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Abstract: The integration of untargeted metabolomics and transcriptomics from the same population
of cells or tissue enhances the confidence in the identified metabolic pathways and understanding
of the enzyme–metabolite relationship. Here, we optimised a simultaneous extraction method of
metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA
(mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods,
four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios):
cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1);
Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-
chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest
amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana,
involving RNA extraction from the interphase of our established sequential solvent addition and
shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Se-
quential/mirVana was applied to study a) the biological effect caused by acute serum starvation in
BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant
metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite inter-
actions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was
sufficient for transcriptomics, in just 10 mg of tissue.

Keywords: dual-extraction; cancer; metabolite; RNA; integrated omics

1. Introduction

Integrated omics techniques can improve the understanding of mechanisms through
which a cellular phenotype is generated, where each technique allows insight into cell
regulation and function at a different but inter-related level of the genome [1,2]. The
metabolome, although dependent on the genome, is in constant flux within a changing bio-
logical environment, and provides an acute, dynamic molecular snapshot of the observed
phenotype of a disease [3]. The transcriptome reveals which genes are expressed/repressed
and contribute to the phenotype, allowing inference from the genome landscape (which
could be aberrant due to DNA mutations or chromosomal rearrangements) [4]. If the
expressed genes encode metabolic enzymes, then such expression levels could directly
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help to understand an increase in activity of a metabolic pathway and aid in the discovery
of drug targets for diseased cells, amenable to pharmacological inhibition [5,6]. Similarly,
aberrantly expressed genes which encode non-enzymatic proteins may also be reflective of
aberrant metabolism within a diseased cell or sub-cellular niche, albeit indirectly [7].

Combining metabolomics and transcriptomics data from the same cells or tissues
would allow a much better holistic understanding of how the cell generates the aberrant
metabolome of a disease such as cancer, how the cell compensates for variability and
evolutionary dynamics within the tumour microenvironment, and how the metabolome
feeds back signals to the cell [3,8,9]. Accurate observation of the dynamic interaction
between transcribed gene products and metabolites would allow a more systems biology
read-out in disease models [3,10]. For example, Heiland et al. discovered that they could
separate glioblastoma into four sub-types based on combined analysis of the metabolome
and transcriptome. For instance, Cluster 2 was defined as a mesenchymal/immune-
response-related cluster after enrichment of mesenchymal and immune response genes,
and exclusive enrichment of tryptophan, phosphocholine and choline metabolism (which
are known to play a role in immune responses) [9]. Kucharzewska et al. reported that under
hypoxic conditions in vitro, increased transcription of glucose uptake and glycolysis genes
was associated with higher levels of glucose and glycolysis intermediates in glioblastoma
cells [11].

Published methods typically extract RNA and metabolites from different regions of
a given tissue specimen, which limits integration of datasets as neither the cell genotype
nor phenotype is necessarily homogenous throughout tissue, particularly in malignant
cancerous tissue [9,12,13]. Single-cell transcriptomics has shown that there is even cell-
to-cell heterogeneity [14]. The relationship between RNA transcript level and metabolite
level is non-linear; therefore, to deduce any relationship, the biological variables must
be minimised by using exactly the same sample handling process for both metabolomics
and transcriptomics, known as a dual-extraction process [3,8,15]. An additional limitation
of prior methodologies is the preclusion of integrated omics due to scarcity of available
tissue, where this is insufficient for two distinct methods of extraction [13,15]. To overcome
these limitations, dual extraction methods enable multi-omics from the same population of
cells or tissue fragment [13,16], which potentially allows a more physiologically accurate
integration of omics datasets.

Three simultaneous RNA/metabolite extraction methods exist, optimised for plant
tissue, microbes and human cell lines [15–17]. Recently, a new method has emerged, in
which the non-polar metabolite (lipid) extraction is optimised for oxylipins [18]. The three
methods used different ratios of methanol, chloroform and water, and different physical
extraction methods varying from cryomilling to rotating or shaking the sample, to extract
the metabolites. RNA extraction could be either by phenol-chloroform extraction, solid
phase extraction, or both. RNA extraction always follows the metabolite extraction step
in these methods, and therefore it is possible that RNA is lost in the metabolite extraction
step. The metabolite extraction uses lipophilic solvent to open the cell membrane [15] and
polar solvents which could dissolve and extract the RNA, though most RNA is expected to
precipitate and form a pellet rather than dissolve [10]. Cryomilling skin tissue after storage
in RNA later or after flash freezing led to RNA degradation, while cryosectioning after
snap freezing preserved the RNA [19]. In 36/42 samples of various tissues, from which
a low 28S/18S ratio was observed despite high RNA integrity number, the cryomill was
used rather than cryosectioning; these data suggest that a cryomill has the potential to
mechanically shear transcripts and oligomerise them by producing heat [19]. It is therefore
important to assess whether the RNA yield is reduced by a dual extraction method com-
pared to extracting the RNA first. For some samples, the RNA degrades quickly and must
be stabilised [19], precluding prior metabolite extraction; for example, RNA from colonic
tissues must be pre-treated with an RNA stabilisation solution [20], while polyphenols
and secondary metabolites affect the recovery and purity of RNA in plants [15,21]. The
integrity and recovery yield of nucleic acids can be increased by using silica columns,
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compared to other methods [15]. Using acetonitrile was better than using ethanol for
RNA purification, as it removes proteins from the RNA [15]. However, the metabolite
extraction step might aid RNA extraction as it could purify the samples by removing
most of the compounds that interfere with commercial RNA extraction buffers [15]. A
limitation of these three methods is that they provide little explanation of what the detected
molecules are (explaining that the method gave a total ion chromatogram with clear numer-
ous well-defined peaks [17], or that methanol/chloroform gives sharp chromatograms and
facilitates membrane disaggregation due to the solubilisation of lipids [15] while a distinct
previous method from the same research team detected and quantified 652 metabolites
over a wide range of classes [10]), or they produce targeted assays of just a few detected
metabolites [16] with intensities 5–15 times higher than that previous method [10]. To
obtain good-quality omics data, the molecule concentrations must be greater than the limits
of instrument detection. Moreover, to enable integration, the coverage must be complete
and untargeted to avoid bias/overfitting of a supervised model to a small number of
significant features/metabolites. The physicochemical properties of metabolites affect their
extraction efficiencies by any one particular method, meaning that each extraction protocol
has a systematic bias for extracting molecules of a certain polarity from cells, disabling
complete coverage [16].

