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Abstract

De novo variants (DNVs) with deleterious effects have proved informative in identifying risk

genes for early-onset diseases such as congenital heart disease (CHD). A number of statis-

tical methods have been proposed for family-based studies or case/control studies to iden-

tify risk genes by screening genes with more DNVs than expected by chance in Whole

Exome Sequencing (WES) studies. However, the statistical power is still limited for cohorts

with thousands of subjects. Under the hypothesis that connected genes in protein-protein

interaction (PPI) networks are more likely to share similar disease association status, we

developed a Markov Random Field model that can leverage information from publicly avail-

able PPI databases to increase power in identifying risk genes. We identified 46 candidate

genes with at least 1 DNV in the CHD study cohort, including 18 known human CHD genes

and 35 highly expressed genes in mouse developing heart. Our results may shed new

insight on the shared protein functionality among risk genes for CHD.

Author summary

The topologic information in a pathway may be informative to identify functionally inter-

related genes and help improve statistical power in DNV studies. Under the hypothesis

that connected genes in PPI networks are more likely to share similar disease association

status, we developed a novel statistical model that can leverage information from publicly

available PPI databases. Through simulation studies under multiple settings, we proved

our method can increase statistical power in identifying additional risk genes compared to

methods without using the PPI network information. We then applied our method to a
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real example for CHD DNV data, and then visualized the subnetwork of candidate genes

to find potential functional gene clusters for CHD.

Introduction

Congenital heart disease (CHD) is the most common birth defect affecting ~ 1% of live births

and accounts for one-third of all major congenital abnormalities [1–3]. There is substantial

evidence that CHD has a strong genetic component [4]. Although it is estimated that aneuploi-

dies and copy number variations account for about 23% of CHD cases, few individual disease-

causing genes have been identified in published studies [5–8]. Therefore, the limited knowl-

edge of the underlying genetic causes poses an obstacle to the reproductive counseling of CHD

patients [9].

Whole Exome Sequencing (WES) studies have successfully boosted novel causal gene iden-

tification for both Mendelian and complex disorders [10,11]. To narrow down the pool of can-

didate variants from WES, family-based studies have been conducted to scan for de novo
variants (DNVs) from parent-offspring trios. DNV studies have been shown to play an impor-

tant role in risk gene identification for CHD [1,3,5,6,12–15]. From the analysis of 1,213 CHD

parent-offspring trios, Homsy et al. identified a greater burden of damaging DNVs, especially

in genes with likely functional roles in heart and brain development [12]. Recently, Jin et al.

inferred that DNVs in ~440 genes were likely contributors to CHD [5]. Despite these advances,

it remains challenging to capture the causal genes with only DNV data as CHD is very geneti-

cally heterogeneous [6].

Several statistical methods have been proposed to identify risk genes by integrating DNVs

with other genetic variants and additional biological data. He et al. developed a Bayesian

framework, namely the Transmission And De novo Association (TADA), to increase statistical

power of inferring risk genes by incorporating both DNMs and rare inherited variants [16]. A

hierarchical Bayes strategy was adopted for parameter estimation in TADA. Following this

idea, a number of methods have been proposed to improve TADA, with some focusing on

leveraging the shared genetic information in multiple correlated phenotypes, such as neurode-

velopmental disorders and CHD [17,18], whereas others extend the method by integrating

DNMs with other types of genetic variants and functional annotations [19–22]. Please note

that, except for DECO [22], all these methods treat each gene individually and do not consider

the interaction effects of genes. Thus, there is a pressing need for developing network-based

frameworks to consider the functional connectivities among genes.

Network-based approaches have been successful in prioritizing risk genes for downstream

genomic and transcriptomic studies [23–26]. Chen et al. [24] proposed a Markov Random

Field (MRF) model to incorporate pathway topology structure for Genome-Wide Association

Studies (GWAS). They showed that their method is more powerful than single gene-based

methods through both simulation and real data analyses. In 2015, Liu et al. adopted a similar

idea as Chen et al. to analyze DNV data from WES studies [27]. Their framework, namely

DAWN, combines TADA p-values with the estimated network from gene co-expression data.

