officinalis (11 (44%) and 14

(56%), respectively).

In summary, there are significant differences in the types of repeat sequences among S. ses-
silifolia, A. officinalis, and C. palmata. The occurrence of repeat events in S. sessilifolia was

Table 1. Chloroplast genome characteristics of Stemona sessilifolia, Asparagus officinalis and Carludovica palmata.

Plastome Characteristics Species

Stemona sessilifolia Asparagus officinalis Carludovica palmata
Size (bp) Genome 154037 156699 158545

LSC 81949 84999 71426

IR 27090 26531 26529

SSC 17908 18638 18364

tRNA genes 2877 2863 2816

rRNA genes 9060 9052 8866

CDS 79260 77436 77802

GC content (%) Overall 38.00 37.59 37.74

LSC 36.18 35.60 35.79

IR 42.70 42.92 42.81

SSC 32.13 31.50 31.51

tRNA genes 53.43 53.57 53.40

rRNA genes 55.22 55.38 55.38

CDS 38.29 38.1 38.41

1st position 45.7 45.64 45.93

2nd position 38.46 38.56 38.39

3rd position 30.72 30.09 30.91

NO. of genes Total 112 110 112

protein-coding genes 80 78 80

tRNAs 28 28 28

rRNAs 4 4 4

Genes with introns 18 18 18

Genes in IR 21 22 19

LSC: large single-copy, IR: inverted repeat, SSC: small single-copy, CDS: coding sequence.

https://doi.org/10.1371/journal.pone.0247736.t001
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higher than that of A. officinalis and C. palmata. It should be noted that the size of the A. offici-
nalis and C. palmata chloroplast genome is larger than the chloroplast genome of S. sessilifolia.

Hence, the relatively larger sizes of the chloroplast genomes of A. officinalis and C. palmata do

not result in many repeat sequences.

Sequence divergence analysis

To evaluate the genome sequence divergence, we aligned the sequences from three species

using mVISTA [37] (Fig 3). The chloroplast genome of S. sessilifolia was found to be signifi-

cantly different from A. officinalis and C. palmata. As mycoheterotrophic plants, severe gene

Table 2. Genes presented in chloroplast genomes of Stemona sessilifolia, Asparagus officinalis and Carludovica
palmata.

Category for

genes

Group of genes Name of genes

Ribosome RNA

genes

rRNA genes rrn16Sa, rrn23Sa, rrn5Sa, rrn4.5Sa

Transfer RNA

genes

tRNA genes trnT-UGU, trnR-ACGa, trnT-GGU, trnS-UGA, trnfM-CAU,

trnF-GAA, trnL-UAG, trnV-UAC�, trnL-CAAa, trnM-CAU,

trnG-GCC, trnQ-UUG, trnA-UGCa, ��, trnD-GUC, trnP-UGG,

trnI-CAUa, trnE-UUC��, trnL-UAA��, trnK-UUU��, trnW-CCA,

trnY-GUA, trnI-GAUa,�, trnG-UCC�, trnS-GGA, trnR-UCU,

trnH-GUGa, trnS-GCU, trnN-GUUa, trnV-GACa, trnC-GCA

Others Large subunit of ribosome rpl14, rpl16�, rpl2a,�, rpl20, rpl22a, rpl23a, rpl32, rpl33, rpl36

Small subunit of ribosome rps11, rps12a,b,�, rps14, rps15, rps16�, rps18, rps19a, rps2, rps3, rps4,

rps7a, rps8
DNA dependent RNA

polymerase

rpoA, rpoB, rpoC1�, rpoC2

Subunits of NADH

dehydrogenase

ndhA�, ndhBa,�, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ,

ndhK

Subunits of cytochrome b/

f complex

petA, petB�, petD�, petG, petL, petN

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunits of photosystem

II

psbA, psbB, psbC, psbD, psbE, psbF, psbI, psbJ, psbK, psbL, psbM,

psbN, psbT, psbZ, ycf3
Large subunit of rubisco rbcL
Subunits of ATP synthase atpA, atpB, atpE, atpF�, atpH, atpI

Subunit of Acetyl-CoA-

carboxylase

accD

C-type cytochrome

synthesis gene

ccsA

Envelope membrane

protein

cemA

Protease clpP��

Translational initiation

factor

infA

Maturase matK
Conserved open reading

frames

ycf1, ycf2a, ycf15��, ycf4

Pseudogenes ycf1ψ, ndhFψ, infAψ, ycf15 a,ψ, ycf68 a,ψ

�Gene with one intron

��Gene with two introns, a Gene with two copies, b Trans-splicing gene, ψ Pseudo gene. Genes in Bold font were

only identified in S. sessilifolia and A. officinalis.Genes with underline were only identified in A. officinalis.

https://doi.org/10.1371/journal.pone.0247736.t002
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loss events always lead to highly reduced plastomes [23, 48]. As expected, the non-coding

regions were more divergent than coding regions among these species. The two most divergent

regions were the ycf4-psbJ region (red square A) and the rpl22 coding region (red square B).