A recently published method used an RNA lysis buffer to extract metabolites, and the
cryomilled lysate was split into equal sized fractions for metabolomics and transcriptomics,
which prioritises RNA extraction and quality but is not an RNA-first method, and does
not overcome the problem of limited amounts of tissue, and so is not a simultaneous
extraction method [13]. The aim of this work was to develop a robust dual extraction
method for metabolites and RNA that is applicable to brain cancer cells and tissues.
Although there is one existing dual protocol for human cells (Jurkat T cells) [16], this
was not optimised for the classes of metabolites that were of interest to us since it focused
on central carbon and nitrogen metabolism, whereas brain-specific molecules such as
homocarnosine, N-acetylaspartate, gamma-aminobutyric acid, and lipids were known to
be important in brain tumours [11,22–26]. In particular, a large volume of the non-aqueous,
less polar solvent is needed to fully extract the lipids from brain tissue [27]. Two existing
single extraction and four dual extraction protocols were critically assessed based on their
practical reproducibility, the suitability of the metabolite extraction protocol to human
cancer cells and their RNA recovery. The effectiveness of the optimised method was
verified by testing the sensitivity to a) discriminate both subtle and profound alterations in
transcription and metabolism in an acute serum starvation period in a human ependymoma
cell line; and b) detect metabolites and RNA in increasingly smaller masses of human brain
tumour tissue.

2. Results and Discussion
2.1. Assessment of the Dual Extraction Methods for Metabolite/Lipid Extraction from Human
Brain Cancer Cells

The dual extraction methods of metabolites/RNA (n = 2–4; methanol:water:chloroform ra-
tios are shown in brackets): cryomill/mirVana method (1:1:2) [17], cryomill and wash/Econospin
columns method (5:1:2; herein referred to as cryomill-wash/Econospin) [15], cell ex-
tract rotation/phenol-chloroform method (9:10:1; herein referred to as rotation/phenol-
chloroform) [16] and sequential solvent addition and shaking/mirVana method (1:1:3;
herein referred to as sequential/mirVana), as detailed in the methods/supplementary meth-
ods, were compared to a standard routine method for metabolite extraction [28], which was
used as a positive control (metabolomics reference method), sequential solvent addition and
shaking (1:1:3). The total ion chromatogram of the extracts in both zwitterionic-polymer–
hydrophilic interaction liquid chromatography-liquid chromatography-mass spectrometry
(ZIC-pHILIC-LC-MS, metabolites) and reverse phase-liquid chromatography-tandem mass
spectrometry (RP-LC-MS/MS, lipids) analyses showed adequate separation and smooth
peaks (Figure S1). The total ion counts (TICs) of the quality controls (QCs) had a relative
standard deviation (RSD) of 7% and 6% in metabolomics and lipidomics analyses, respec-



Metabolites 2021, 11, 240 4 of 21

tively, which was deemed an acceptable level of variation by Hutschenreuther et al. and
Fiehn et al. [29–31]. Additionally, the analytical performance of the LC-MS was assessed
using the pooled QC approach using Principal Component Analysis (PCA) [17]. The QCs
were clustered together in the centre of the PCA score plots (Figure S2), indicating that the
LC-MS analytical performance was satisfactory for untargeted metabolomics.

2.1.1. Metabolite Analysis

Cryomill-wash/Econospin produced the highest total ion count (versus the sequential
solvent addition and shaking reference method, p < 0.05), which may have been due to the
washing step employed, ensuring all water-soluble metabolites were concentrated in the
aqueous phase free from lipids (Table 1) [32]. The total number of the identified metabolites
in BXD-1425 cells was 193, across all extraction methods. Therefore, the methods did not
discriminate certain classes of metabolites; for instance, non-essential amino acids, except
for cysteine, were detected and identified with all methods. Additionally, B vitamins,
which have essential roles in the cell metabolism, and four tri-carboxylic acid (TCA) cycle
intermediates were detected. PCA showed that there was no separation or clustering
between groups and all groups overlapped, concluding that all the methods were equally
capable of extracting metabolites from BXD-1425 cells grown in vitro (Figure S2).

Table 1. A metabolomics comparison of five metabolite extraction methods using BXD-1425 cells.

Extraction Method
Sequential Solvent

Addition and Shaking
(Positive Control)

Cryomill/mirVana Cryomill-
Wash/Econospin

Rotation/Phenol-
chloroform Sequential/mirVana

n 3 2 4 3 4
Total ion count 4.95 × 107 ± 1.53 × 106 5.58 × 107 ± 2.17 × 106 5.80 × 107 ± 3.66 × 106 * 5.35 × 107 ± 8.97 × 106 5.01 × 107 ± 5.50 × 106

Number of ions
(unfiltered) 2025 ± 2 2022 ± 1 2024 ± 2 2013 ± 5 2025 ± 3

Number of
metabolites 193 193 193 193 193

Significantly altered
metabolites * - 31 (22 ↑, 9 ↓) 0 1 ↓ 0

Practical comments

-Cryo-milling can
damage tubes and leak

solvents –Quick
protocol which can use
any RNA extraction kit.

-Cryo-milling can damage
tubes and leak solvents.

-Long protocol involving
washing steps purifies

metabolites but is
time-consuming. Cheap,

but time-consuming RNA
extraction as uses
self-made buffers.

Metabolite extraction
protocol is simple but is
not biphasic so cannot

perform lipidomics on a
C18 column.

Easy to perform,
possibility to extract

microRNA separately.
Longest solvent

evaporation time.

* indicates a significant difference (p < 0.05) from the positive control. ↑ indicates number of metabolites increased in abundance and
↓ indicates number of metabolites decreased in abundance compared to the positive control. All other comparisons were non-significant.
Sequential solvent addition and shaking was the extraction of metabolites alone; in the other methods, metabolites were extracted from
dual extraction methods. Metabolites were analysed by LC-MS and were identified either by retention time and exact mass match
with authentic standards (level 2—55 identifications), or by using the retention time prediction model, IDEOM (putative identification
level 3—138 identifications).

