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This study investigated the embodied effects involved in the mental rotation of pictures
of body parts (hands and feet). Blood oxygen level-dependent (BOLD) signals were
collected from 18 healthy volunteers who performed mental rotation tasks of rotated
drawings of hands under different arm postures. Congruent drawings of hands (those
congruent with left-hand posture) evoked stronger activation in the left supplementary
motor area (SMA), left precentral gyrus, and left superior parietal lobule (SPL) than did
incongruent drawings of hands. Congruent drawings of hands (those congruent with
right-hand posture) evoked significant activation in the left inferior parietal lobule (IPL),
right SMA, bilateral middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), and
bilateral superior frontal gyrus (SFG) compared to that evoked by the incongruent
drawings of hands. Similar methodology was implemented with drawings of feet.
However, no significant differences in brain activation were observed between congruent
and incongruent drawings of feet. This finding suggests that body posture influences
body part-related mental rotation in an effector-specific manner. A direct comparison
between the medially and laterally rotated drawings revealed activation in the right
IPL, left precentral gyrus, bilateral IFG, and bilateral SFG. These results suggest that
biomechanical constraints affect the cognitive process of mental rotation.

Keywords: embodied cognition, fMRI, effector-specific, in-rotation effect, mental rotation

INTRODUCTION

Previous studies have suggested that mental simulations during spatial transformation tasks share
common temporal and kinematic mechanisms with those involved in actual task performance
(Shepard and Metzler, 1971; Parsons and Fox, 1998). The mental rotation task, a specific spatial
transformation task, requires subjects to mentally rotate 2-D or 3-D objects to an upright position
and then judge their laterality (Parsons, 1994). Previous behavior results have suggested a general
pattern that participants’ response time in the laterality judgment task are proportional to the
time taken by the participants to physically move their hands in the position of the hand-stimuli
(Parsons and Fox, 1998). This type of task requires that participants engage in object-centered
reference frames; subjects must first rotate the representation of the object to a new position and
then make a right or left laterality judgment.

Another type of spatial transformation task involves subjects judging the laterality of self-related
stimuli, such as hands, feet, legs, faces, upper or lower limbs, and full body images (Valentine
and Bruce, 1988; Zacks et al., 1999; Nico et al., 2004; Ionta et al., 2007; Takeda et al., 2009;
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Hetu et al., 2013; Tomasino and Gremese, 2016; Berneiser
et al., 2018). This task requires subjects to use a self-centered
reference frame (Shepard and Metzler, 1971; Parsons, 1987;
Yoshizaki et al., 2007). Numerous studies have demonstrated
that both core and general motor areas are involved in
this type of task, specifically, the supplementary motor
area (SMA), precentral gyrus, inferior parietal lobule (IPL),
superior parietal lobule (SPL), and premotor cortex (PMC)
(Hanakawa et al., 2007; Hetu et al., 2013). In addition,
these behavioral and imaging studies demonstrated that the
process of mentally rotating body parts shares similar or
even identical brain activity with that which occurs during
the actual movement of that body part (de Lange et al.,
2005).

Numerous researchers have argued for the embodied nature
of mental rotation by showing that body status (posture
and configuration) influences laterality judgments of visual
stimuli related to body parts (de Lange et al., 2006; Ionta
and Blanke, 2009; Lorey et al., 2009; Curtze et al., 2010).
Moreover, different variables have been explored in relevant
experiments, such as perspective, stimulus orientation, laterality,
and imagery movement complexity. Congruency between
imagined movement and actual body posture has also been
shown to influence motor imagery tasks (Fourkas et al.,
2006). However, very few studies have explored whether
congruency effects exist in mental rotation tasks involving body
parts.