We suspected that such a phenomenon might be attributed to gene loss events or genome rear-

rangement events, and this will be discussed in detailed later. The Ycf1 gene is also highly

divergent, which may be due to the occurrence of pseudogenization. In summary, the LSC

region showed the highest divergence, followed by the SSC region and the IR region was less

divergent than the LSC and SSC regions. Compared to the coding areas, the intergenic spacers

displayed higher divergence areas.

Highly divergent regions can usually assist in the development of molecular markers. Based

on the fact that non-coding regions usually evolved more rapidly than coding regions, the

intergenic and intron regions are always considered to be ideal candidate regions for molecu-

lar markers with high resolution. Therefore, we calculated the Kimura 2-parameter (K2p) dis-

tances for each set of the intergenic and intron regions. A relatively higher K2p value between

any two species is necessary to distinguish each species from any other two species. Therefore,

we calculated the minimal K2p (MK2p) value for each set of intergenic and intron regions.

The non-coding regions with higher MK2p values are likely to be the candidate regions for

Fig 2. Simple sequence repeats (SSRs) and long repeat sequences identified in the chloroplast genomes. (A) Distribution of different types of SSRs in the chloroplast

genomes. (B) Distribution of long repeat sequences in the chloroplast genomes. (C) Frequency of SSR motifs in different repeat class types.

https://doi.org/10.1371/journal.pone.0247736.g002
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high-resolution molecular markers. Consequently, for introns (S3 Table), the MK2p value

ranges from 0.0055 to 0.1096. ClpP_intron2 with the highest MK2p value was followed by

rpl16_intron1. The third, fourth and fifth were rps16_intron1, ndhA_intron1 and

trnL-UAA_intron1, respectively. For intergenic spacers (S4 Table), five highly conserved inter-

genic spacers were observed and these were ndhA_ndhH, psaB_psaA, psbL_psbF, rpl2_rpl23

and trnI-GAU_trnA-UGC. The MK2p value of intergenic spacers ranges from 0 to 0.3301, and

the top-10 intergenic spacers with higher MK2p values are listed as follows: trnF-GAA_ndhJ,

atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32, accD_psaI, rps2_rpoC2,

trnS-GCU_trnG-UCC, trnT-UGU_trnL-UAA and rps16_trnQ-UUG. In conclusion, com-

pared to introns, we observed higher sequence divergence in intergenic spacers. The intergenic

spacers with large K2p values represent good candidate molecular markers for distinguishing

these three species.

Rearrangement of the chloroplast genome

To investigate whether there are significant differences in the yc4-psbJ regions (red square A in

Fig 3) and rpl22 coding regions (red square B in Fig 3) between S. sessilifolia and its major

Fig 3. Comparison of the three chloroplast genomes using mVISTA program. The gray arrows indicate the orientations and positions of genes. Untranslated,

conserved non-coding and coding regions were characterized by sky-blue, red and blue blocks, respectively. A cut-off value of 70% was adopted during the process of

alignment.

https://doi.org/10.1371/journal.pone.0247736.g003
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counterfeits, we conducted synteny analysis. As plotted in Fig 4, we detected a large inversion

of 3 kb long in the LSC region. Interestingly, a similar sequence of an approximately 3-kb long

inversion was confirmed to be located in the ycf4-psbJ regions. Therefore, we can conclude

that the occurrence of genome rearrangement events leads to a significant difference in the
ycf4-psbJ areas between S. sessilifolia and the other two species. To investigate whether the exis-

tence of such an inversion in S. sessilifolia is unique occurrence, we conducted synteny analysis

between the chloroplast genome of S. sessilifolia and species in Dioscoreales and Liliales, which

belong to two closely related orders of Pandanales. Compared to any of the species in Dioscor-

eales and Liliales, the inversion in the ycf4-psbJ region in S. sessilifolia was always visible (data

not shown). Therefore, the inversion in the ycf4-psbJ areas is probably unique to S. sessilifolia.