Cryomill/mirVana significantly increased the extraction efficiency of 22 metabolites
and yet decreased the extraction efficiency of a further nine compared to sequential
solvent addition and shaking (Table 1), while cryomill-wash/Econospin and sequen-
tial/mirVana did not change the extraction efficiency of any metabolite significantly,
and rotation/phenol-chloroform decreased the amount of just one metabolite. Therefore,
cryomill-wash/Econospin, rotation/phenol-chloroform and sequential/mirVana were
equally as good as our standard metabolomics reference method, sequential solvent addi-
tion and shaking. From a metabolomics perspective, although cryomill/mirVana increased
some metabolite concentrations, the procedure was difficult to practically perform since
the cells needed to be cryomilled whilst in the presence of the solvent, and that caused one
of the tubes to break and the solvent to leak. This is an added risk when working with
irreplaceable samples. Therefore, the method most suitable for simultaneous lipids and
RNA extraction was investigated as an outcome measure, since any of Methods C–E could
be used for polar metabolites extraction.
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2.1.2. Lipids Analysis

The low fraction of chloroform used in rotation/phenol-chloroform meant that the
extraction was monophasic and therefore no lipidomics was performed. PCA showed that
the extracted lipid profiles using sequential/mirVana were similar to the metabolomics
reference method (sequential solvent addition and shaking), whereas cryomill/mirVana
and cryomill-wash/Econospin lipid profiles were very different (Figure S2) as expected,
because sequential solvent addition and shaking and sequential/mirVana are equivalent.
More lipids were extracted using cryomill-wash/Econospin compared to cryomill/mirVana
and sequential/mirVana (Table 2); initially a low percentage of chloroform was used, but
the phase separation likely concentrated the water-insoluble lipids into the chloroform
phase and separated the layers more easily so that the majority of the chloroform could be
collected. Additionally, the number of lipids with differential abundance was highest with
cryomill-wash/Econospin, with 64% of those increasing in abundance. Cryomill/mirVana
and sequential/mirVana were marginally better than sequential solvent addition and
shaking for the number of lipids extracted and both had similar numbers of lipids which
increased and decreased in abundance.

Table 2. A lipidomics comparison of four lipid extraction methods using BXD-1425 cells.

Extraction Method
Sequential Solvent Addition

and Shaking (Positive
Control)

Cryomill/mirVana Cryomill-Wash/Econospin Sequential/mirVana

n 3 2 4 4
Total ion count—negative 3.41 × 109 ± 1.44 × 108 3.36 × 109 ± 1.80 × 108 3.74 × 109 ± 3.35 × 108 3.45 × 109 ± 3.52 × 108

Total ion count—positive 7.12 × 109 ± 2.33 × 108 6.48 × 109 ± 4.33 × 108 7.03 × 109 ± 6.04 × 108 7.40 × 109 ± 7.28 × 108

Number of putative lipids 3390 3428 3506 3427
Significantly altered lipids * - 356 (256 ↑, 100 ↓) 618 (394 ↑, 224 ↓) 314 (244 ↑, 70 ↓)

* indicates a significant difference (p < 0.05) from the positive control. ↑ indicates number of lipids increased in abundance and ↓ indicates
number of lipids decreased in abundance compared to the positive control. All other comparisons were non-significant. Rotation/phenol-
chloroform did not extract lipids. Sequential solvent addition and shaking was the extraction of lipids alone; in the other methods lipids
were extracted from dual extraction methods. Lipids were analysed by LC-MS/MS and were identified by exact mass match and MS2
match with a library and fragmentation predictor, respectively (putative identification level 3).

2.2. Assessment of the Dual Extraction Methods for RNA Extraction from Human Brain
Cancer Cells

All the extraction methods were compared to a standard method for RNA extraction
using the mirVanaTM miRNA Isolation Kit (Ambion, Life Technologies, Carlsbad, CA,
USA) (Transcriptomics Reference Method). All the extraction methods produced RNA of
sufficiently high purity (A260/A280 ratios of approximately 2.0) and quality for downstream
applications such as transcriptomic microarrays and RNA sequencing, since Roume et al.
recommended an RNA integrity number (RIN) threshold of 7.0 [16,17], which all samples
surpassed (Table 3). The amount of RNA obtained from a total of 2 million cells was
≥ 20.0 µg by all methods, sufficient for transcriptomics analysis which typically requires
≥ 0.5 µg of RNA [16]. However, since it may be necessary to use a lower number of
cells in certain cases, a recovery % was carried out in comparison to the positive control
(Transcriptomics Reference Method, MirVana kit) and at least 30% of the RNA was lost
during the metabolite extraction step. The lowest amount of RNA was recovered with
rotation/phenol-chloroform, which may be due to the lack of a solid phase extraction step
to isolate RNA. Another potential reason for the lower recovery of RNA by rotation/phenol-
chloroform and cryomill-wash/Econospin could be that using less chloroform reduced the
precipitation of RNA. Therefore, cryomill/mirVana and sequential/mirVana have been
identified as optimal, as they both use the mirVanaTM miRNA isolation kit similar to the
positive control that may account for the better recovery observed.
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Table 3. Yield and quality of RNA extracted from BXD-1425 cells.

Extraction
Method

mirVana Kit
(Positive Control) Cryomill/mirVana Cryomill-

Wash/Econospin
Rotation/Phenol-

Chloroform Sequential/mirVana

Concentration of
RNA (ng/µL) 1300 ± 21 910 ± 26 * 514 ± 29 * 1331 ± 249 887 ± 131 *

Mass of RNA (µg) 65.0 ± 1.3 45.5 ± 1.8 * 25.7 ± 2.0 * 20.0 ± 4.6 * 44.4 ± 7.6 *
Relative % of RNA

recovered 100 70 * 40 * 31 * 68 *

260/280 ratio 2.10 ±0.01 2.05 ±0.01 2.16 ±0.01 * 2.11 ±0.01 2.06 ±0.01 *
260/230 ratio 1.80±0.47 a 2.03 ±0.15 1.97 ±0.02 2.09 ±0.02 2.05 ±0.07

28S/18S (Area) 2.9 ± 0.1 2.6 ± 0.1 2.7 ± 0.1 1.4 ± 0.1 * 2.2 ± 0.7
RIN 9.4 ± 0.1 7.9 ± 0.5 9.1 ± 0.2 7.6 ± 0.3 * 8.9 ± 0.1 *

* indicates a significant difference (p < 0.05) from the positive control. All other comparisons were non-significant. The mirVanaTM miRNA
isolation kit was the extraction of RNA alone; in other methods, the RNA was extracted from dual extraction methods. The results of
Nanodrop and Agilent Tapestation measurements are shown. The RNA solution from the extraction procedure was analysed by Nanodrop
and subsequently, 1 µL of RNA extracted via each method (and diluted to an approximate concentration of 400 ng/µL) was applied to an
RNA nanochip and run alongside the electronic ladder. Numbers are means from two, three or four independent extractions per method.
a One anomalous result of 1.13 has caused this large standard deviation.

In conclusion, cryomill/mirVana was able to extract many metabolites with higher
abundance, and cryomill/mirVana and sequential/mirVana recovered both high-quality
RNA and a high RNA yield compared to the positive control and enabled both metabolomics
and lipidomics analysis for a greater coverage of the metabolome.

2.3. The Effects of Acute Cellular Stress on Metabolism and Transcription in BXD-1425 Cells

As a proof-of-concept, the selected dual extraction sequential/mirVana method was
then applied to study the difference in metabolism and transcription induced by acute
cellular stress, specifically by starving cells of serum. Serum starvation was chosen, as
deprivation of cellular nutrients leads to an abrupt growth arrest in mammalian cells,
characterised initially by RNA expression changes and metabolite level changes. Thus,
comparing metabolomics and transcriptomics between serum-deplete versus serum-replete
brain cancer cells offers a rapid means to verify this dual extraction method on a genome-
wide level.

