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1  |   INTRODUCTION

Coronavirus disease 2019 (COVID-19), an ongoing pandemic 
announced by the World Health Organisation in March 2020, 
remains, as of early 2021, an escalating worldwide public 
health emergency affecting 216 countries with over 64 mil-
lion individuals were infected, claiming around 1.5 million 
lives by early December 2020 (Alamri et al., 2020a). As of 
May 11, 2021, a total of 32,571,814 cases of coronavirus 
disease 2019 (COVID-19) and 579,366 associated deaths 
had been reported in the United States (https://covid.cdc.

gov/covid​-data-track​er/#cases_cases​per10​0klas​t7days). It is 
caused by the novel coronavirus severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) (Alamri et  al.,  2020a; 
Alamri et  al.,  2020b; Mirza et  al.,  2020). The elderly, and 
those afflicted with chronic illness or possessing a compro-
mised immune system are more likely to be severely affected 
(Shah et al., 2020). Virions are readily transmitted through 
aerosols or droplets adsorbing via the mucous membranes of 
the eyes, mouth, lungs, and nose (Karia et al., 2020). At this 
point, the zoological origin of the disease remains uncertain, 
with competing hypotheses suggesting it might have been 
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transferred directly from bats, or perhaps it passed through 
pangolin hosts where it recombined with another virus to 
make the highly infective version present in humans (Lam 
et al., 2020). This high infectivity, coupled with an approxi-
mate 1% fatality rate, has stimulated an unprecedented global 
effort for the identification of both effective and safe vaccines 
to drive down infections, as well as antiviral drug treatments 
to lower fatality rates when the vaccines fail for an individual 
(Lurie et al., 2020; Zhang, Huang, et al., 2020; Zhang, Zeng, 
et al., 2020).

Vaccines are the frontline strategy to curb viruses; how-
ever, prior to 2020, no coronavirus vaccine has ever been 
clinically deployed; partially due to the uncertainties around 
the duration of the protection offered and the relatively mild 
nature of most endemic coronaviruses such as those responsi-
ble for the common cold. The remarkable efforts of pharma-
ceutical companies and government scientists worldwide to 
produce a slew of vaccines working through different mech-
anisms is nothing less than an Olympian accomplishment; 
however, even the best efficacy rates only reach approxi-
mately 95%, insufficient for complete protection of a world 
of 7.5 billion people. Furthermore, we need to worry about 
continually monitoring antibody levels in the vaccinated pop-
ulation. It is likely that the protection offered is not extremely 
long-lasting, and the emergence of new mutants constantly 
threatens the protection offered by vaccines.

Coronaviruses are enveloped, single-stranded positive-
sense RNA viruses with the largest documented genome 
size of any virus, varying between 26 and 32 kb for different 
strains (Alamri et al., 2020 b; Mirza & Froeyen, 2020). They 
have a 5′-cap and a 3′- polyadenylate tail containing 6–12 
open reading frames (ORFs) (Lu et al., 2020). The first ORF 
(ORF 1a/b) comprises about two-thirds of the genome length 
and undergoes direct translation to yield two polyproteins, 
pp1a and pp1ab, following an a-1 frameshift between ORF1a 
and ORF1b (Chen et al., 2020; Hussain et al., 2005). These 
polyproteins are further cleaved into 16 functional non-
structural proteins (nsps) by 3CLpro (Liu & Wang,  2020; 
Yang et  al.,  2003). The coronavirus 3CLpro is an approxi-
mately 300-amino acid-long, three-domain, cysteine protease 
(Anand, 2003; Bacha et al., 2004). Active 3CLpro requires 
the homodimer with two promoters within (Lai et al., 2006; 
Xia & Kang, 2011). A non-classical catalytic dyad (Cys145, 
His41) is positioned between domain I and II (Alamri 
et al., 2020b; Fan et al., 2005; Mirza & Froeyen, 2020). It has 
the capability to precisely recognize the 11 cleavage sites re-
quired to release nsp4 to nsp16 (Fan et al., 2005). In addition, 
it was found to exhibit self-hydrolysis activity (Ramajayam 
et al., 2011; Yang et al., 2006). The nsp4-to-nsp16 gene prod-
ucts are essential proteins for viral propagation, conducting 
genome replication, transcription, protein translation, cleav-
age, modification, and nucleic acid synthesis (Anand, 2003; 
Berry et al., 2015). Since proteins analogous to 3CLpro are 

not found in humans, 3CLpro is an ideal antiviral target, and 
many groups are exploring its inhibition (Liu et al., 2020).