Until now, few researchers have focused on whether or
not the postural effect is effector specific. Ionta and Blanke
(2009) conducted a behavioral study to investigate whether the
postural effect is effector-specific. In the experiment, participants
were asked to place their right hands on their right knee and
their left hands behind the back, and in the other condition
the hand positions were reversed. The results showed that the
reaction times (RTs) of the laterality judgments of right/left
hands increased when the participants kept their right/left
hands behind their backs, which suggested that the hands-only
stimuli alone were modulated by the posture of the participants’
hands, while no hand-postural effect was found when using
foot stimuli. This effect can be interpreted and termed as
the “postural effect” in mental rotation tasks. However, the
neural mechanisms underlying this effect must still be explored.
In another study, de Lange et al. (2006) asked participants
to judge the laterality of rotated pictures of hands under
three body postures by pressing a response box with their
toes. The results showed that the RTs of the hand laterality
judgments followed the “biomechanical constraints” of left-
or right-hand movements; i.e., when participants put their
left or right arms in a biomechanically easy orientation (to
judge the orientation of clockwise-rotated left-hand pictures,
while their left hands were flexed clockwise, for example),
the identification of the left or right hand in the opposite,
biomechanically complex orientation (rotated orientations that
were harder to actually achieve, for example, clockwise rotation
of one’s right hand) was more difficult, as measured by increased
RTs. These findings suggested that the posture of the upper
limbs influenced the judgment of the rotated pictures of

hands. However, in the study, the participants were asked to
respond with their toes, with the underlying assumption being
that regions involved in controlling the execution of big toe
movements are not involved in controlling the mental rotation
of hand/foot actions. However, such assumptions require further
investigation in order to eliminate the influence of response
execution.

The effects of biomechanical constraints on mental rotation
have also been investigated (de’Sperati and Stucchi, 1997; Petit
et al., 2003; Petit and Harris, 2005). The results suggested
that the mental rotation of anatomically possible (or familiar)
orientations is much faster than that of impossible (or
unfamiliar) orientations. To demonstrate this, researchers used
a motor imagery strategy that was grounded in biomechanical
constraints (Parsons, 1987, 1994; Parsons and Fox, 1998; Creem
et al., 2001; Tomasino and Rumiati, 2004; de Lange et al.,
2006). Tao et al. (2008) explored the effects of biomechanical
constraints (in-rotation effect) by classifying the orientation of
pictures of hands into medial (toward the body midline) or
lateral rotations according to their relation to the body. The
results showed that medially rotated pictures of hands were
recognized more quickly than were laterally rotated pictures.
However, the neural mechanism involved in the in-rotation
effect is still unknown and requires further neuroimaging
evidence.

The present study investigated the above issues by using
different orientations of pictures of hands and feet, while
varying each subject’s arm postures. First, we used functional
magnetic resonance imaging (fMRI) to identify brain activation
differences between posture-stimulus congruent and incongruent
conditions. We predicted that congruent postures would facilitate
the judgment of congruent stimuli, manifesting as increased
brain activity. Second, the addition of feet stimuli served to
reveal the neural mechanisms underlying mental rotation and
to clarify whether the mental simulation process is effector-
specific. Third, we introduced a control task in our study to
eliminate the influence of response execution by requiring the
subjects to judge the laterality of left- or right-pointing arrows
rather than left or right body parts. Finally, the classification
of the stimuli into medial and lateral conditions allowed us
to identify the brain networks specifically involved in the
in-rotation effect, i.e., the facilitation of RTs when judging
medially orientated (toward the body midline) drawings of
hands versus laterally orientated drawings regardless of left
or right hand (Tao et al., 2008). We expected subjects to
have faster RT and stronger brain activation when judging
medially rotated drawings than when judging laterally rotated
drawings.

MATERIALS AND METHODS

Ethics Statement
The Medical Research Ethics Committee of Jinling Hospital
and Clinical School of Medical College at Nanjing University
approved this study. Study participants provided written
informed consent prior to their participation.
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Participants
Eighteen healthy college students (9 males and 9 females; age
23–27 years; all right-handed), with normal or corrected-to-
normal visual acuity, participated in this study. The data from
two participants were excluded due to technical problems.