In their real data analysis for autism, 333 genes were prioritized by integrating DNV summary

statistics and expression data from brain tissue. However, the above methods require summary

statistics (Z scores or p-values) from genetic association analysis as their input, which may not

be provided from results of DNV analysis [17,19].

More recently, Bayrak et al. developed a priority score to quantify the proximity of genes to

the known CHD risk genes using DNV data [3]. Utilizing canonical pathways and human
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gene networks, their analyses identified 23 novel genes that are likely to contribute to CHD

pathogenesis. Their results further support the potential to improve power by integrating net-

work information with DNV data. Then, the question becomes how to choose an informative

gene network for CHD. As there is a limited number of co-expression data sets for human

developmental heart, a natural choice for network information would be human PPI data-

bases. There are multiple primary PPI network databases such as BioGRID [28], IntAct [29],

DIP [30], MINT [31], and HPRD [32]. Most network-based studies apply their real data on

two or more of databases to obtain their results. Nonetheless, it is hard to check the overlap-

ping information between two PPI databases and interpret the divergent results. Multiple inte-

grative databases such as STRING [33], HINT [34], UniHI [35], hPRINT [36] and GPS-Prot

[37] provide a platform to resolve the above problems [38]. Among them, STRING is a popular

PPI resource that imports protein association knowledge from physical interaction and

curated knowledge from the primary PPI databases and other pathway information knowledge

such as KEGG [39–41] and GO [42,43]. In addition, it provides a score to measure the likeli-

hood of interactions. Some studies have used STRING in their post-association analysis for

gene-based DNV studies and showed significant enrichment of candidate CHD risk genes in

the STRING PPI network [44,45]. These results suggest that incorporating PPI network infor-

mation from STRING may identify additional risk genes with more biological interpretability.

As an illustrative example, we applied TADA de novo test [16] with the CHD DNV data

curated in our previous work [18], and conducted a post-association analysis on the p-values

returned from the test. After false discovery rate (FDR) adjustment of p-values, we identified

21 genes with FDR<0.1 among 18,856 genes tested, and found that the number of edges

formed by the 21 genes (20 edges, blue line in Fig 1A) is much larger than the upper tail of the

empirical distribution sampled from 21 randomly selected genes in the STRING V11.0 data-

base (score threshold: 400) for 10,000 times (Fig 1A). This suggests that the candidate CHD

genes are highly enriched in terms of their interactions in the STRING database. To further

illustrate that PPI information may contribute to CHD gene discovery, we showed the number

of edges formed by the top genes ranked by adjusted p-values for CHD and compared it with

Fig 1. CHD top genes are more connected than randomly selected genes in the STRING PPI network. (A) Empirical distribution of the number of edges

formed by 21 randomly selected genes. Blue line represents the number of edges formed by the 21 CHD top genes from TADA de novo analysis. (B) Blue line

represents the number of edges formed by CHD top genes and red line represents randomly selected genes.

https://doi.org/10.1371/journal.pgen.1010252.g001
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the number of edges formed by randomly selected genes with a more stringent selection of PPI

edges in the STRING database (score threshold: 950) in Fig 1B. We considered 95th percentile

of the empirical distribution derived from 10,000 sets of random genes in the PPI network as a

baseline. When more than 20 top CHD genes are selected, the number of edges formed by

these genes is significantly more than that from randomly selected genes. This suggests top

genes in CHD tend to be neighbors in the STRING PPI network.

Motivated by the observation from Fig 1, we develop a Network assisted model for De novo

Association Test using protein-protein interAction information, named N-DATA, to leverage

prior information of interactions among genes from the PPI network to boost statistical power

in identifying risk genes for CHD based on the ‘guilt by association’ principle [46, 47]. In the

following, we first introduce the inference procedure for our model, and then demonstrate the

performance of our method through simulation studies and real data applications.