IR expansion and SSC contraction

IR contractions and expansions are common evolutionary events contributing to chloroplast

genomes size variation [49]. Here, the JL (LSC/IR) and JS (IR/SSC) boundary comparison

analysis was performed by which we attempted to identify IR contraction and expansion

events (Fig 5). Compared to A. officinalis and C. palmata, the relatively larger IR regions

Fig 4. Comparison of the three chloroplast genomes using the MAUVE algorithm. Local collinear blocks were colored to indicate syntenic regions, and the histograms

within each block indicated the degree of sequence similarity.

https://doi.org/10.1371/journal.pone.0247736.g004

Fig 5. Comparison of IR, LSC and SSC regions among Stemona sessilifolia, Carludovica palmata and Asparagus officinalis. The numbers above, below or adjacent to

genes represent the length of genes or the distances from the front or end of genes to the boundary sites. It should be pointed out that the figure features are not to scale.

https://doi.org/10.1371/journal.pone.0247736.g005
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indicated the occurrence of IR expansion events in S. sessilifolia. Simultaneously, the SSC

region was shorter than A. officinalis and C. palmate by 465-737bp, suggesting the occurrence

of SSC contraction events in S. sessilifolia. For A. officinalis and C. palmata, one copy of the

rpl22 gene is located at the LSC region. However, the IR regions of S. sessilifolia span to the

intergenic spacers between the rpl22 and rps3 genes, resulting in the presence of two copies of

the rpl22 gene. Therefore, we can claim that the significant differences in rpl22 coding regions

between S. sessilifolia and its major counterfeits can be attributed to the occurrence of IR

expansion events.

Furthermore, the ndhF gene located at SSC regions in A. officinalis and C. palmata, ranges

from 9-40bp away from the SSC/IRb junction. However, in S. sessilifolia, the shortening of the

SSC region leads to the ndhF gene extending into the IRb region by 18bp. The occurrence of

the ndhF gene located at the SSC/IRb junction resulted in partial duplication of this gene at the

corresponding region. The ycf1 gene is found at the IRb/SSC junction, creating a ycf1 pseudo-

gene in S. sessilifolia and C. palmata. Considering that premature stop codons were discovered

in the ycf1 gene, only one ycf1 gene was annotated in the SSC region in A. officinalis. An over-

lap of 18bp between the ndhF gene and the ycf1 pseudogene was also observed in S. sessilifolia.

In summary, compared to A. officinalis and C. palmata, significant junction expansion and

contraction events were observed in S. sessilifolia simultaneously, which were probably respon-

sible for the length variations of these three cp genomes sequences.

Phylogenetic analysis

The chloroplast genome has been successfully used to determine plant categories and reveal

plant phylogenetic relationships [50, 51]. To determine the phylogenetic position of S. sessilifo-
lia, we constructed a phylogenetic tree with species in Stemonaceae and its closely related fam-

ilies (Asparagoideae, Velloziaceae, Cyclanthaceae and Pandanaceae). A total of 13 chloroplast

genomes were retrieved from the RefSeq database, and 58 protein sequences shared by these

species were used to construct a phylogenetic tree with Veratrum patulum and Paris dunniana
serving as the outgroups (Fig 6). As a result, the species in Stemonaceae, Asparagoideae and

Velloziaceae formed a cluster, respectively. In addition, S. sessilifolia and S. japonica formed a

cluster within Stemonaceae with a bootstrap value of 100%, indicating a sister relationship

between these two species.

As showed in Fig 6, a series of gene loss events were observed throughout Stemonaceae and

its closely related families (Asparagoideae, Velloziaceae, Cyclanthaceae and Pandanaceae). A

total of 21 genes are lost in these species, including ycf68 (11), lhbA (9), infA (4), psbZ (4), ycf1
(3), ccsA (1), ndhA (1), ndhD (1), ndhE (1), ndhF (1), ndhG (1), ndhH (1), ndhI (1), psaC (1),

psaI (1), ycf2 (1), rps16 (1), rpl20 (1), rpoC2 (1), rps12 (1) and rps15 (1). The numbers enclosed

in parentheses represent the frequency of gene loss events. As expected, closely related species

always tend to undergo the same gene loss events. A series of clusters formed by species which

undergo the same gene deletion events further confirmed such a phenomenon. C. palmata
and P. tectorius formed a cluster, and both of these species lack the psbZ gene. The species

from Pandanales (Steminaceae, Cyclanthaceae, Pandanaceae and Velloziaceae) formed a clus-

ter without the ycf68 gene. The species from Asparagoideae formed a cluster without the lhbA

gene.