Stimuli
The experimental stimuli included hand drawings of left/right
hands or feet (Figure 1). Stimuli were presented in one of six
clockwise (CW) orientations (45◦, 90◦, 135◦, 225◦, 270◦, or
315◦) (Tao et al., 2008). The upright orientation was defined as
fingers/toes pointing upward (0◦). First, to test postural effects,
we divided the stimulus orientations into two groups based
on the congruency between the stimulus and arm posture: (1)
left arm flexed, A, congruent stimulus with 45◦, 90◦, and 135◦
orientations for drawings of the left hand/foot; B, incongruent
stimulus with 225◦, 270◦, and 315◦ orientations for the drawings
of the left hand/foot; and (2) right arm flexed, A, congruent
stimulus with 225◦, 270◦, and 315◦ orientations for drawings
of the right hand/foot; B, incongruent stimulus with 45◦, 90◦,
and 135◦ orientations for drawings of the right hand/foot. The
control stimuli were hand drawings of left or right-pointing
arrows (see Figure 1A). Second, for the analysis of the effects
of biomechanical constraint, the six orientations were separated
into two groups: (1) medial (45◦, 90◦, and 135◦ orientations for
the left hand/foot; 225◦, 270◦, and 315◦ orientations for the right
hand/foot) and (2) lateral (225◦, 270◦, and 315◦ orientations for
the left hand/foot; 45◦, 90◦, and 135◦ orientations for the right
hand/foot) (see Figure 1B). All stimuli were projected onto a
screen at the back of the MRI scanner and were viewed through a
mirror in front of each participant’s face.

Experimental Time Course and
Procedures
Participants were asked to stay supine and motionless in the
fMRI scanner and were unable to see their hands during testing.
The task was to judge the laterality of the presented hand/feet
drawings (left or right) by pressing the key of response-box that
was firmly attached to their left or right toe. Participants were
then instructed to mentally rotate their hands/feet in their self-
perspective other than the object-based view point (third-person
perspective) in test sessions.

The testing session consisted of 20 task blocks intermixed
with 20 baseline periods. At the beginning of each block, a 4-s
instruction picture was presented, requiring the participants to
adopt one of the following two postures (Figure 1A): (1) left arm
flexed toward the midline of the body and resting on the abdomen
with the right hand resting naturally alongside the body or (2)
right arm flexed and resting on the abdomen with the left hand
resting naturally alongside the body. A marker was placed on
the chest of each participant to designate the midline. The 4-s
instruction period was followed by a 10-s baseline period, during
which the participants fixated on a mark (+) on the screen. Next,
participants completed a block of 26 trials, which included 24
body part trials (left/right hands/feet in 6 orientations) and 2
arrow trials (left- and right-pointing). Each trial started with a

500-ms fixation (+), followed by a hand drawing (Figure 2). Each
participant made judgments by using his/her left or right big toe
to press the left or right response key, respectively. The laterality
and orientation of the drawings (hands × feet × arrow) were
pseudorandomized. Based on previous research (Kosslyn et al.,
2001), each picture was presented for 4 s and would disappear
after this time period or after the participant responded. The
picture was then replaced by a fixation (+) until the next picture
appeared. In total, each participant performed 520 task trials
[2 postures × 10 replications × (4 body parts × 6 orientations
+ 2 control stimuli arrows)] over a total of 43 min. After
the experiment, the participants were asked about the use of
ecocentric perspectives, rotation strategies, and their awareness
of postural effects during their performance.

Behavioral Analysis
Previous studies researching motor imagery effects on behavioral
results (Cooper and Shepard, 1975) or physiological responses
(de Lange et al., 2006) showed that stimulus view and in-rotation
effects particularly influence RTs. Therefore, we investigated the
influence of arm posture, stimulus congruency, and body part
and stimulus orientation effects on RTs. RT was defined as the
time between stimulus onset and the participant’s response (key
press). Based on previous findings using hand stimuli ranges
between 500 and 3500 ms (Kosslyn et al., 1998), responses faster
than 500 ms or slower than 3500 ms were eliminated from the
data analyses (total loss was 6% of the trials).