Methods

In this section, we introduce the statistical model for the proposed framework. The network

information in the PPI database is represented by an undirected graph G = (V,E), where V =

{1,..,n} is a set of n genes in the network, and E = {<i,j>: i and j are genes connected by the

edges}. The degree of a gene i is defined as the number of direct neighbors (Ni) for gene i in

the network and denoted as di. We denote the latent association status of gene i with a disease

of interest, e.g., CHD, as Si, where Si = 1 if gene i is associated with the disease, Si = −1 if gene i
is not associated with the disease. S = {S1,..,Sn} are the corresponding latent states for genes in

V = {1,. . .,n}. The DNV count of each gene i is defined as Yi. We propose a simple discrete

Markov random field model [48, 49] with a nearest neighbor Gibbs measure [50] to model the

following joint probability function S = {S1,..,Sn}:

PðSjy0Þ / exp h
X

i2V

I1ðSiÞ þ t0

X

<i;j>2E

ðwi þ wjÞI� 1ðSiÞI� 1ðSjÞ þ t1

X

<i;j>2E

ðwi þ wjÞI1ðSiÞI1ðSjÞ
� �

;

where wi is the weight for gene i and will be chosen based on the characteristics of the network.

In real data analysis, we set wi as the square root of the degree of gene i in the network

(wi ¼
ffiffiffiffi
di

p
) following Chen et al. [24]. θ0 = (h, τ0, τ1) are hyperparameters related to the net-

work. Specifically, h determines the marginal distribution of Si when all genes are independent

i.e., P Si ¼ 1jh; t0 ¼ t1 ¼ 0ð Þ ¼
expðhÞ

1þexpðhÞ. τ0 and τ1 characterize the prior weights of edges

between non-associated genes and associated genes, respectively. We further assume that,

given the latent state Si, the DNV count Yi follows a Poisson distribution. The mutability of

gene i (μi) can be estimated using the framework in Samocha et al. [12, 51]. Based on the deri-

vation in TADA [16], the probability of observing DNVs for gene i in each trio can be approxi-

mated by 2μiγ, where γ is the relative risk of the DNVs. Further, the expected count of DNVs

for gene i in N trios is 2Nμiγ. When gene i is not a risk gene, γ is equal to 1. Then, we have the

following model for DNV counts:

YijSi ¼ � 1 � Poissonð2NmiÞ;

YijSi ¼ 1 � Poissonð2NmigÞ;

y0 ¼ ðh; t0; t1Þ; y1 ¼ g:

To reduce the computational burden from a fully Bayesian solution for maximizing the

marginal likelihood, we propose an empirical Bayes method to estimate the parameters θ0 and
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θ1, and the latent association status S by maximizing the pseudo conditional likelihood

(PCLK) for n genes as follows

PCLK ¼
Yn

i¼1

fðYijSi; y1ÞPrðSijSNi ; y0Þ;

where SNi represents the latent association status for neighbors of gene i. It has been shown

that the estimator from the PCLK in a general Markov random field setting is consistent under

mild regularity conditions [24,49]. When maximizing the PCLK, we can estimate the hyper-

parameters θ0, θ1 and latent status S iteratively.

We can obtain an empirical estimate for θ0 by maximizing
Qn

i¼1
PrðSijSNi ; y0Þ, which is

equivalent to maximizing the parameters in the following logistic regression model:

logit PrðSijSNi ; y0Þ ¼ hþ t1Xi1 � t0Xi0;

where Xi1 ¼ wi

P
k2Ni

I1ðSkÞ þ
P

k2Ni
wkI1ðSkÞ and

Xi0 ¼ wi

P
k2Ni

I� 1ðSkÞ þ
P

k2Ni
wkI� 1ðSkÞ; i ¼ 1; . . . ; n. To make sure the estimated θ0 is finite,

we can add a ridge penalty term lðh2 þ t2
0
þ t2

1
Þ to the likelihood function to solve the maximi-

zation problem by the Newton-Raphson’s method [52].