Multivariate analysis using PCA and OPLS-DA showed that serum-starved and
serum-replete samples were statistically discriminated (Figure S3, Figure 1). PCA showed
that intra-group variability was much less than inter-group variability and 82.5% and 90.2%
of the variance in the metabolome and lipidome, respectively, was explained by PC1 and
PC2. The OPLS-DA models were cross-validated and the degree of fit of the OPLS-DA of
the metabolomics dataset was high (R2X 0.814, R2Y 0.995) and the predictive ability (Q2)
of the model was much greater than 0.40 (the threshold for a biological model [33]) and
approached the theoretical maximum of 1.00 (Q2 = 0.979) [33,34]. Therefore, the model is
validated and the degree of overfitting is minimal. Sixty-four metabolites were sufficient to
distinguish serum-starved from serum-replete cells (Figure 2, Table S1). Many metabolites
were relatively less abundant in the serum-starved cells including TCA cycle compounds
(succinate and malate), amino acids (L-alanine, L-aspartate, L-glutamate, L-methionine,
L-serine, L-phenylalanine and L-tyrosine), molecules which shuttle fats into the TCA cycle
(O-acetyl carnitine and carnitine), and antioxidants (ascorbate and glutathione), despite
increased levels of pyruvate and L-glutamine, suggesting cells were in the early stages of
apoptosis [35–37]. The degree of fit of the OPLS-DA model of the lipidomics dataset was
also high (R2X 0.880, R2Y 0.998) with Q2 = 0.994; therefore, the model is validated, and
degree of overfitting is minimal. Ninety-seven lipids significantly altered in relative abun-
dance could discriminate the treatment from the control cells (Table S2). The classes of these
lipids, in order from most to least common (number of lipid species shown in brackets),
were triglyceride (31), phosphatidylcholine (29), ceramides (13), phosphatidylethanolamine
(12), sphingomyelin (5), lysophosphatidylcholine (2), diglyceride (2), simple Glc series (1),
phosphatidylinositol (1) and cholesterol ester (1). Notably, PI(18:0_20:4) (2.4 fold change),
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the most common phosphatidylinositol in cell membranes, and cholesterol ester (18:2) (0.1
fold change), the most common cholesterol ester in plasma and third most common in liver
tissue, were differentially abundant in serum-starved versus serum-replete cells [38,39]. In
the ceramides class, the following lipids had a fold change of less than 0.5: Cer(d18:1_18:0),
Cer(d18:1_20:0), Cer(d18:1_23:0), Cer(d18:2_23:0) and Cer(d16:1_23:0). This contrasted
with the phosphatidylethanolamines, which had a fold change of >2: PE(18:2e_16:0),
PE(18:0p_18:1), PE(16:0p_20:4) and PE(16:0p_22:5). Ceramides can activate in the endoplas-
mic reticulum and mitochondria, the major pathways regulating cell death, and previous
work found that ceramide levels increase during apoptosis [40]. This contrasts with our
result, as we found lower levels of ceramides and of sphingomyelins in serum-starved
cells. Those phosphatidylcholines, phosphatidylethanolamines and phosphatidylinositol
putatively containing the fatty acid arachidonate (20:4(ω-6)) were increased in abundance
under serum starvation whilst the genes CYP1B1 and PTGDS which encode for enzymes
of arachidonic acid metabolism and prostaglandin formation were increased in expression
(vide infra), and as leukotrienes and prostaglandins are signalling molecules, this indicated
increased paracrine signalling in the absence of serum [41] (pp. 375, 824). The differentially
abundant metabolites and lipids detected in this experiment are extracted directly from
cells (metabolic fingerprint) and showed the developed dual extraction method was able to
detect intracellular metabolic changes in the BXD-1425 cells upon an acute period of serum
starvation, and it is likely to be suitable for the detection of other metabolic alterations,
such as those associated when treating cancer cell lines with chemotherapeutic drugs or
depriving them of lipoproteins [42,43].

Transcriptomic array data were analysed and compared using PCA, which showed
that serum-starved and control samples were statistically discriminated and explained
65.8% of the variance in gene expression, with PC1, PC2 and PC3 accounting for 33.8%,
18.1% and 13.9% of the variance, respectively (Figure 3a). Filtering was performed to
remove genes where expression did not differ from that in controls and genes where
hybridization signals fell below the threshold for reliable detection using Partek® Genomics
Suite®. To reduce false positives, a Benjamini–Hochberg multiple correction test was
applied to generate a final list of genes consisting of 128 transcripts (Figure 3b), with
28 genes mapping onto metabolic pathways (Table 4). A total of 71 genes were upregulated
in the serum-starved cells, including many angiogenesis and cell adhesion genes such as
SAT1 and MFAP4. Fifty-seven genes were downregulated compared to the serum-replete
cells, comprising cell morphogenesis and DNA repair genes such as GREM1 and UBE2T.
One of the biggest functional differences between samples consisted of the significant
enrichment of immune response genes such as KLRC3 and CXCL6 in serum-starved cells
compared to the serum-replete group.

2.4. Multi-Omics Integration

Cytoscape software with MetScape plugin was used to examine the potential pathway-
based associations between the two omics datasets [2]. Data integration revealed inter-
actions occurring on 37 metabolic pathways in serum-starved relative to serum-replete
BXD-1425 cells, including 1525 nodes (entities of interest) and 6161 edges (associations be-
tween entities) with the largest number of associations occurring on the purine metabolism
pathway (Figure 4 and Table S3). Four nodes presented with direct statistically signifi-
cant gene-metabolite interactions with 3/4 mapping onto the arginine, proline, glutamate,
aspartate and asparagine metabolism pathways (Figure 5). For example, an increase in
concentration of L-proline and increase in expression of P4HA1 (prolyl 4-hydroxylase
subunit alpha 1), which catalyses the transformation of L-proline into 4-hydroxyproline,
in serum-starved cells (Figure 5b; 4-hydroxyproline not detected), suggests the shuttling
of L-proline to pyruvate to enter the TCA cycle under serum starvation. Therefore, dual
extraction of metabolites and RNA from the same cells enabled accurate integration of
metabolomics and transcriptomics data, and the expression levels of genes encoding
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metabolic enzymes have aided in understanding the genetics underlying an increase in
activity of a metabolic pathway.