A 2 × 2 × 2 × 2 repeated-measures ANOVA was used
to analyze the behavioral results, with stimulus congruency
(congruent and incongruent), arm posture (left arm flexed and
right arm flexed), stimulus orientation (medial and lateral), and
body part (hands and feet) as independent factors and RT (ms) as
the dependent variable. Post hoc simple t-tests were used to assess
statistically significant interactions. An alpha level of p< 0.05 was
used to determine statistical significance.

fMRI Data Acquisition
All participants underwent functional scanning using a Siemens
Trio 3T scanner at Jinling Hospital, Nanjing, China. Foam
padding minimized the head motion of the participants.
Functional images were acquired using a 90 single-shot,
gradient-recalled echo-planar imaging sequence (repetition
time = 2000 ms, echo time = 30 ms, and flip angle = 90◦). Thirty
transverse slices (field of view = 240 mm × 240 mm, in-plane
matrix = 64× 64, slice thickness = 4 mm, interslice gap = 0.4 mm,
and voxel size = 3.75 mm× 3.75 mm× 4 mm) aligned along the
anterior-posterior commissure line were also acquired.

fMRI Data Analysis
The Statistical Parametric Mapping software (SPM81) was
used to conduct preprocessing of the functional images. The
fMRI scans were initially corrected for temporal differences
and head motion. No translation or rotational parameters
in any given data set exceeded ±1 mm or ±1◦. Functional
images were warped to a standard stereotaxic space at a

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Congruency was defined in terms of the relative angle between the posture of the hand and the orientation of the stimuli (as described in the stimuli
section and A). The medial/lateral distinction was defined relative to the physical angular position of the body (as described in the stimuli section and B), regardless of
the relationship of orientation and hand posture.

FIGURE 2 | Time course of the first block. The other 19 blocks were the same as block 1.

resolution of 3 mm × 3 mm × 3 mm using the standard
Montreal Neurological Institute (MNI, Canada) echo-planar
imaging template. Then, functional images were spatially
smoothed with an 8 mm full width at half maximum Gaussian
kernel.

For the first-level analysis, a general linear model (GLM) was
computed for each session task and applied separate predictors
for each participant. A boxcar function was convoluted using
the hemodynamic response function. The boxcar function length
covered the mental rotation interval of each trial section as
well as the baseline period. Each condition included drawings
of medial/lateral hands or feet and control stimuli (arrows).
A random-effects two-sample t-test examined the significance
of BOLD responses during the presentation of the experimental
drawings (rotated drawings of hands) relative to that of the
control stimuli (arrows) in order to distinguish the effects of the
foot pressing.

The second-level analysis used t-tests to determine the
influence of arm posture on mental rotation of the experimental
stimuli. Four paired t-tests were conducted: (1) left arm
was flexed, right arm was resting, congruent > incongruent
stimuli (LH cong > incong); (2) right arm was flexed,

left arm was resting, congruent > incongruent stimuli
(RH cong > incong); (3) left arm was flexed, right arm
was resting, congruent > incongruent feet stimuli (LH
cong > incong); and (4) right arm was flexed, left arm was resting,
congruent > incongruent feet stimuli (RH cong > incong). An
additional paired t-test (medial > lateral) assessed the effects of
biomechanical constraint on the mental rotation of body parts,
irrespective of arm posture or stimulus type (hands of feet).
Correction for multiple comparisons was performed using the
AlphaSim program in the REST software (the parameters were
as follows: individual voxel P-value = 0.001, 1000 simulations,
FWHM = 4 mm, with mask), as determined by Monte Carlo
simulations. Statistical maps of the two-sample t-tests were set at
a combined threshold of p < 0.001 and a cluster size > 22 voxels,
yielding a corrected threshold of p < 0.05.