Unfortunately, conventional de novo drug discovery takes 
years to provide clinical candidates. Faster approaches include 
drug repurposing, structure-based drug design, and fragment-
based drug design (Alamri et al., 2020 a; Ikram et al., 2019; 
Khalid et al., 2020; Mirza & Ikram, 2016; Mirza et al., 2016, 
2019; Rehman et al., 2020; Salo-Ahen et al., 2021). This work 
aims to provide a comprehensive starting point for rational 
fragment-based drug discovery of SARS-CoV-2 3CLpro inhib-
itors by analyzing all the current available crystal data on the 
PDB. A large body of metadata collated and developed in this 
study is also provided to benefit drug discovery work by others.

2  |   METHODS AND MATERIALS

A block diagram of work-breakdown structure is presented 
in Figure 1.

2.1  |  Designations

All the ligands and protein structures are presented according 
to their PDB identifiers. The coupled ligands were named ac-
cording to their PDB identifiers separated by an underscore. 
The ligands with 700>Mr>340 Dalton were treated as stand-
ards, and their PDB identifiers were prefixed with L under-
score (L_PDB ID).

2.2  |  Fragments

PDB (www.rcsb.org) comprised 167 crystal structures 
of SARS-CoV-2 3CLpro at the time of data accumulation 
(November 10, 2020). These structures were acquired and 
analyzed by an initial filtration for ligands with a molecular 
mass of less than 700 Da and residing in the active site bind-
ing pocket. This filtration leads to 112 viable crystal struc-
tures for our further study. Subsequently, 87 ligands with 
molecular mass less than 340 Da were selected as fragments 
for further development while the remaining, larger, 25 li-
gands were selected as controls for the docking process.

2.3  |  Fragment coupling and linker selection

The selected 87 fragments were divided into eight groups based 
on their amino acid interactions and location in the binding 
site. The fragments were then coupled across different groups, 
as shown in Table 1. Coupling was ignored where more than 
two-atom overlap was found. While designing the linker, it was 
kept in mind that the joining two ligands should occupy similar 

http://www.rcsb.org
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conformation in the binding pocket after the connection. In this 
regard, the distance between the joining atoms was considered 
to determine the number of new bonds and bond angles being 
formed. It is also plausible to find functional groups from other 
sets that occupy the empty space for the connection of any two 
sets. The type of amino acids in the vicinity of the putative 
linker was also considered while designing linkers.

2.4  |  Virtual screening

2.4.1  |  Ligand preparation

The SMILE strings of the 1,363 ligands (87 fragments, 25 
large molecules with Mr >340 Da as standards, and 1,251 
combinations) were placed in the first column of the MS 

F I G U R E  1   A schematic block 
diagram of the workflow followed in the 
study [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com


      |  607AHMAD et al.

Excel and their corresponding unique identifiers were 
placed in the second column. Both columns were copied 
and pasted in the notepad, generating a smile, tab space, 
and the identifier in each line in the file. The contents 
of the notepad were converted into a single sdf file with 
the help of OpenBabel (v 3.1.1). The sdf file was loaded 
into Maestro, and the 3D structures of the compounds 
were prepared and optimized using the LigPrep mod-
ule of Maestro (Schrödinger Release 2020–4: Maestro, 
LigPrep, Schrödinger, LLC, New York, NY, 2020) (Sastry 
et  al.,  2013). Possible tautomers of the compounds were 
produced using Epik (Roos et  al.,  2019) at the target pH 
of 7.0 ± 2.0. For stereoisomers, specified chiralities were 
retained, while the other stereogenic centers were varied 
to get a maximum of 32 isomers. Finally, a total of 7,158 
structures were obtained for the docking purpose.