Figure 1. Statistical discrimination of treated (serum-starved) and control (serum-replete) BXD-1425
cells analysed by LC-MS; (a) metabolomics, (b) lipidomics. OPLS-DA scores plot. Four data points
representing four replicates of each of treated (serum-starved, N) and control (serum-replete, •) can
be observed grouped together. (a) R2X 0.814, R2Y 0.995, Q2 0.979; (b) R2X 0.880, R2Y 0.998, Q2 = 0.994.



Metabolites 2021, 11, 240 9 of 21

Figure 2. Differential accumulation of metabolites in treated (serum-starved) and control (serum-replete) cells. Differences
in peak height were statistically significant for all metabolites displayed. Statistical significance was defined as a combi-
nation of p < 0.05 (in a univariate t-test with an FDR cut-off of 0.05) and VIP ≥ 1 (variable important for projection in a
multivariate OPLS-DA test). The level of confidence of identification is given as superscripted numbers. * Sphingolipid is
[SP hydroxy,hydroxy,methyl(10:2/2:0)] 6R-(8-hydroxydecyl)-2R-(hydroxymethyl)-piperidin-3R-ol.
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Figure 3. Statistical discrimination of treated (serum-starved) and control (serum-replete) BXD-1425
cells analysed by Affymetrix array. (a) PCA plot shows distinct clustering of treated (red) and control
(blue) groups; (b) hierarchical clustering of the 128 differentially expressed genes. Intensity of colour
is directly proportional to the difference in mean expression and ranges from blue (downregulated)
to red (upregulated). C—control; T—treatment.
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Table 4. Differentially expressed genes mapping onto metabolic pathways.

Gene Metabolic Pathway p-Value Fold-Change

ATP1A1 Purine metabolism 1.69 × 105 1.37693
AURKA Glycosphingolipid metabolism 6.37 × 105 −4.80815

BUB1 Glycosphingolipid metabolism 1.39 × 104 −4.57951
BUB1B Glycosphingolipid metabolism 1.64 × 105 −3.05730

CDC25C Glycosphingolipid metabolism 6.00 × 105 −2.45823
CTPS1 Pyrimidine metabolism 2.03 × 104 −2.73359

CYP1B1 Arachidonic acid metabolism 2.18 × 105 4.91775

DDAH1 Arginine, proline, glutamate, aspartate
and asparagine metabolism 4.29 × 105 −2.61779

DHFR Folate metabolism 1.76 × 104 −1.89205
DUSP6 Glycosphingolipid metabolism 1.98 × 104 3.58612
FADS3 Omega-6 fatty acid metabolism 2.04 × 104 −2.85552
FMO3 Amino sugars metabolism 2.41 × 104 1.80707

GUCY1B3 Purine metabolism 1.36 × 105 10.77960
NDST3 Proteoglycan metabolism 6.77 × 105 1.60250

NDUFB2 Methionine metabolism 1.27 × 104 −1.47355

P4HA1 Arginine, proline, glutamate, aspartate
and asparagine metabolism 1.73 × 104 3.91765

PLPP3 Glycerophospholipid metabolism 7.39 × 106 2.52901

PTGDS Prostaglandin formation from
arachidonate 1.55 × 104 2.43688

RFC5 Purine metabolism 2.00 × 104 −2.96426

SAT1 Arginine, proline, glutamate, aspartate
and asparagine metabolism 6.22 × 106 6.06009

TGFBR2 Glycosphingolipid metabolism 1.11 × 104 2.51642
TRMU Methionine metabolism 2.30 × 104 −2.36320
TYMS Folate metabolism 1.71 × 104 −3.64677
UBE2C Purine metabolism 2.10 × 104 −6.48322
UBE2T Purine metabolism 3.33 × 106 −3.90861
WHSC1 Lysine metabolism 7.95 × 105 −2.65510

Fold changes are relative to serum-replete control cells.

Figure 4. Integrated analysis of genes and metabolites extracted from treated (serum-starved) relative to control (serum-
replete) BXD-1425 cells. (a) Compound reaction networks of the metabolites and genes were visualised using MetScape:
metabolites (red) and genes (blue) are presented as nodes. (b) The metabolite–gene associated networks were mainly related
to purine metabolism (yellow).
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Figure 5. Integrated gene–metabolite interactions facilitated by dual-extraction from the same popu-
lation of cells. The depicted networks reveal aberrant metabolites (red) associated with dysregulated
genes (blue) between treated and control BXD-1425 cells (>1.0 fold). The integrative network was gen-
erated using a MetScape plugin for Cytoscape. Significantly altered genes or metabolites (green bor-
der) in serum-starved relative to serum-replete cells are represented as upregulated/downregulated
or high/low abundance, respectively, by an increase or decrease in node size in comparison to other
genes or metabolites. (a) Direct statistically significant edge between N-acetylputrescine and SAT1,
(b) edge between L-proline and P4HA1, (c) edge between L-glutamine and FMO3, (d) edge between
L-citrulline and DDAH1.

Understanding cell metabolism in the absence of signals from serum is somewhat a
mimic for the poorly vascularised, nutrient-, growth factor- and oxygen-deficient core of
tumours, especially when combined with lowered glucose media and growth in a hypoxia
chamber [44], and therefore hints at why brain cancer survives. Cancer cells are dependent
on antiapoptotic pathways and therefore cellular stress including growth factor deprivation,
DNA damage, and treatment with most anticancer drugs will activate the intrinsic pathway
of apoptosis [45]. Evidence of the early stage of apoptosis from our data suggests pathways
which can be targeted with drugs that will induce apoptosis, a promising concept [45]. For
example, it has been discovered that growth signals lead to proteins being phosphorylated
on tyrosine residues to which PKM2 binds, which negatively regulates PKM2 activity [45];
therefore, the removal of serum growth signals may have led to higher PKM2 activity,
causing the higher level of pyruvate observed under serum-starvation. Using an allosteric
activator of PKM2 such as fructose 1,6-bisphosphate would potentially trigger apoptosis in
cancer cells.

2.5. Application of Sequential/mirVana Method to Primary Brain Tumour Tissue

Though the optimal method is suitable for in vitro cultures of brain tumour cells, we
sought to determine whether it would be suitable for primary brain tumour tissue and how
much tissue would be needed. Therefore, we used the same method, with homogenisation
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of the tissue into cells, on masses of 10 to 40 mg of ependymoma tissue from one patient
(15/243), extracting metabolites, lipids and RNA. The metabolites and lipids were analysed
by LC-MS and LC-MS/MS, and the RNA was measured by Nanodrop.

All metabolites identified in the tumour of patient 15/243 were detected in 10, 20 and
40 mg samples (Table S4). The general trend was for the amount detected to increase with
increasing mass of tumour; however, each metabolite responded to the detector differently.
Of the 39 metabolites which were matched to standards (level 2 identification), eight exhibit
a linear response to the detector.