RESULTS

Behavioral Results
The ANOVA results showed significant main effects of the
stimulus congruency [F(1,15) = 24.774, p = 0.000 < 0.05],
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stimulus orientation (medial/lateral) [F(1,15) = 9.47,
p = 0.005 < 0.05], and body part [F(1,15) = 5.746, p= 0.03 < 0.05],
a significant stimulus congruency by body part interaction [F(1,
15) = 13.24, p = 0.003 < 0.05] and a marginally significant
stimulus orientation by body part interaction effect on RT
[F(1,15) = 4.351, p = 0.054]. A slower performance in the
incongruent conditions (1436 ms) than in the congruent
conditions (1209 ms) accounted for the stimulus congruency
effect (p = 0.000 < 0.05) (Figure 3A). Likewise, faster RTs to
medial drawings of the hand/foot (1154 ms) than to lateral
drawings of the hand/foot (1311 ms) contributed to the stimulus
in-rotation effects (p = 0.005 < 0.05) (Figure 3B). A slower
performance in response to the foot stimuli (1402 ms) than to
the hand stimuli (1242 ms) accounted for the body part effect
(p = 0.03 < 0.05). For the stimulus congruency by body part
interaction, specifically, hand stimuli in the congruent condition
were judged faster (1150 ms) than those in the incongruent
condition (1320 ms). However, the RTs to foot stimuli did
not differ between the congruent (1390 ms) and incongruent
(1401 ms) conditions (Figure 3A). For the stimulus orientation
by body part interaction, specifically, the RTs to hand stimuli
in the medial orientation (1085 ms) were faster than the RTs
to stimuli in the lateral orientation (1333 ms), whereas for the
foot stimuli, no significant differences were found (1400 ms for
medial orientation vs. 1471 ms for lateral orientation).

Neuroimaging Results
Postural Effects
Postural effects were determined by four t-tests. The results
showed that when the left forearm was flexed, the congruent
drawings were associated with strong activation in the SMA, SPL,
precentral gyrus, and superior frontal gyrus (SFG), all within
the left hemisphere (p < 0.05, AlphaSim-corrected, t = 1.8125;
Figure 4A and Table 1). When the right forearm was flexed, the

congruent drawings of hands evoked strong activation in the IPL,
SMA, SFG, inferior frontal gyrus (IFG), and middle frontal gyrus
(MFG) (p < 0.05, AlphaSim-corrected, t = 1.8125; Figure 4B
and Table 2). An additional analysis of the drawings of feet
revealed no significant differences in terms of activation between
the responses to congruent and incongruent drawings regardless
of which arm was flexed.

In-rotation Effect
A paired t-test between the medial and lateral hand orientations
(medial > lateral) showed increased BOLD signal (p < 0.05,
AlphaSim-corrected, t = 1.8125) in the right IPL, bilateral
SFG, bilateral IFG, and left precentral gyrus (Figure 5). These
results suggested that orientation influences brain activity in
areas related to mental imagery, such as the IPL, SFG, and
IFG because the in-rotation trials require more spatial working
memory retrieval and greater motor-related attention to daily
actions than to stored actions relevant to the current presented
drawings than do trials involving unfamiliar hand rotations (out-
rotation).

DISCUSSION

The above results supported the idea of embodied cognition in
several ways. First, our findings highlighted that a high-level
cognitive process, such as mental rotation, was affected by body
information, such as visual, proprioceptive, and somatosensory
feedback. Sensory body effectors and previous body experiences
influence the integration of current body status (Berlucchi
and Aglioti, 1997). Second, the judgments of the drawings of
feet remained unaffected by arm posture, suggesting that body
sources influence cognitive processing according to an effector-
specific rule. Third, biomechanical constraints influenced the
integration of body information.

FIGURE 3 | (A) Congruency effects on hands/feet stimuli. Mean reaction time (RT) for hands and feet stimuli for each congruent condition. Error bars represent the
standard error of the mean. (B) In-rotation effect on hands/feet stimuli. Mean RT for stimulus judgment for each orientation condition. Error bars represent the
standard error of the mean. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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FIGURE 4 | Statistically different t-maps between the congruent and incongruent drawings during left- or right-hand flexed conditions. (A, left forearm flexed:
congruent > incongruent, left hand cong > incong; B, right forearm flexed: congruent > incongruent, right hand cong > incong) (paired t-test, p < 0.05, corrected).
t-score bars are shown on the right. The numbers beneath the images refer to the MNI coordinates.

Postural Effects
A large body of evidence supports the idea that the human brain
contains specialized parietal-frontal circuits that are activated
upon completion of a mental rotation task or when observing the
rotational movement of others (de Lange et al., 2006; Lorey et al.,
2009). Perspective and posture influence the mental rotation
process, which includes the mental representation of the body
and its context. In addition, the neural mechanisms underlying
mental rotation are associated with the same brain activation
responsible for an individual’s motor repertoire.