We then update the latent status S by maximizing the PCLK using the iterative conditional

mode method [49]. After we obtain the updated values θ0 and S, we can estimate the hyper-

parameter θ0 by maximizing
Qn

i¼1
f ðYijSi; y1Þ by using the following closed-form expression:

logLðy1jYÞ / log
Y

Si¼1

expð� 2mNgþ YiloggÞ

@logLðy1jYÞ
@g

¼ �
X

Si¼1

2mN þ
P

Si¼1
Yi

g

ĝ ¼

P
Si¼1

Yi
P

Si¼1
2mN

Algorithm 1: Procedure for Parameter Estimation
1. Set initial configuration S0

2. In the jth iteration, for given s(j−1), obtain ŷ
j
0 from

logit Pr ðSðj� 1Þ

i jSðj� 1Þ

Ni ; y
ðj� 1Þ

0
Þ ¼ hþ t1Xi1 � t0Xi0; i ¼ 1; � � � ; n

3. Sequentially update the labels of nodes to obtain S(j) (ICM)

SðjÞi ¼ arg maxsi f ðYijSi;
^
y
ð̂j� 1Þ

1 ÞPr ðSijS
ðj� 1Þ

Ni ;
^
y
ð̂jÞ
0 Þ
Y

k2SN
Pr ðSðj� 1Þ

k jSi; S
ðj� 1Þ

Nk � i ;
^
y
ð̂jÞ
0 Þ

4. Obtain ŷ
j
1ðĝ

ðjÞÞ from

ŷ1

ðjÞ
¼ argmaxy1

log Lðy1jy
ðjÞ
0
; SðjÞ;YÞ

5. Repeat steps 2, 3, and 4 until convergence
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Finally, after we obtain the estimated ŷ0 and ŷ1, we use Gibbs sampling based on the condi-

tional distribution PðSijSNi ; ŷ0; ŷ1Þ. This method has been proved to be valid for multiple test-

ing under dependence in a compound decision theoretic framework [53,54]. Then, we can

estimate the marginal posterior probability qi = P(Si = −1|Y). Let q(i) be the sorted values of qi
in descending order. For each gene i, the null hypothesis and alternative hypothesis are

Hi0 : Gene i is not associated with the trait of interest

Hi1 : Gene i is associated with the trait of interest

As shown by Jiang and Yu [55], the relationship between global FDR and local FDR (lfdr) is

FDR = E(lfdr|Y2R), where the rejection region R is the set of Y such that the null hypothesis

can be rejected based on a specific rejection criterion. To control the expected global FDR less

than α, we propose the following procedure: let m ¼ max s : 1

s

Ps
i¼1
qðiÞ

n o
, we reject all the

null hypotheses corresponding to H(1),. . .,H(m).

Verification and comparison

We used network information from the STRING PPI database and simulated DNV count data

to study the performance of our method. First, we randomly selected 2,000 genes, retrieved

their mutability from the real data, and extracted the corresponding PPI network formed by

these 2,000 genes. Then, we simulated the latent status of genes with Gibbs sampling under the

given network information, and the count of DNVs for each gene with the Poisson distribu-

tion given the latent status of the gene. We evaluated FDR and power under various settings of

sample size N and relative risk parameter γ.

We fixed true network parameter h as -4 and varied τ1 from 0.1 to 0.9 to make the total

number of risk genes in the network of 2,000 random genes vary from 57 to 353. We varied

the sample size N at 2,000, 5,000 and 10,000 to evaluate the performance of N-DATA in small,

medium, and large WES cohorts, respectively. In addition, we varied β (log relative risk param-

eter γ) at 3, 3.5, and 4 to investigate the performance of N-DATA around the burden estimated

results from real data (In real data analysis, b̂ = 3.60). Each simulation setting was replicated

100 times. For Gibbs sampling-based inference, we used 5,000 MCMC iterations, and set the

first 2,000 iterations as burn-ins. These numbers were chosen empirically based on the diag-

nostic plots for convergence.