The number of lipid groups detected in the tumour (lipids grouped according to their
summed fatty acids), increased as the mass of tissue increased. Two hundred lipid groups
were extracted from 10 mg of tissue, 258 were extracted from 20 mg and 325 from 40 mg of
tissue (Table S5). Peak areas of lipids in a certain class were combined and the total peak
areas of four of the six most common lipid classes in the samples showed saturation at
the detector when 40 mg of tissue was used (that is, there was a deviation from linearity).
These classes were ceramides, phosphatidylcholines, phosphatidylethanolamines and
sphingomyelins, and did not include diglycerides and triglycerides (Table S6, Figure S4).

The RNA mass extracted from tissue roughly doubled from 10 (7.6 µg RNA) to 20
(14.7 µg) to 40 mg (36.5 µg) tissue, which suggests that the yield of RNA is proportional to
the amount of tissue used. The purity of the RNA was measured as 260/280 and 260/230
ratios: 10 (1.99, 2.07), 20 (2.01, 2.08), and 40 mg (2.03, 1.70). The yield and purity of RNA
were suitable for consideration of transcriptomics analyses including RNA sequencing,
from a minimum of 10 mg of tissue.

3. Materials and Methods

Accession numbers have not yet been obtained—they will be provided before publication.

3.1. Preparation of Cell Pellets

BXD-1425 cells were selected as a model in this study due to their in vitro stability
and rapid growth rate [46]. BXD-1425 cells were derived from a paediatric patient with a
recurrent ependymoma, World Health Organisation Grade III tumour. A total of 2.0 × 106

of BXD-1425 cells were detached using 1×Trypsin-EDTA, counted from a sub-confluent, log
phase T175 flask and centrifuged to remove the medium. The cells were then re-suspended
in PBS (1 mL in a 2 mL tube) and centrifuged at 305 rcf for 5 min at room temperature.
The supernatant was removed and the remaining cell pellets were flash-frozen in liquid
nitrogen and stored at −80 ◦C for the analysis.

3.2. Single Extraction of Metabolites or RNA
3.2.1. mirVana Kit

mirVana kit: Extraction of RNA was performed according to the manufacturer’s
protocol for the mirVanaTM miRNA Isolation Kit (Ambion, Life Technologies, Carlsbad,
CA, USA), with 500 µL lysis/binding solution being used and the RNA being eluted in
50 µL of nuclease-free water (Transcriptomics Reference Method, a standard RNA kit). The
extracted RNA was stored at −20 ◦C.

3.2.2. Sequential Solvent Addition and Shaking

Extraction of metabolites was performed using a Metabolomic Reference Method
for standard metabolites extraction [28]. Cold methanol (200 µL, −80 ◦C) was added
to the cell pellet just thawed on ice, and the content was shaken at 300 rpm at 4 ◦C for
30 min. Chloroform (600 µL, 4 ◦C) was added, vortexed gently and left on ice for 10 min;
the procedure was repeated three times. Water (200 µL, 4 ◦C) was added to the extract,
vortexed gently and centrifuged at 20,000 rcf for 10 min at 4 ◦C. The upper aqueous and
lower organic phases of the extracts were separated.
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3.3. Dual Extraction of Metabolites and RNA

Four different dual extraction methods of metabolites and RNA were investigated and
designated as: cryomill/mirVana [17], cryomill-wash/Econospin [15], rotation/phenol-
chloroform [16] and sequential/mirVana (Figure 6). The methods used from the literature
are written in full in the supplementary information.

Figure 6. Schematic of metabolite/RNA dual extraction procedures and the single extraction reference methods.

3.3.1. Cryomill/mirVana: Cryomill and mirVana kit (Phenol-Chloroform and SPE)

The procedure was followed as stated elsewhere, including Section 3.2, Section 3.3,
and a variant of Section 4 that used the mirVanaTM miRNA Isolation Kit as outlined in
mirVana kit without cryomilling [17]. Note that a Mixer Mill 301 (Retsch, Haan, Germany)
was used.

3.3.2. Cryomill-wash/Econospin: Cryomill, Wash and Econospin Columns (SPE)

The procedure was followed as outlined by Valledor et al. using the Mixer Mill 301
at 25 Hz with cooled autoclaved-sterilized milling balls (5 × 2 mm + 2 × 5 mm), and a
thermal shaker for the RNA pellet at 300 rpm for 30 min [15].

3.3.3. Rotation/Phenol-Chloroform: Rotate Cell Extracts and Phenol-Chloroform

The protocol C described by Vorreiter et al. was followed starting from resuspension
in PBS [16]. The RNA pellet was re-suspended in 15 µL of nuclease-free water (60 ◦C).
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3.3.4. Sequential/mirVana: Sequential Solvent Addition, Shake and mirVana Kit
(Phenol-Chloroform and SPE)

The extraction procedure started with using sequential solvent addition and shaking
for the extraction of metabolites, followed by the extraction of RNA using the mirVana kit
from the solid interphase between the aqueous and the organic phases.

3.4. Serum Starvation

BXD-1425 cells (human ependymoma cell line) were grown in DMEM with 10% FBS
in T75 flasks until 70–80% confluent. A complete media change was made to either DMEM
(serum-starved treatment) or DMEM with 10% FBS (serum-replete control), with four
replicates produced. An experimental period of 28 h was chosen based on a previous
study, where although an increase in VEGF-promotor activity from 3–24 h post-serum
starvation was detected by a promoter-reporter construct, it was not until after 24 h that
an increase in VEGF mRNA expression was noticeable by Northern blot [47], whereas a
period that is too long will lead to cell death. After 28 h, the medium was removed, and
the cells were washed with 1 × PBS (5 mL, 37 ◦C) and quenched by adding methanol
(0.7 mL, −80 ◦C). The flask was placed on ice and the cells were scraped from the flask
surface and transferred with the methanol into an ice-cold 1.5 mL tube and stored on dry
ice. Cells from two further replicate flasks were counted using a haemocytometer. Tubes
were shaken at 2000 rpm for 30 min at 4 ◦C. Extracts were transferred to 15 mL tubes
and chloroform added (2.1 mL, 4 ◦C). The tube was vortexed gently and left on ice for
10 min and this procedure repeated three times. Water (0.7 mL, 4 ◦C) was added and the
tube was vortexed gently and centrifuged for 10 min at 4000 rcf at 4 ◦C. The upper and
lower phases of the extracts were separated. The interphase was stored at −80 ◦C and later
processed using the mirVanaTM miRNA Isolation Kit, using 500 µL of lysis/binding buffer.
The mixture was transferred to an Eppendorf tube after adding the homogenate additive
and leaving on ice. Total RNA was eluted into 2 × 50 µL of RNase free water and stored at
−80 ◦C.