2.4.2  |  Protein preparation

The crystal structure of SARS-CoV-2 3CLpro protease was 
retrieved in the form of the biological assembly from the 
Protein Data Bank (PDB ID 5R83, resolution 1.58  Å) (Di 
Pizio et al., 2017; Douangamath et al., 2020). 3CLpro exists 
as a homodimer. Thus, both chains were used in the screen-
ing process. The structure was loaded in UCSF Chimera (v 
1.15) and saved as a pdb file to get both chains. The Protein 
Preparation Wizard of the Maestro molecular modeling 
software (Schrödinger Release 2020–4: Protein Preparation 
Wizard, Schrödinger, LLC, New York, NY, 2020) was used 
to prepare protein after grouping both chains of the dimer. 
The preparation steps involved the addition of hydrogens, 
optimization of the hydrogen bond networks, and assign-
ment of protonation states of histidine residues. The water 
molecules were removed, and a restrained minimization was 
performed using the OPLS3e force field (Roos et al., 2019). 
Subsequently, the Receptor Grid Generation module of 
Maestro was employed to identify the docking site by gener-
ating a cubical grid box that was centered at (7.3, 0.9, 25.2) 
with 22 Å length.

2.5  |  Docking

2.5.1  |  Glide

Virtual screening in the specified search space of the SARS-
CoV-2 3CLpro protease was performed by using the Glide 
docking tool of Maestro with SP (Standard Precision) mode. 
The top 877 poses were redocked using XP (Extra Precision) 
mode (Li et al., 2011).

2.5.2  |  AutoDock Vina

For comparison purposes, 7,158 ligand poses prepared by 
LigPrep in the previous step were exported and docked on 
3CLpro (prepared previously) using an automated Mcule 
server (Kiss et al., 2012). Same search box parameters were 
used as previously defined.

2.5.3  |  MMGBSA

The results from Glide XP and AD Vina were compared with 
selected top 103 poses. The estimated binding free energy of 
the top ligand poses was calculated with the Prime/MMGBSA 
(molecular mechanics generalized Born surface area) module 
using the VSGB solvation model and the OPLS3e force field 
(Li et al., 2011).

2.6  |  Molecular dynamics simulation

The Maestro System Builder module was used to prepare 
docked protein–ligand complexes for molecular dynamics 
(MD) simulation. Simple point-charge (SPC) water model 
was used with an orthorhombic box extending 10  Å from 
protein. The placement of ions was excluded within 20 Å of 
the ligand. The system was neutralized using sodium or chlo-
ride ions, and 0.15 M sodium chloride was added. OPLS3e 
force field was used to record 12  ns simulation with 3  ps 

Set 
1–24

Set 
2–11

Set 
3–17

Set 
4–13

Set 
5–8

Set 
6–5

Set 
7–5

Set 
8–4

Set 1–24 1, 2 1 2 3 2

Set 2–11 1 2 4 1

Set 3–17 3 2 1

Set 4–13 333 143 2

Set 5–8 158 3 1

Set 6–5 120 55 65 37 3 3

Set 7–5 120 55 30 2 25 3

Set 8–4 53 11 11 8 10 13 2

T A B L E  1   Tabulated representation 
of possible combinations of 8 sets of 
fragments. Green cells represent the 
potential coupling of two groups based 
on their positions. The digits above the 
red diagonal are the number of bonds that 
a linker could have. The numbers below 
the red diagonal represent the number of 
couples generated across two sets (sum 
1,251). In the case of set 8, two couplings 
were possible within the set



608  |      AHMAD et al.

recording interval. NPT ensemble was used with 300  K, 
and 1.01325  bar, and the system was relaxed (100  ps) be-
fore simulation (Schrödinger Release 2020–4: Desmond 
Molecular Dynamics System, D. E. Shaw Research, New 
York, NY, 2020. Maestro-Desmond Interoperability Tools, 
Schrödinger, New York, NY, 2020).

2.7  |  ADME prediction

ADME (absorption, distribution, metabolism, and excretion) 
properties of the 7,158 ligands containing selected fragments, 
fragment couples, and standard molecules were predicted 
using QikProp tool of Maestro (Schrödinger Release 2020–
4: QikProp, Schrödinger, LLC, New York, NY, 2020).