First, we compared the performance of N-DATA model with and without the PPI network

as input. For N-DATA model without the PPI network, we assigned the weight of gene i wi = 0

for inference. We present the power and FDR performance of N-DATA models in Fig A and

Fig B in S1 Text. Then, we compared the power of TADA de novo test (TADA-De novo),

DAWN, and N-DATA using the same simulation settings. Hyperprior of TADA-De novo was

estimated from the function denovo.MOM based on the recommendation from the authors

[16]. Power of TADA was calculated based on TADA p-values under FDR adjustment. DAWN

v1.0 was downloaded from http://www.compgen.pitt.edu/DAWN/DAWN_homepage.htm. We

adapted the code of DAWN by substituting the adjacency matrix inferred from its Partial

Neighborhood Selection algorithm to the adjacency matrix from network. We used TADA-De
novo p-values and PPI network as the input of DAWN. We applied default settings for parame-

ters in DAWN.

We compared the performance of TADA-De novo, TADA-De novo p-values + DAWN and

N-DATA under different simulation settings. We reported the power performance under FDR

threshold 0.05 in the main text (Fig 2). We first checked if all three methods could control the
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global FDR when the threshold is 0.05 (Fig C in S1 Text). Overall, N-DATA controlled the

FDR well and had the best power under all scenarios. We observed that when τ1, N, and β are

all small, DAWN had FDR inflations for some runs. We suspect that this may be due to the

discreteness of p-values, resulting in the violation of the normal distribution assumption for

corresponding z-scores used in the input of DAWN. When the number of risk genes is small,

Fig 2. Power comparison of TADA-De novo, TADA-De novo p-values + DAWN and N-DATA. Error bars represent standard errors estimated from 100

replications of simulation. Three panels in each sub-figure from left to right represent β = 3, β = 3.5, and β = 4, respectively. Each panel shows the change of

power when τ1 varies from 0.1 to 0.9. (A) Power comparison between the two models when the sample size is small (N = 2,000). (B) Power comparison between

the three models when the sample size is medium (N = 5,000). (C) Power comparison between the three models when the sample size is large (N = 10,000).

https://doi.org/10.1371/journal.pgen.1010252.g002

PLOS GENETICS Network assisted analysis of de novo variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010252 June 7, 2022 7 / 18

https://doi.org/10.1371/journal.pgen.1010252.g002
https://doi.org/10.1371/journal.pgen.1010252


DAWN may have lower power than TADA and N-DATA. When τ1, N, and β became larger,

the power of DAWN was comparable with N-DATA. Time comparisons for the three models

are presented in Fig D in S1 Text.

Application

We applied N-DATA to DNV data from 2,645 CHD trios reported in Jin et al [5], and anno-

tated the CHD variants by ANNOVAR [56]. We denoted loss of function (LoF) as frameshift

insertion/deletion, splice site alteration, stopgain and stoploss predicted by ANNOVAR, and

deleterious missense (Dmis) predicted by the MetaSVM [57] algorithm. We only consider

damaging variants (LoF and Dmis) in our analysis as the number of non-deleterious variants

is not expected to provide the information to differentiate cases from controls biologically

[58].

For network information, we first downloaded STRING v11.0 with medium edge likelihood

via interface from STRINGdb package in R and call this original network from STRING G0.

We obtained the curated list of known human CHD genes from Jin el al [5] and expanded the

gene list by including additional candidate genes (FDR<0.1) from the single-trait analysis in

our previous work [18]. This gene list (258 genes) was set as seed genes for our network. Then,

we extracted the subnetwork including the seed genes and the direct neighbors with likelihood

score larger than 950 of those genes and call this subnetwork G1. We only kept overlapping

genes with our DNV data in G1 and called the final network used in our real application as G2.

There were in total 1,814 genes and 21,468 edges in G2.

To show that our method can leverage network information to boost risk gene identifica-

tion, we applied our algorithm without using the network as an input. When there was no

prior information from the network, we identified 18 significant genes with FDR<0.05. To

include the network information from G2we denote the degree of gene i in network G2 as di,
and let the weight in the prior as wi ¼

ffiffiffiffi
di

p
. After adding the network information from G2, we

identified 46 genes with at least 1 DNV, and 26 genes harboring at least 2 DNVs with

FDR<0.05 in the CHD cohort.