The Ycf68 gene has the highest frequency of gene deletions, and the second was the lhbA

gene. The following three genes were infA, psbZ and ycf1, respectively. Actually, the ycf68 gene

was only found in two species (A. racemosus and A. setaceus), and the lhbA gene was only

found in four species (C. palmata, C. heterosepala, P. tectorius and S. japonica). The functions

of the ycf68, lhbA and ycf1 genes remain unknown. The occurrence of premature stop codons
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may account for the rare existence of these three genes in chloroplast genomes [41, 52, 53]. As

one of the most active genes in the chloroplast genome, the infA gene plays an essential role in

protein synthesis. The frequent absence of the infA gene may be attributed to the transfer of

this gene between the cytoplasm and nucleus [41, 54]. The absence of the subunits of the pho-

tosystem II gene, psbZ, was frequently observed in Pandanales (Steminaceae, Cyclanthaceae

and Pandanaceae). For each of the remaining 16 genes, only one gene loss event was observed,

respectively. There was a variety of gene absences in the chloroplast genome of each species,

indicating the diversity of variations in the chloroplast genomes. However, for 16 out of 21

genes, the frequency of gene loss events was limited to only one, suggesting that the chloroplast

genome is highly conserved at the scale of gene content. Such a phenomenon is consistent

with the highly conserved nature of the chloroplast genome as well as its feature of rich

variations.

Discussion

Chloroplast genome is frequently used for species identification and plant phylogenetics at

generic level [42, 50]. It has also been used at the family level to infer family level phylogenetic

Fig 6. Molecular phylogenetic analysis of Pandanales and its closely related orders. The tree was constructed with 58 protein sequences presented in 116 species using

the Maximum Likelihood method and implemented in RAxML withNicotiana tabacum and Solanum lycopersicum serving as the outgroups. The numbers associated with

the nodes indicate bootstrap values tested with 1000 replicates. The orders and families to which each species belongs are marked beside the branches as well as the

occurrence of gene loss events.

https://doi.org/10.1371/journal.pone.0247736.g006
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relationships and species identification events [55]. Counterfeits medicine are a type of crude

drug preparation with a similar morphology but having lower effective components when

compared to the authentic medicine. Therefore, it is an important task to distinguish tradi-

tional Chinese medicine and its counterfeits. In this study, we sequenced and analyzed the

chloroplast genome of S. sessilifolia and performed multi-scale comparative genomics of S. ses-
silifolia and the major counterfeits of Baibu, A. officinalis, and C. palmata. We also character-

ized the major changes in the chloroplast genome of these three species, including genome

rearrangements, IR expansions and SSC contractions, and investigated the occurrence of gene

loss events in Dioscoreales, Liliales, Pandanales and Asparagaceae. Such chloroplast genome

analyses can broaden the knowledge regarding the genome organization and phylogenetics of

S. sessilifolia and its counterfeits. In addition, two divergence hotspots and 10 intergenic spac-

ers with large K2p values were found in the current study and these might be used for the

development of molecular markers.

Our results show that the genome organization and content as well as the synteny charac-

teristics were similar among S. sessilifolia, A. officinalis, and C. palmata. This could be attrib-

uted to the fact that chloroplast genomes of land plants have conserved features [56–58].

Nevertheless, previous studies have shown that different regions of the chloroplast genome

have different GC content [56, 58], while the IR region has high GC content due to the exis-

tence of rRNAs which have high GC content. These three species also have similarities in

genes content and genome organization. Interestingly, a large inversion was found in S. sessili-
folia. The reverse orientation of the SSC region has also been reported in a wide variety of

plant species, such as S. japonica, Croomia heterosepala and C. japonica, which all belong to

Stemonaceae [59]. By constrast, A. officinalis and other species such as Salvia miltiorrhiza [60]

and Cornales [61] do not have this inversion of the SSC region. This phenomenon is some-

times interpreted as a major inversion existing within the species [62–64]. In fact, the two ori-

entations of the SSC region have been found to occur regularly during the course of

chloroplast DNA replication within individual plant cells [65, 66]. Therefore, the reverse orien-

tation of the SSC region in S. sessilifolia and other Stemona species may represent a form of

chloroplast heteroplasmy.

SSRs have been widely used as molecular markers in studies of species identification, popu-

lation genetics and phylogenetic investigations based on their high-degree of variations [67].

The SSRs consisting of mononucleotide A/Ts are the most abundant types in S. sessilifolia, A.

officinalis and C. palmata. A similar trend of SSRs was also reported in the chloroplast

genomes of not only Stemona species but also in other families of angiosperms [56, 59, 68].

These SSRs sequences are often composed of simple repeating units such as polyadenine

(PolyA) or polythymine (Poly T) repeats, which have a significant impact on the overall G/C

content of the genomes [69]. With the length of polymorphisms in S. sessilifolia, A. officinalis
and C. palmata, they suggest great potential for use in the identification of these three species.