3  |   RESULTS AND DISCUSSION

At the time of data accumulation (10 November 2020), 167 
crystal structures of SARS-CoV-2 3CLpro were present in 
the PDB database. An in-depth analysis of these structures 
provided a set of 112 structures having ligands in the rec-
ognized catalytic binding pocket (Figure 2). These ligands 
were further divided into two subsets based on molecular 
mass. A small molecule-fragment subset with 87 ligands was 
analyzed for this study. The frequency of the protein's amino 
acids involvement in binding interactions was determined 
(Figure 3). This information was then used to group the ex-
tant ligands into 8 families of inhibitors (Figure 4).

3.1  |  Binding site topology

Based on the observed interactions, 23 residues are impli-
cated in ligand contact, of which 9 residues were involved in 
only one interaction. The binding site is predominantly com-
posed of polar amino acids (Figure 2), and Gly143, Ser144, 
and Cys145 were found making H-bonds with 52, 32, and 49 

ligands, respectively (Figure 3). In contrast, Leu27, Met49, 
and Met165 are the lone prominent lipophilic residues in-
volved in only 4, 3, and 13 hydrophobic interactions, respec-
tively. The highest diversity of interactions was observed for 
His41, located at the base of the pocket, which participated in 
25 π-stacking, eight π-cationic interactions, 5 H-bonds, three 
hydrophobic interactions, three water bridges, and one salt 
bridge.

3.2  |  Fragments

The selected fragment complexes were meticulously ana-
lyzed for ligand–protein interactions, including the frequency 
of binding site residues across the 87 selected complexes 
(Figure 3). The ligands were categorized based on their oc-
cupancy geometry and ligand–amino acid interactions in the 
binding site and divided into eight sets (Figure 4).

Set 1 is the largest category containing 24 compounds. 
These ligands were found residing in the bottom left of the 
binding pocket and interact with Thr25, Thr26, Leu27, His41, 
Asn142, Gly143, Ser144, and Cys145 (Figure 5). Set 2 con-
sists of 11 compounds, residing slightly higher in the binding 
pocket than Set 1. These compounds favor interacting with 
Gly143, Ser144, and Cys145; their lack of interactions with 
Thr26 and Asn142 differentiate them from Set 1. Set 3 con-
sists of 17 compounds. The primary difference between set 2 
and set 3 is that the latter tend to interact strongly with His41. 
The ligand T8 M was represented by two crystal structures 
5RFW and 5RHA, nearly identical except that an H-bond 
with Ser144in 5RFW is replaced with a π-stacking interac-
tion with His41 in 5RHA. Set 4 consists of 13 compounds. 
Here, Glu166 was interacting with most ligands via both H-
bond and hydrophobic interactions. Set 5 contains eight com-
pounds, which primarily reside in the center of the pocket and 
interact with His41. Set 6 contains the only five compounds 
residing in the left gorge of the binding pocket and stabilized 
by interactions with Asn142 and Glu166. Set 7 comprises five 
compounds that predominantly interact with the top gorge 

F I G U R E  2   The surface location 
of the 23 residues that of 3CLpro that 
participated with the 87 observed ligands 
(PDB ID 5R83): (a) surface plot of atomic 
lipophilicity (b) surface plot of amino acid 
lipophilicity, the Kyte-Doolittle scale. 
H and L in the top right of both images 
represent hydrophilicity and lipophilicity, 
respectively. The images were generated 
using UCSF ChimeraX (v 1.1) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

(a) (b)

www.wileyonlinelibrary.com
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amino acids (Met165, Glu166, and Gln189). Set 8 represents 
the remaining “miscellaneous” four compounds with diverse 
binding modes; however, even here, NTG and US7 share a 
similar binding site orientation; but U0P and UGD occupy 
bottom left and top left gorges, respectively (Figure 6).