We also compared the results of N-DATA with TADA-De novo test [16]. As in the simula-

tion study, we observed that DAWN may not control the FDR under the preset threshold

under our network and cohort settings. Thus, we did not include the results of DAWN in the

comparison. TADA-De novo test (p-values with FDR adjustment) identified 28 significant

genes. Without integrating the network information, N-DATA can identify 18 significant

genes with FDR<0.05. After integrating the G2 network, N-DATA identified 323 genes with

FDR<0.05. As some of the genes may be prioritized due to network characteristics, but did

not have DNV count in the study cohort (more details in S1 Text), we further filtered out

genes without DNV and considered the 46 genes identified with FDR<0.05 and at least 1

DNV as the candidate genes. (Table 1)

We visualized the overlap of 258 seed genes, genes that were identified by TADA-De novo
p-values, N-DATA w/o network model, and N-DATA in Fig 3. Fig 3A shows the 323 genes

Table 1. Comparison of TADA and N-DATA models.

Method Criteria Number of Identified Genes

TADA-De novo p-values FDR<0.05 28

N-DATA w/o Network FDR<0.05 18

N-DATA

(Network G2 network + DNV counts)

FDR<0.05

DNVs�1

323

46

https://doi.org/10.1371/journal.pgen.1010252.t001
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identified by N-DATA, while Fig 3B shows the 46 genes with at least 1 DNV. From Fig 3B,

N-DATA found most of the genes that can be identified by TADA (26 out of 28).

Further, we calculated the overlap of the significant genes identified by N-DATA and

TADA, and 872 genes that are highly expressed (top 25%) in mouse developing heart at E14.5

[12] and in the 1,814 gene network (HHE genes) (Fig 4). Among the 323 N-DATA identified

genes, 27 are known human CHD genes and 213 genes are HHE genes. Among the 46 genes,

18 are known human CHD genes and 35 are HHE genes.

Fig 3. Venn diagram of 258 seed genes, TADA genes, N-DATA w/o network genes and N-DATA genes. (A) Overlapping genes between 258 seed genes,

TADA genes, N-DATA w/o network (N-DATA Null) genes and 323 N-DATA genes. (B) Overlapping genes between 258 seed genes, TADA genes, N-DATA

w/o network (N-DATA Null) genes and 46 N-DATA candidate genes.

https://doi.org/10.1371/journal.pgen.1010252.g003

Fig 4. Venn diagram of HHE genes, TADA genes, N-DATA w/o network genes, and the N-DATA genes. (A) Overlapping genes between 872 HHE genes,

TADA genes, N-DATA w/o network (N-DATA Null) genes, and 323 N-DATA genes. (B) Overlapping genes between 872 HHE genes, TADA genes, N-DATA

w/o network (N-DATA Null) genes, and 46 N-DATA candidate genes.

https://doi.org/10.1371/journal.pgen.1010252.g004
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We visualized the 323 genes identified in the G2 network (S1 Fig). The 323 genes formed

two major clusters. The bigger cluster (right) is an extended cluster for protein synthesis genes,

including ribosome protein genes (RPL-, RPS-), peptide chain elongation genes (EEF-, EIF-,

SPR-, GSPT-), rRNA processing genes (UTP-, WDR-, RIOK-, NO-, IMP-), etc. Though with-

out finding DNVs in the current cohort, ribosome genes RPL11, RPL35A, RPS10, RPS19,

RPS24, RPS26, and RPS7 are known CHD genes. Ribosome dysfunctions have been implicated

in a variety of developmental disorders, including CHD [59]. For instance, multiple genes

encoding ribosome subunits are known to cause Diamond-Blackfan anemia and 30% of the

patients also presented CHD [60]. Functional studies showed that the deficiency in ribosomes

can impact cell growth which might be a potential mechanism to cause CHD [61,62].

The other cluster (left) is the extended cluster for mRNA splicing genes, which encode vari-

ous components of spliceosome and associated factors, such as snRNP (LSM-, SNRNP-,

SNRP-), pre-mRNA processing factors (PRPF-), RNA helicases (DDX-, DHX-), hnRNPs

(HNRNP-), and splicing factors (SF3-, SRS-, CWC-) [63]. Heart development involves many

alternative splicing events. Mutations in splicing associated factor genes such as RBM24,

RBFOX2 and SF3B1, have been shown to cause cardiac malformation in mouse and human

[64]. A specific type of snRNP called snoRNA and its targets showed reduced expression in

myocardium of infants with Tetralogy of Fallot and impacted heart development through

impairing spliceosome functions [65].