Previous studies have shown that highly divergent regions identified by comparative geno-

mics can reveal sites that can be used for DNA barcoding [68, 70]. Such divergent sites in the

chloroplast can be applied to DNA barcoding [43, 44, 71–73]. Here, we determined a 3-kb

long inversion in the chloroplast genome of S. sessilifolia which might result from a genome

rearrangement event. This unique inversion phenomenon led to significant differences in the

ycf4-psbJ region among S. sessilifolia, A. officinalis and C. palmata, which can be used as a can-

didate region to identify S. sessilifolia from counterfeits. Furthermore, the 10 intergenic spacers

with large MK2p values in our study could be applied to DNA barcoding. Fan et al. reported

the nucleotide sequences of chloroplast DNA trnL-trnF, trnH-psbA, petB-petD and trnK-rps16

regions which can provide useful information in order to discriminate the Stemona species (S.

sessilifolia, S. japonica and S. tuberosa), as well as the common counterfeits such as the
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Asparagus species [10]. Among them, nucleotide variations were found in the partial

sequences of the rps16 and trnL genes. In our study, trnT-UGU_trnL-UAA and

rps16_trnQ-UUG were also among the top 10 intergenic spacers with higher MK2p values.

Whether there are variable sites in the intergenic regions that we found lead to large MK2p val-

ues still needs to be further elucidated. Lu et al. compared the pairwise sequence divergence

values across all introns and intergenic spacers in two Stemona species (S. japonica and S.

mairei) revealed that the ndhF–rpl32 and trnS–trnG regions were the fastest-evolving regions.

These findings agreed with our results. These regions are therefore likely to be the choices for

molecular evolutionary and systematic studies between S. sessilifolia and its counterfeits.

In addition, there were significant differences in the IR contractions and expansions

between S. sessilifolia and the other two species. As far as the JLB (IRb/LSC) boundary is con-

cerned, we found that S. sessilifolia was significantly expanded in the IR region, which led to

the presence of two copies of the rpl22 gene. Besides, SSC region contraction resulted in partial

duplication of the ndhF gene at the corresponding region and the ycf1 pseudogene in S. sessili-
folia. It was reported that the ndhF gene is involved in photosynthesis, and it was often

detected during the positive selection that occurs during the evolutionary process of the species

[44, 74]. The function of the ycf1 genes is mostly unknown, but it is known to evolve rapidly

[21]. The contraction and expansion of the IR region in S. sessilifolia suggests that there is a sig-

nificant difference in gene sequences between S. sessilifolia and its counterfeits, and it is impor-

tant to understand the genome structure and evolutionary process of the chloroplast genome.

Phylogenetic analyses showed that S. sessilifolia and S. japonica (both of which are authentic

sources of Baibu according to Pharmacopoeia of the People’s Republic of China (2015 edition)

were placed close to each other with bootstrap values of 100%, while A. officinalis and C. palmata
were on the other branches. When we investigated the gene loss events in the context of phyloge-

netic relationships, we also found that the cp genomes of S. sessilifolia and S. japonica have similar

gene loss patterns. These findings support the pharmaceutical use of S. sessilifolia and S. japonica
as genuine Baibu, and also suggest the urgent need for finding new molecular markers for the

identification of genuine Baibu. This study will be of value in determining genome evolution and

understanding the phylogenetic relationships within Pandanales and other closely related species.

Conclusions

In summary, the complete plastome of S. sessilifolia (Miq.) Miq. is provided in the current

study. We believe it will be of benefit as a reference for further complete chloroplast genome

sequencing within the family. Based on sequence data provided, a multi-scale comparative

genome analysis of S. sessilifolia and the major counterfeits of Baibu, A. officinalis and C. pal-
mata, was performed. Comparative analysis of these three species revealed the existence of a

unique inversion in the ycf4-psbJ regions. Interestingly, IR expansion and SSC contraction

were observed in S. sessilifolia simultaneously, resulting in a rare boundary pattern. Some

highly variable regions were screened as potential DNA barcodes for identification of these

three species, including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU,

ndhF_rpl32, accD_psaI, rps2_rpoC2, trnS-GCU_trnG-UCC, trnT-UGU_trnL-UAA and

rps16_trnQ-UUG. Phylogenetic analyses showed that the two Stemona species were placed

close to each other with a bootstrap value of 100%. Finally, we investigated the gene loss events

in the context of the phylogenetic relationship. It is obvious that closely related species always

tend to share similar gene loss patterns, consistent with those observed previously. This study

will be of value in determining genome structure differences, which can be utilized to identify

S. sessilifolia and its counterfeits and understanding the phylogenetic relationships within Ste-

monaceae and its closely related families.
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