3.3  |  Fragment coupling and linker selection

Fragment-based drug design is widely employed in drug 
discovery (Erlanson et  al.,  2019; Kashyap et  al.,  2018). 
Commercial fragment libraries are available as online 

F I G U R E  3   Number and type of interactions presented by the 3CLpro binding site amino acid residues with the 87 selected fragments in terms 
of H (H-bond), P (hydrophobic interaction), W (water bridge), πs (π-stacking), π+ (π-cationic), and SB (salt bridge); * represents lipophilic amino 
acids [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  4   Pictorial representation of the eight families of the co-crystallized fragments in the binding site of 3CLpro. In each case, all 
members of the family are mutually superimposed in a static binding pocket [Colour figure can be viewed at wileyonlinelibrary.com]
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databases comprising large bodies of drug-like fragments 
that can be incorporated into larger molecules for in silico 
analysis against the target protein (Keserű et  al.,  2016; 
Rudling et  al.,  2017). The newly designed hits are synthe-
sized then screened for their in vitro efficacy, and selected 
leads are further explored using X-ray crystallography to 
confirm the predicted mode (Aitipamula & Vangala, 2017). 
The current study is unique in terms of fragment selection by 
inverting this process: crystallographic binding poses of the 
selected fragments in the designated active sites of SARS-
CoV-2 3CLpro were used as a starting point to design larger 
molecules. It was hypothesized that using appropriate linkers 
to join the fragment poses could provide a larger molecule 
whose divalent binding would encompass the interactions 
formed by its component domains. This approach has been 
used before for this protein, but only on a far more limited 
scale where three co-crystallized fragments were used to de-
sign 19 ligands (Luan & Huynh, 2020).

After identification of the small drug-like fragments, the 
second step in the rational fragment-based drug discovery 
approach involves the coupling of these fragments to build 
large molecules with improved affinity for the selected tar-
get protein. In this regard, the choice of the linker group 
connecting two fragments and the connection sites of the 
fragments is of critical importance. In this study, the sole 
criterion for linker selection was to ensure that the resulting 
two-domain molecule retained the binding modes that both 
domains showed independently in their crystal structures. A 
rigorous campaign of ligand coupling was carried out. Some 
couplings were rejected due to the overlap of fragments, and 
some couples were linked through multiple linkers, resulting 
in a total of 1,251 structures. In cases where the fragments 
are in close proximity, direct connection through an amine, 

or a methylene or ethanyl bridge was used. Amine and amide 
containing linkers were used when three to four bond-lengths 
were desired. In some Set 2 —Set 4 couplings, cyclizations 
were considered to form a ring between two adjacent pip-
erazine carbons in Set 2 and urea functionalities in Set 4 to 
make a five-membered ring. A SMILE file containing these 
compound structures, along with the 87 starting fragments 
and 25 control compounds is provided in the supplementary 
information.

3.4  |  Virtual screening

3.4.1  |  Ligand preparation

A reasonably high number of stereoisomers were sampled 
(maximum of 32 for each structure) to obtain a larger number 
of conformations for screening and maximize the probability 
of identifying the stereoisomers best able to imitate the origi-
nal bound fragments. The twenty-five co-crystallized ligands 
with MW >340 Da were used as standards during docking. A 
SMILE file with 7,158 stereoisomers derived from the 1,251 
compounds is provided in the supplementary information.

3.5  |  Glide and AutoDock Vina

3.5.1  |  MMGBSA

Molecular mechanics generalized Born surface area 
(MMGBSA) was used to predict binding free energy (ΔGbind) 
of the ligand–receptor complex. The top 103 ligands were 
ranked according to their MMGBSA values, and the top 

F I G U R E  5   Graphical representation of the eight families of co-crystallized fragments based on their interactions with the binding site residues 
of 3CLpro. Lipophilic residues are labeled with * [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  6   Structures of the 87 3CLpro ligands divided into eight sets based on their binding modes. The PDB IDs of the ligands are given to 
access related data (https://www.rcsb.org/) [Colour figure can be viewed at wileyonlinelibrary.com]

https://www.rcsb.org/
www.wileyonlinelibrary.com
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22 ligands (Table 2) were selected for molecular dynamics 
simulation.