In our study, the congruency between arm posture and the
imagined hand rotation led to faster RTs than incongruency
did. The neuroimaging results showed that while the left hand
was flexed in a clockwise orientation, the congruent drawings of
hands evoked stronger activation in the left SMA, left precentral
gyrus and left SPL than the incongruent drawings of hands did.
When the right hand was flexed in a counterclockwise (CCW)
orientation, the same comparison revealed significant activation
in the left IPL, right SMA, bilateral MFG, left IFG, and bilateral
SFG. This strong activation could be interpreted as facilitation
resulting from the high amount of sensory input from the
periphery (Shimura and Kasai, 2002). Previous studies using
transcranial magnetic stimulation (TMS) in relation to motor
imagery suggested that congruent postural signals induce greater
excitability in the precentral gyrus than do incongruent postural
signals (Vargas, 2004; Fourkas et al., 2006).

Our results also corroborated previous results, which found
that the posture employed in mental rotation influences
judgment (de Lange et al., 2006; Lorey et al., 2009; Wraga
et al., 2009). Parsons and Fox’s (1998) PET study investigating
mental rotation tasks of body part-related materials showed
stronger activation in motor-related areas, including the pre-
supplementary motor area (pre-SMA), inferior premotor cortex,
superior frontal sulcus, and premotor cortex, than in other
brain areas. These areas supposedly manipulate higher-order
aspects of motor control, motor preparation and selection,
action recognition and replication, spatial working memory,
and guidance and execution. Furthermore, they also found
that stronger activation was dominant in the left hemisphere,
including in the SMA and IPL, two regions that are associated
with planning for, guidance of, and attention to motor
performance.

The parietal operculum, especially the IPL, is thought to
function in higher-order somatosensory activity as well as
in the integration of somatosensory information with other
modalities (Caselli, 1993; Cipriani and Pandya, 1999; Servos
et al., 2001). To complete the mental rotation task, participants
need to process visual and somatosensory information from the
primary somatosensory cortices and multisensory areas in the
parietal lobe (Lorey et al., 2009). Other fMRI studies have also
emphasized the role of the parietal lobe in action simulation
and prediction, namely, the IPL, which is responsible for the
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prediction or expectation of a sensory stimulus (Carlsson et al.,
2000). Therefore, our results were consistent with those of
previous studies that suggested the involvement of the IPL in the
embodied simulation process (Gallese, 2003, 2005; Keysers et al.,
2004; Rizzolatti and Craighero, 2004).

The findings of the present study indicate that the drawings
of feet were unaffected by upper limb posture and that
congruent and incongruent drawings of feet elicited similar
neural responses, which suggests that arm posture does not play
a key role in mental rotation when the stimuli are not the same

as the effector. The effect of arm posture modulation on neural
activity during the mental rotation task was specific for upper
limb body parts only and followed an effector-specific pattern.

In-rotation Effect
One previous issue of debate in regard to mental rotation
was what is actually simulated in the rotation process. Some
researchers hold that mental rotation entails the simulation of a
movement of one’s own body (Jeannerod, 1994), and this theory
supports the notion of embodied cognition (Gallese, 2003), which

TABLE 1 | Significantly activated brain regions in congruent and incongruent drawings during left- or right-hand flexing conditions.

Contrast Anatomical region Hemisphere Peak T-value Stereotactic coordinates (MNI) Voxels

LH cong > incong Supplementary motor area L 2.72 −9 −3 66 66

Precentral gyrus L 3.52 −57 −6 30 171

Superior parietal lobe L 3.31 −24 −60 72 38

Inferior parietal lobule L 2.23 −30 −54 45 40

RH cong > incong Supplementary motor area R 2.15 9 −21 66 39

Middle frontal gyrus L 2.57 −36 6 60 29

R 2.84 33 9 60 119

Inferior frontal gyrus L 2.03 −51 36 12 87

Superior frontal gyrus L 3.16 −21 54 9 47

R 4.09 27 57 9 50

Peak t-score and peak voxels are presented in MNI space. Cong, congruent condition; incong, incongruent condition; LH, left forearm flexed; RH, right forearm flexed.