Thus, genes in the two clusters may be associated with CHD via disruption of protein syn-

thesis or mRNA splicing events.

Further, we zoomed in on the 46 genes with at least 1 DNV in the G2 network to demon-

strate that the PPI network information can help boost statistical power and provide biological

interpretation for the current CHD cohort. (Fig 5)

Among the 46 candidate genes, PTPN11, RAF1 and RIT1 had 2 recurrent DNVs, and

CHD7, NOTCH1, NSD1 and PYGL also had recessive genotypes in the CHD cohort [5]. The

46 candidate genes form 4 clusters in the G2 network (Fig 5). The biggest cluster includes

seven known CHD genes TBX5, KMT2D, PTPN11, SOS1, ACTB, NOTCH1, and PTEN, which

are involved in transcriptional regulation and early cell growth or differentiation processes.

The six new genes SMAD2, KLF4, CTNNB1, CDC42, ITSN2, and WWTR1 also function in

similar pathways and have varied implications for cardiac development. For instance, KLF4
and CTNNB1 have been implicated in cardiac cell differentiation [66]. Cdc42 cardiomyocyte

knock-out mice presented heart defects such as ventricular septum defects and thin ventricular

walls [67]. WWTR1 encodes a transcription regulator, which serves as an effector of Hippo

pathway and regulates cardiac wall maturation in zebrafish [68].

The second biggest cluster is constituted of 7 new genes, all of which are involved in mRNA

splicing. Specifically, SART1, SRRM2, PRPF38A, PRPF8, and SF3B1 are associated factors or

components of spliceosome; HNRNPK encodes a pre-mRNA-binding protein; DHX9 encodes

an RNA helicase which promotes R-loop formation while RNA splicing is perturbed [69].

Alternative splicing plays an essential role in heart development, homeostasis, and disease

pathogenesis. Mouse knockouts of multiple splice factors had impaired cardiogenesis [70].

SF3B1, specifically, has been shown to upregulate to induce heart disease in both human and

mice [64]. Thus, though not fully investigated, DNVs in those mRNA splicing-related genes

may contribute to CHD pathogenesis.

The third cluster contains genes involved in protein synthesis, including the known gene

RPL5 and genes not previously associated with CHD (EIF4, EIF5, EEF2, and RPL10). RPL5
and RPL10 encode the ribosome subunits. Mutations in RPL5 and other ribosomal genes can

lead to multiple congenital anomalies, including CHD [71]. EIF4 and EIF5 encode translation

initiation factors while EEF2 encodes the elongation factor that regulate peptide chain
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elongation during protein synthesis. A recent study reported that the deficiency in ribosome

associated NatA complex reduces ribosomal protein and subsequently impact cell develop-

ment as a mechanism to cause CHD [62]. Thus, DNVs in the above genes may lead to CHD

via impairment of protein synthesis.

The last cluster contains the known CHD genes BRAF and RAF1, both of which encode key

kinases in Ras signaling and are related to Noonan syndrome with CHD as a common feature.

Among the un-clustered genes, six are identified after using the network information:

ABCE1, UBE2B, SDC1, PYGL, KDM5B, MED20. UBE2B and KDM5B, encoding epigenetic

modifiers, have shown suggestive evidence in cardiac development or CHD [72,73] and might

be potential CHD genes.