3.5.2  |  Molecular dynamics simulation

Due to the binding site's polar nature, as it opens to solvent, 
the predominant interactions are H-bonds and water bridges. 
Hydrophobic interactions are far less pronounced, as noted 
above. Consequently, we ranked the top 22 compounds by 
H-bond occupancy during a 12 ns simulation (Figure 7) as 
an additional proxy for the strength of their interaction with 
the pocket and also provided the fraction of the hydrophobic 
interactions, extant water bridges, and π–π and π–cation in-
teractions over the simulation.

RMSD graphs of 22 ligands with respect to the reference 
conformation (first frame at time t = 0) are given in Figure 
8. These demonstrate the extent of ligand deviation from the 
initial pose (at t = 0) required before reaching a stable con-
formation. They also illustrate relative ligand fluctuation, 

should there be multiple low-lying and low-barrier states; 
or stability, should there be one dominant energy well. For 
example, T7A_UHA-2 was stable between 3 and 3.5 Å, and 
T9P_RZJ-5 was stable between 0.8 and 1 Å, indicating that 
the former sampled several similar binding modes, while the 
latter had predominantly one stable form. To better contex-
tualize this data, we have chosen three of these compound 
ligands, T9P_RZJ-5, T7Y_UGS-1, and T7S_T67-6. The 
binding interaction profile of all the remaining compounds 
is provided in supplementary information from Figure S1 to 
S19. In order to analyze the binding interaction profile, the 
most representative conformation of binding pose of each 
compound was selected through MD clustering. MD cluster-
ing represents the clusters of conformations with a deviation 
of <1 Å, and the largest cluster displays the most representa-
tive of the ligand. Therefore, binding pose of each compound 
from the largest cluster was used to generate 2D and 3D in-
teraction plots.

T9P_RZJ-5 provided a −6.94  kcal/mol XP score and a 
ΔGbind of −64.02 kcal/mol, according to MMGBSA (Table 

T A B L E  2   The top 22 hits, as per MMGBSA scores, of compound molecules. Glide extra precision (XP) and AutoDock (AD) Vina scores 
are presented along with the number of fragments whose binding mode is conserved from their crystal structures. The three compounds discussed 
in greater detail below are highlighted in red. In the “Compounds” column, two fragments involved in making a compound are separated by an 
underscore, and the number after the dash represents pose number generated by LigPrep