TABLE 2 | Significantly activated regions during the viewing of the hands and feet stimuli (medial × lateral, regardless of arm position).

Contrast Anatomical region Hemisphere Peak T-value Stereotactic coordinates (MNI) Voxels

Medial > Lateral Inferior parietal lobule R 3 51 −51 54 139

Precentral gyrus L 4.37 −39 6 48 189

Inferior frontal gyrus L 3.29 −45 33 3 194

R 3.26 57 21 6 191

Superior frontal gyrus L 1.97 −18 24 51 121

R 2.86 30 27 51 266

Peak t-scores and peak voxels are presented in the MNI space.

FIGURE 5 | Statistically different t-maps between the medial and lateral drawings (paired t-test, p < 0.05, corrected). t-score bars are shown on the right. The
numbers beneath the images refer to the MNI coordinates.
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insisted that body part-related mental rotation depends not
only on the action requirements but also on the biomechanical
constraints of one’s own body in space (de Lange et al., 2006).
Other researchers suggest that the mental rotation process is an
abstract implementation of general kinematic rules of biological
motion and requires the knowledge of biomechanical constraints,
not the actual biomechanical constraints (Pylyshyn, 2002).

The current study showed that medially rotated drawings
of hands/feet led to faster RTs than did laterally rotated
drawings, suggesting that the mental rotation of one’s body
representation is faster under conditions of more familiar
orientations (in-rotation effect) than under conditions of less
familiar orientations. This result is similar to the findings
of another study reported previously (Tao et al., 2008). The
neuroimaging results revealed stronger activation in the right
IPL, left precentral gyrus, bilateral IFG, and bilateral SFG in
response to medially rotated drawings than to laterally rotated
drawings. The IPL is thought to be involved in spatial working
memory and attention to motor performance (Parsons and Fox,
1998). When presenting rotated drawings of body parts, which
are physically possible and commonly encountered in daily
life (in-rotation), spatial working memory and motor-related
attention were engaged and matched with the current body
position representation. Therefore, drawings in the in-rotation
configuration evoked stronger activation in these motor-related
areas than did drawings that were not in this configuration.
This result suggested that biomechanical constraints affected
the embodied cognitive process when participants imagined the
rotation of the representation of their hands or feet.

CONCLUSION

Our experiment showed that mentally rotating congruent
drawings of hands leads to stronger activation of parietal and
motor-related brain areas than incongruent drawings of hands.
Our results supported the concept of the embodied nature of
mental rotation of body parts by demonstrating that the inner
presentation of one’s own body is actually simulated during
the body part-related mental rotation. Moreover, biomechanical
constraints influenced task performance in an effector-specific
manner. Finally, increased parietal and prefrontal cortex
activity associated with different arm postures revealed that
proprioceptive factors play an important role in the cognitive
process of mental rotation.

However, this study had some limitations that should be
further explored. First, in this paper, we used only foot
pressing as the response; hand pressing was not used. Although

the confounding effect of foot pressing was distinguished by
contrasting the hands or feet conditions with the control
condition, it may be better to use a verbal response or a voice
key. In addition, we mainly used the control task (arrows) to
eliminate the influence of foot pressing on the neuroimaging
results, and the behavioral data from the control task was not
collected in the present study. Third, the classification of the
medial and lateral orientations was based on their relation to the
body midline; that is, a left hand flexed at 45◦CW was classified as
medially rotated, regardless of the hand posture (whether or not
the left hand was flexed at 90◦CW). This setting was not formerly
used because no study has investigated the in-rotation effect
and its relationship to body posture simultaneously. Therefore,
this design was novel and needs further improvement. Previous
studies also used human faces as stimuli for the mental rotation
task; however, these studies did not consider the effect of emotion
type (Valentine and Bruce, 1988; Civile et al., 2016), which would
be an interesting subject in future studies on mental rotation.
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