Discussion

In this article, we have introduced a Bayesian framework to integrate PPI network information

as the prior knowledge into DNV analysis for CHD. The implemented model is available at

https://github.com/JustinaXie/NDATA. This approach adopts MRF to model the interactions

among genes. We apply an empirical Bayes strategy to estimate parameters in the model and

conduct statistical inference based on the posterior distribution sampled from a Gibbs

Fig 5. N-DATA model identified 46 candidate genes with at least 1 DNV. Green labels indicate the 18 genes

identified when no network information was provided for N-DATA, and red labels indicate the additional 28 genes

identified when the G2 network was integrated. Circles indicate the 18 known human CHD genes, and squares indicate

the 28 novel genes identified by N-DATA.

https://doi.org/10.1371/journal.pgen.1010252.g005
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sampler. The simulation studies and real data analysis on CHD suggest that the proposed

method has improved power to identify risk genes over methods without integrating network

information.

Our proposed framework is innovative in the following aspects. First, it does not need to

estimate hyperprior based on other sources compared to the existing pathway-based test for

DNV data [22,45]. Second, it does not require external expression data for the DNV cohort

and uses the publicly available PPI database instead, which makes it more applicable to differ-

ent diseases. This method not only increases power in risk gene identification, but also assists

in biological interpretation by visualizing clusters of risk genes with functional relevance in the

network.

However, there are some limitations in the current N-DATA model. First, our model is

dependent on the choice of network. Using different PPI networks and different filtering crite-

ria could result in a different set of significant genes. Currently, we did not provide a way to

prioritize existing networks. We have provided details on a comparison of using the HINT net-

work versus the STRING network (more details in S1 Text). For the two networks compared

in our study, HINT has the advantage of leveraging additional information from PDB [74],

and being manually curated to filter out erroneous and low-quality interactions; while

STRING has the advantage of providing a score to measure the likelihood of interactions, and

including information from multiple pathway databases. We also found that the risk genes

identified from the two databases had a significant overlap (p = 3.14×10−12). The overlapping

risk genes were highly enriched for Human Phenotype Ontology (HPO) [75] terms related to

CHD from g:Profiler [76] analysis, and p-values of overlapped pathway outputs from Ingenu-

ity Pathways Analysis (IPA, QIAGEN Inc.) had a significant Pearson’s correlation (R = 0.48;

p<2.2×10−16).

Second, our model may be only used for early on-set disorders with a strong DNV signal.

For diseases with small relative risks or small sample sizes, our model may suffer from conver-

gency issues (more details in S1 Text). In real applications, it is important to conduct an initial

analysis on the enrichment of top genes identified from de novo association tests in the net-

work like our motivating example.

Third, we applied an empirical Bayes strategy to obtain point estimates of hyperparameters

instead of using a fully Bayesian approach considering the computation burden. A fully Bayes-

ian model that can account for intrinsic uncertainties would be a potential future direction.

Fourth, likelihood-based inference may suffer from local maxima [24]. Although we didn’t

identify significant differences of different initiation points from our simulation study (more

details in S1 Text), we recommend initiating the labels of genes from a known risk gene set or

running with multiple starts for real data application (more details in S1 Text). Also, we

observe the Gibbs sampler tends to move around local maxima for some time before conver-

gence. Empirically, we suggest running at least 2,000 times of iterations and discarding the

first 1,000 iterations as burn-ins. Fifth, we only considered the simulation verification under

the ground truth model based on our assumptions, the generalizability to other alternative

models is unexplored.

Sixth, to apply our model to other diseases, practitioners should be cautious if they would

like to use the mutability of genes from a public dataset. 1) For WES data, the target region for

each study could be different, which further results in differences in the calculation of mutabil-

ity for the coding region 2) Mutability may be calculated based on a specific functional annota-

tion of variants. Studies that use divergent classification criteria for variants should not share

the same mutability. 3) Publicly available mutability may have been adjusted for cohort-spe-

cific parameters, such as sequencing depth, which may also affect the results if adapted to

another cohort.

PLOS GENETICS Network assisted analysis of de novo variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010252 June 7, 2022 12 / 18

https://doi.org/10.1371/journal.pgen.1010252


In addition, we only considered damaging DNVs and assumed the relative risk parameter γ
is the same across all genes in N-DATA, which may cause our model to lose power if it varies

across variants with different functions (e.g., LoF and Dmis). Future studies may explore add-

ing functional annotation of variants as a layer in the model to further improve statistical

power.
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