Sr. No. Compound Glide XP score
Conserved 
fragments AD Vina score

Conserved 
fragments

MMGBSA 
ΔGbind

1 T7Y_UGS−1 −7.42 2 −9 2 −76.06

2 T3V_UGD−4 −8.11 1 −8.1 1 −66.79

3 T3G_UGD−2 −7.02 1 −8.3 2 −67.35

4 T7G_HWH−4 −7.72 1 −9.0 1 −64.76

5 T9M_UH7−2 −7.89 2 −7.0 2 −63.48

6 T9P_UGV−1 −7.14 1 −7.3 2 −64.78

7 T9M_RZJ−8 −7.02 2 −7.4 1 −64.86

8 T9P_UHA−2 −8.01 2 −7.6 1 −62.55

9 T9P_RZJ−5 −6.94 2 −7.5 2 −64.02

10 T2Y_UHA−2 −7.43 1 −7.6 2 −61.52

11 T9M_HWH−1 −6.84 2 −7.9 2 −59.25

12 T9M_UHA−8 −7.40 2 −7.6 1 −58.02

13 3WL_UGD−1 −7.07 2 −10.1 2 −58.58

14 T9M_UGG−3 −7.07 2 −8.6 0 −57.41

15 T4M_UHA−3 −7.93 2 −7.8 2 −53.61

16 USD_T9J−3 −6.88 2 −7.9 2 −55.41

17 T2J_UHA−3 −6.95 2 −8.2 1 −55.26

18 T7S_T67−6 −6.98 1 −9.0 1 −55.18

19 T7A_UHA−2 −7.01 2 −7.9 2 −53.73

20 T9P_HWH−3 −7.20 2 −7.5 1 −52.09

21 T9P_T9J−3 −7.30 1 −7.7 0 −50.68

22 T9M_T9J−5 −7.22 2 −7.2 1 −46.63

Note: The energy values are in kcal/mol.
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2). An aromatic sulphonamide, it has the 2nd highest H-
bond occupancy ranking among the studied drugs. Thr25 and 
Gln189 both make stable single H-bonds, while His41 forms 
two very stable H-bonds with the ligand (Figure 9). All the 
ligand atoms have an RMSF of around 1 Å except one sul-
fonamide oxygen (2 Å) and the CH2 of the terminal alkene 
(1.5 Å) (Figure 10), which occupies a larger empty pocket 
between Cys145 and Met165 (Figure 9). It presented a sta-
ble RMSD of around 0.8 Å compared to the reference frame 
(t = 0), indicating that the pose obtained from XP docking re-
mained largely static during the simulation (Figure 8). Figure 
9 shows a comparison of co-crystallized poses of T9P and 
RZJ with the MD simulated pose of T9P_RZJ-5. RZJ and 
the same domain in T9P_RZJ-5 adopt similar conformations 
with only a slight tilt; however, the T9P component flips its 
orientation in its binding site. This molecule appears to be an 
entirely novel prophetic compound, and no identical and sim-
ilar hits were found in CHEMBL, PubChem, and SciFinder 
repositories. CHEMBL3467038, an N-acetyl derivative of 
the fragment RZJ, has been found to be nontoxic toward 
HepG2 cells (Singh et  al.,  2011), and a related compound 
CHEMBL275919 is a proposed estrone sulfatase inhibitor 
(Di Pizio & Niv, 2015).

T7Y_UGS-1 has a −7.42 kcal/mol XP score, a −9 kcal/
mole AD Vina score, and the highest MMGBSA ΔGbind of 
−76.06 kcal/mol in the top 22 subset (Table 2). It is a naph-
thalene derivative having pyridine and pyrrolidone residues. 

It was found making two H-bonds with Gln166 and one H-
bond with His41 (Figure 10f). RMSF plot of ligand fit on 
protein showed that naphthalene, methoxy N-acetyl residues 
fluctuated more than 1 Å, while the rest of the atoms were 
close to 1 Å (Figure 10b). Furthermore, Figure 8 showed that 
the ligand mostly stayed at an RMSD between 1.2 and 2 Å 
compared to the initial pose (at t = 0). It is evident from Figure 
10b that UGS part of T7Y_UGS-1 is very closely aligned 
with its co-crystallized posture, and T7Y part of T7Y_UGS-1 
is drifted toward His41 as compare to its co-crystallized pose 
that is closer to Ans142. T7Y_UGS-1 or its closely related de-
rivatives have not been reported in CHEMBL, PubChem, and 
SciFinder. In terms of fragments, a derivative of UGS having 
benzene in place of pyridine (CHEMBL1384462) has been 
reported for multiple biological activities, particularly against 
hepatitis C virus and influenza NS1 (Pydi et al., 2015). T7Y 
(CHEMBL1565601) has been reported against DNA poly-
merase iota, geminin, lysosomal α-glucosidase, and apurinic/
apyrimidinic endonuclease-1 (Floriano et al., 2006).

T7S_T67-6 is a 7-azaindole derivative with one N-
methylpiperazine and two piperidine residues. It has a Glide XP 
score of −6.98 kcal/mol, an AD Vina score of −9 kcal/mol, and 
an MMGBSA ΔGbind of −55.18 kcal/mol (Table 2). It forms 
two H-bonds with Gln166 and one H-bond with Gln192 during 
most of the simulation period. A conserved hydrophobic interac-
tion was also observed with Gln189 (Figure 11e,f). The RMSFs 
of all atoms of the ligand are <1 Å except for carbon 11 of the 

F I G U R E  7   Interaction fraction (the number of interactions normalized over the 12 ns simulation period) of the selected ligands for hydrogen 
bond (H), hydrophobic interaction (P), water bridge (W), π stacking (πs), and π cationic (π+) interactions during MD simulation. An interaction 
fraction of 3.1 for water bridges of T9M_RZJ-8 stands for 3 water bridges 100% of the simulation time and a 4th one 10% of the simulation time 
[Colour figure can be viewed at wileyonlinelibrary.com]
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terminal piperidine, which was slightly higher than 1 Å (Figure 
11b). The RMSD showed dynamic stability, remaining between 
1 and 1.4 Å when compared to the first frame (t = 0) (Figure 