3.5. LC-MS Sample Preparation

In all methods, the aqueous and the organic phases were separated, the solvents
were evaporated using the Jouan Centrifugal Evaporator (Thermo Fisher Scientific, Hemel
Hempstead, UK) at room temperature, and the extract residues were stored at −80 ◦C. For
LC-MS, the aqueous and the organic extracts were reconstituted in 100 µL of methanol
(4 ◦C) and 100 µL of isopropanol (4 ◦C), respectively, and centrifuged at 13,000 rcf, 4 ◦C for
10 min. Then, 70 µL from each was transferred into HPLC vials and stored at −80 ◦C until
analysis; in addition, 20 µL from each sample were mixed as a pooled quality control (QC).

3.6. Applying Sequential/mirVana Method to Extract Metabolites, Lipids and RNA from Brain
Tumour Tissue

The study utilised tissue derived from a paediatric brain tumour patient treated at the
Queen’s Medical Centre, Nottingham. The study was approved by the National Research
Ethics Committee (NRES Committee East Midlands) (Reference Number 11/EM/0076).
Tissue samples were cut from the ependymoma tumour of patient 15/243 in a sterile Petri
dish over dry ice. Samples were homogenised using a Stuart Homogeniser SHM1 1116 in
methanol (100 µL, 4 ◦C) inside 2 mL tubes over dry ice. Chloroform (300 µL, 4 ◦C) was
added and vortexed well. Water (100 µL, 4 ◦C) was added and vortexed well. Samples
were centrifuged at 13,000 rcf for 10 min at 4 ◦C. Parts of the upper phase (100 µL) and
lower phase (200 µL) were collected into 1.5 mL tubes. The upper phase was centrifuged (as
before but for 5 min) and the solvent transferred to a HPLC vial. The lower phase solvent
was evaporated using the Jouan Centrifugal Evaporator at room temperature (25 min) and
the residue was resuspended in isopropanol (100 µL, 4 ◦C), then centrifuged (as before)
and the solvent transferred to a HPLC vial. The 2 mL sample tube was centrifuged again
(as before) and the remaining solvent removed carefully to leave the solid interphase. RNA
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was extracted from the interphase using the mirVanaTM miRNA Isolation Kit, using 500 µL
lysis buffer and eluting into 2 × 50 µL of RNase free water.

3.7. LC-MS Analysis

Experimental samples were randomised through the sequence. In addition, the pooled
QC was run after every six samples to assess the instrument performance. Solvent blanks
were run prior and subsequent to samples.

Metabolites were separated using an Accela UHPLC system coupled to an Exac-
tive Orbital trap MS (Thermo Fisher Scientific, Hemel Hempstead, UK) as previously
described [48,49]. Metabolite extracts were injected (10 µL, 4 ◦C) onto a ZIC-pHILIC col-
umn (150 × 4.6 mm; 5 µm particle size; Merck SeQuant, Darmstadt, Germany) held at
45 ◦C. The starting mobile phase was 20% mobile phase A (20 mM ammonium carbonate
in water, pH 9.1) and 80% mobile phase B (100% acetonitrile). The constant flow rate was
300 µL/min. The proportion of mobile phase A increased up to 95% from 0 to 15 min
(linear gradient) and then decreased back to 20% in 2 min, where it was held for 7 min
for re-equilibration, the total elution time was 24 min. Different mixtures of 268 authentic
standards were analysed with the samples for metabolite identification. Mass spectra of
eluted extracts were acquired using the Exactive MS fitted with a heated ESI (HESI) source.
Full MS profiling with a simultaneous ESI+ and ESI- switching were used with m/z 70–1400
range at 50,000 resolution. The probe and capillary temperature were maintained at 150
and 275 ◦C, respectively. The following settings were used: sheath gas 40, auxiliary gas
5, and sweep gas 1, balanced AGC target. For positive mode ionization: spray voltage
+4.5 kV, capillary voltage +40 V, tube voltage +70 V, skimmer voltage +20 V. For negative
mode ionization: spray voltage −3.5 kV, capillary voltage −30 V, tube voltage −70 V,
skimmer voltage −18 V.

Lipids were analysed using a Dionex UltiMate 3000 HPLC system (Thermo Fisher
Scientific, Hemel Hempstead, UK). The method was modified based on a method previ-
ously described [50]. Lipid extracts were injected (10 µL, 6 ◦C) onto a reverse phase ACE
Excel 2 SuperC18 column (50 × 2.1 mm; 2 µm particle size; Advanced Chromatography
Technologies, Aberdeen, UK) held at 50 ◦C. Mobile phases consisted of A (60% water,
0.1% ammonium acetate, 40% acetonitrile) and B (10% water, 0.1% ammonium acetate,
10% acetonitrile, 80% isopropanol). The starting mobile phase was 30% B at a flow rate of
400 µL/min, and increased to 35% B by 1 min, then to 100% B by 7 min. The flow rate was
then increased to 500 µL/min by 11 min. The proportion of mobile phase B decreased to
20% by 12 min, equilibrating for 3 min. Mass spectra of eluted extracts were collected in a
Q-Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific,
Hemel Hempstead, UK) fitted with a heated ESI (HESI) source. The polarity of the MS ioni-
sation source was rapidly switched between positive and negative electrospray ionisation
(ESI) modes. Full-scan data were acquired on the m/z 150–1500 range at 70,000 resolution.
The probe and capillary temperature were maintained at 412.5 and 256.25 ◦C, respectively.
The following settings were used: sheath gas 47.5, auxiliary gas 11.25, and sweep gas 2.25,
AGC target 3 × 106. The spray voltage was set to +4.0 kV or –4.0 kV. Data-dependent
tandem MS/MS (ddMS2) spectra were produced on the 5 most intense ions at any one time
at a resolution of 17,500, with AGC target 1× 105, injection time 50 ms, range 200–2000 m/z,
normalised collision energy 30, isolation window 1.0 m/z, intensity threshold 1.6 × 105,
dynamic exclusion 10 s (Xcalibur 3.0.63 (Thermo Fisher Scientific, Hemel Hempstead, UK)).