8). The T7S domain of T7S_T67-6 remained nearly coincident 
with the co-crystallized pose of the isolated fragment; but the 
length of the linker does not allow the T67 domain to adopt 

F I G U R E  8   Root mean square deviation (RMSD) of 22 ligands with respect to the reference conformation (first frame at time t = 0). In the bar 
graphs, each bar's length represents the fraction of time at a particular RMSD out of 12 ns [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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FIGURE 9   A typical MD simulation workup for a compound drug: data for T9P_RZJ-5. (a) Protein Cα RMSD on the left y-axis and ligand RMSD 
fit on protein on the right y-axis. (b) RMSF of ligand atoms. (c) MD simulated pose of the compound ligand in lime, superimposed on the co-crystallized 
poses of its fragments in teal and magenta. (D) Highlight of the key protein–ligand interactions that exist during more than 30.0% of the simulation 
time. (e) A timeline representation of the interactions and contacts (H-bonds, hydrophobic, ionic, and water bridges) between the 23 implicated residues 
and the compound ligand. (f) Interaction fraction (the number of interactions normalized throughout the trajectory) of the ligand for hydrogen bond, 
hydrophobic interaction, ionic interaction, and water bridges with each of the key residues [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  1 0   A typical MD simulation workup for a compound drug: T7Y_UGS-1. (a) Protein Cα RMSD on the left y-axis and ligand 
RMSD fit on protein on the right y-axis. (b) RMSF of ligand atoms. (c) MD simulated pose of the compound ligand in lime, superimposed on the 
co-crystallized poses of its fragments in teal and magenta. (d) Highlight of the key protein–ligand interactions that exist during more than 30.0% 
of the simulation time. (e) A timeline representation of the interactions and contacts (H-bonds, hydrophobic, ionic, and water bridges) between the 
23 implicated residues and the compound ligand. (f) Interaction fraction (the number of interactions normalized throughout the trajectory) of the 
ligand for hydrogen bond, hydrophobic interaction, ionic interaction, and water bridges with each of the key residues [Colour figure can be viewed 
at wileyonlinelibrary.com]
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a conformation consistent with that of the isolated fragment 
(Figure 11c). Two closely relatives of T7S (CHEMBL1574087 
and CHEMBL1541069) are potent inhibitors of human TrxR1, 
SMN2, and IMPase proteins, and influenza A NS1 protein in the 
low nanomolar range (Biarnés et al., 2010; Miguet et al., 2006). 
Moreover, CHEMBL1574087 is an inhibitor of hepatitis C virus 
in a cell-based assay (5,012 nM). Furthermore, close analogues 
of T67 (CHEMBL231023 and CHEMBL3754439) are weak 
anti-inflammatory agents in the rat model (Tan et al., 2012). Of 
course, again, the new ligand has no known similar compounds 
according to a Scifinder search.

3.5.3  |  QikProp

ADME property assessment of the top-22 hits are provided in 
the supplementary information.

4  |   CONCLUSION AND FUTURE 
DIRECTIONS

This comprehensive study of known small molecule frag-
ments co-crystallized with 3CLpro employed a crystal 

structure-guided fragment-based approach to identify poten-
tial new inhibitors. The 87 fragments matching the criteria 
were connected via linkers reasonably expected to provide 
conformations of the compound drugs that reflect those 
preferred by its component domains. The 1,251 resulting 
structures were screened using docking, MMGBSA calcula-
tions, and MD simulations. The top 22 hits identified, after 
MD simulation, generally had one or both of their compo-
nent domains adopt conformations consistent with the iso-
lated fragments. A closer examination of three promising 
hits with diverse structures (T7Y_UGS-1, T9P_UHA-2, and 
T7S_T67-6), suggest they might demonstrate significant 
activity that warrants their synthesis and biological testing. 
This two-domain approach could be extended to a three-
domain strategy using mutually non-overlapping sets, such 
as set1+set5+set6 or set1+set6+set7, that could offer further 
enhanced affinity.
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