3.8. Metabolite Identification

LC-MS raw metabolomics data from samples, blanks and QC samples were processed
with XCMS for untargeted peak-picking [51], and peak matching and annotation of related
peaks were carried out using mzMatch [52]. IDEOM with the default parameters was
used for noise filtering and putative metabolite identification [53,54]. Briefly, retention
time (RT) for the identification of authentic standards was 5%, RT for identification for
calculated RT was 50%, and mass accuracy for mass identification was 3 ppm. LC-MS



Metabolites 2021, 11, 240 17 of 21

lipidomics raw datasets were processed using Progenesis QI (Nonlinear Dynamics, Waters,
Newcastle upon Tyne, UK) which performed peak picking, peak matching and annotation
using between-subject experimental design. Data were filtered using CV < 30% in QC
samples and Lipid Maps with theoretical fragmentation were used for lipids putative
identification. Lipid Search (Thermo Scientific, Hemel Hempstead, UK) was also used
for lipid identification based on ddMS/MS, which uses an internal library and theoretical
fragmentation with the addition of the ability to manually reject identifications that do not
fit class trends in retention time (t-score), to process the data from the serum-starved to
serum-replete validation experiment and the human tissue samples. Metabolites and lipids
were identified with four levels of confidence; level 1 (L1) identification was based on
matching the accurate masses, MS/MS fragmentation and retention times of the detected
metabolite peaks with those of authentic standards which were co-analysed with the
samples under identical experimental conditions, level 2 (L2) identification was based on
matching the accurate masses and retention times (two orthogonal data) of the detected
metabolite peaks with those of the authentic standards (e.g., the 268 metabolites run in the
metabolomics sequence) or matching accurate masses and MS/MS spectra with compounds
in a library when data were taken under the same acquisition parameters, level 3 (L3)
identification was carried out when the predicted retention times or predicted MS/MS
spectra or both were employed due to the lack of standards, and level 4 (L4) identification
was based on unambiguously assigned molecular formulas, but insufficient evidence
exists to propose possible structures [49]. The identification criteria were according to the
metabolomics standards initiative and scale [29,55,56].

3.9. RNA and Transcriptomics Analysis

RNA was analysed using a Nanodrop (Thermo Fisher Scientific, Hemel Hempstead,
UK) followed by a Tapestation instrument (Agilent Technologies, Santa Clara, CA, USA) to
analyse the quantity and quality of RNA recovered by the mirVanaTM miRNA isolation kit
and each of the metabolite/RNA dual extraction methods.

For transcriptomics analysis of serum starvation samples, the RNA was diluted
to 600 ng/µL (concentrations determined by Nanodrop) and DNA was removed using
the Turbo DNA-free kit (Invitrogen, Thermo Fisher Scientific, Hemel Hempstead, UK).
The purified RNA was diluted to 100 ng/µL (concentrations determined by Tapestation)
for a Transcriptomics Microarray. QC presented RIN of 9.7–10 (Bioanalyser; Agilent
Technologies, Santa Clara, CA, USA). Whole-genome transcriptome analysis was conducted
by hybridizing three biological samples of total RNA for treatment and four biological
samples of total RNA for control to the ClariomTM S arrays (#902926, Affymetrix, High
Wycombe, Bucks, UK). All steps of sense cDNA synthesis, fragmentation and hybridization
were performed according to the manufacturer’s protocol (GeneChip® Scanner 3000 7G
System, Affymetrix).

3.10. Statistical Methods

For LC-MS analysis, cell growth rate differed between serum-deplete and serum-
replete samples, with 2.38 ± 0.57 million and 3.61 ± 0.40 million cells after 28 h, respec-
tively, and therefore, the serum starvation result was normalised to the number of cells
per sample (counted from a parallel culture). Student’s t-test and/or a one-factor ANOVA
were computed to check for the significance of the metabolite/lipid fold changes [57,58].
The resulting p-values were then adjusted using the Benjamini–Hochberg false discovery
rate to account for multiple testing problem (adjusted p-value < 0.05 was considered signif-
icant) [59]. SIMCA-P (v13, Umetrics, Umeå, Sweden) was used to conduct unsupervised
principal component analysis (PCA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA) and give a list of variables important for the projection (VIP ≥ 1).

Microarray gene expression profile data were generated as CEL files and subjected to
analysis by the Partek Genomics Suite 6.6 software (Partek, St. Louis, MO, USA). Quality
Control (QC) metrics were checked by examining surface defects, hybridization, labelling,
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and a ratio of the 3′ probe set to the 5′ probe set (3′/5′ ratio) to provide the quality of
the microarray data. The values were log2 transformed and quantile normalisation using
the robust multi-array average (RMA). Filtering was performed to remove genes where
expression did not differ from that in controls and genes where hybridization signals
fell below the threshold for reliable detection using Partek Genomics Suite. The list of
genes of interest comprised genes upregulated or downregulated by at least one-fold with
Benjamini–Hochberg adjusted p-value < 0.05.

Multi-omics data integration of metabolites and transcripts was performed through
pathway-based network analysis using Cytoscape (v.3.4.0) with MetScape 3 (v.3.1.3) plugin,
applying a minimum fold change threshold of one and a p-value < 0.05 as all entered
genes and metabolites were statistically significant, so no further filtering was required [2].
Network interactions were visualised using prefuse force directed layout.

4. Conclusions

A dual extraction method, sequential/mirVana, was developed and verified as a
superior method for the extraction of both metabolites/lipids and RNA from a brain cancer
cell line and primary brain tumour tissue and has potential for other applications. Simul-
taneous extraction of metabolites/lipids and RNA from the same sample set provides a
consistent quality of the metabolome and RNA transcripts, and their biological relationship
is adequately maintained and hence a better integrative metabolomics-transcriptomics
can be obtained. The method was applied to distinguish between serum-starved and
serum-replete cells on both the transcriptional and metabolic level after an acute period of
perturbation and the data could be integrated to enhance the biological interpretation. This
method will facilitate omics integration in a clinically relevant manner.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11040240/s1, Figure S1: Total ion chromatograms of pooled QCs analyses of dual
extraction methods, Figure S2: PCA scores plot for the metabolomics analysis (a) and lipidomics
analysis (b) of the single extraction method, the four dual extraction methods and the QCs, Figure S3:
PCA scores plot for the metabolomics analysis (a) and lipidomics analysis (b) of the serum-starved
and serum-replete BXD-1425 cells after 28 h, Figure S4: Lipid classes extracted from ependymoma
tissue from patient 15/243 and their summed peak areas, Table S1: Differentially abundant metabo-
lites between serum-starved (treatment) and serum-replete (control) cells, Table S2: Differentially
abundant lipids between serum-starved (treatment) and serum-replete (control) cells, Table S3:
Gene/metabolite nodes and edge interactions of metabolic pathways upon serum-starvation of
BXD-1425 ependymoma cells. Table S4: Metabolites present in the brain tumour of patient 15/243,
Table S5: Number of lipid groups in each class and total number of lipid groups extracted from 10,
20 and 40 mg ependymoma tissue from patient 15/243, Table S6: Total peak area per class of lipids,
extracted from 10, 20 and 40 mg ependymoma tissue from patient 15/243, Methods for the dual
extraction of metabolites and RNA.
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