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Abstract
Development of effective treatments for amyotrophic lateral sclerosis (ALS) has been ham-
pered by disease heterogeneity, a limited understanding of underlying pathophysiology, and
methodologic design challenges. We have evaluated 2 major themes in the design of pivotal,
phase 3 clinical trials for ALS—(1) patient selection and (2) analytical strategy—and discussed
potential solutions with the European Medicines Agency. Several design considerations were
assessed using data from 5 placebo-controlled clinical trials (n = 988), 4 population-based
cohorts (n = 5,100), and 2,436 placebo-allocated patients from the Pooled Resource Open-
Access ALS Clinical Trials (PRO-ACT) database. The validity of each proposed design
modification was confirmed by means of simulation and illustrated for a hypothetical setting.
Compared to classical trial design, the proposed design modifications reduce the sample size by
30.5% and placebo exposure time by 35.4%. By making use of prognostic survival models, one
creates a potential to include a larger proportion of the population and maximize generaliz-
ability. We propose a flexible design framework that naturally adapts the trial duration when
inaccurate assumptions are made at the design stage, such as enrollment or survival rate. In case
of futility, the follow-up time is shortened and patient exposure to ineffective treatments or
placebo is minimized. For diseases such as ALS, optimizing the use of resources, widening
eligibility criteria, and minimizing exposure to futile treatments and placebo is critical to the
development of effective treatments. Our proposed design modifications could circumvent
important pitfalls and may serve as a blueprint for future clinical trials in this population.

From the Department of Neurology, UMC Utrecht Brain Center (R.P.A.v.E., T.K., A.D.d.J., H.-J.W., L.H.v.d.B.), and Biostatistics & Research Support, Julius Center for Health Sciences and
Primary Care (R.P.A.E., S.N., M.J.C.E.), University Medical Center Utrecht; Department of Health Evidence (K.C.B.R.), Section Biostatistics, Radboud Medical Centre Nijmegen, the
Netherlands; Biostatistics (L.K.), GlaxoSmithKline R&D, Stevenage, UK; Neurosciences (S.S.H.), Takeda Pharmaceuticals, Cambridge, MA; Discovery Medicine (S.S.H., N.E.), Glax-
oSmithKline R&D, Upper Providence, PA; Clinical Development (A.L.), Novartis Gene Therapies; Clinical Translational Medicine (A.L.), Future Pipeline Discovery, GlaxoSmithKline R&D,
Middlesex; Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute Centre, Department of Basic and Clinical Neuroscience, King’s College
London (A.A.-C.); Department of Neurology (A.A.-C.), King’s College Hospital, London, UK; Department of Neurosciences (P.V.D.), Laboratory for Neurobiology, KU Leuven and Center
for Brain & Disease Research, VIB, Leuven Brain Institute; Department of Neurology (P.V.D.), University Hospitals Leuven, Belgium; Department of Neurology (O.H.), National
Neuroscience Centre, Beaumont Hospital, Dublin, Ireland; FutureNeuro SFI Research Centre (O.H.), Royal College of Surgeons in Ireland, Dublin; and Department of Neuroscience
(P.J.S., C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

The Article Processing Charge was funded by the authors.

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

528 Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

mailto:r.p.a.vaneijk-2@umcutrecht.nl
mailto:r.p.a.vaneijk-2@umcutrecht.nl
https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000012545
http://creativecommons.org/licenses/by/4.0/


Development of treatments for amyotrophic lateral sclerosis
(ALS) has been challenging and, despite considerable efforts,
only riluzole has been proven to prolong survival time by 2 to
3 months.1-3 Recently, the Treatment Research Initiative to
Cure ALS has extended a collective effort among academia,
patient advocacy groups, industry partners, and fundraisers to
reform clinical trial design and to improve the likelihood of
successful drug development.4

Over the years, a number of suggestions have been made to
innovate the design of clinical trials in ALS.1,3,5-7 Nevertheless,
clinical trials have remained relatively conservative, especially
when initiated by industry, as deviating from trial guidelines
could affect regulatory acceptability. Though industry is open
to fundamentally changing drug development for ALS,4 they
require amendments of the current regulatory guidelines to
successfully adopt innovation in their pipelines.

In an attempt to address these concerns, we have evaluated 2
major themes in the design of pivotal, phase 3 clinical trials
for ALS: (1) patient selection and (2) analytical strategy.
Virtually all clinical trials impose various sets of eligibility
criteria to reduce clinical heterogeneity.5,8 This leads to the
exclusion of many patients, which affects generalizability
(i.e., “to whom do the results of this trial apply?”).9 More-
over, such criteria have been minimally effective in creating
more homogenous trial populations.5 In addition, funding
and resources for low prevalence disorders such as ALS are
limited, while costs of pivotal studies are high, requiring
relatively large sample sizes and long follow-up periods to
provide confirmatory evidence.10

To address these challenges, we illustrate the rationale for
innovative design modifications in clinical trials for ALS.
Our considerations were discussed with the European
Medicines Agency (EMA) during a scientific advice ses-
sion on June 25, 2020, and are illustrated using patient-
level data from 5 placebo-controlled clinical trials (n = 988,
including active and placebo patients due to lack of
efficacy),11-15 4 population-based incidence cohorts (n =
5,100; Leuven, Sheffield, Dublin, and Utrecht), and 2,436
placebo-allocated patients from the Pooled Resource
Open-Access ALS Clinical Trials (PRO-ACT) database.5

Standard Protocol Approvals, Registrations,
and Patient Consents
The medical ethics committee and institutional review board
of the University Medical Center Utrecht approved reanalysis
of the data for the purposes outlined in this work.

Data Availability
All analyses and anonymized data will be shared by request
from any qualified investigator.

Refining Patient Eligibility: Risk-
Based Patient Selection
Among the first design considerations for clinical trials are the
inclusion and exclusion criteria. Depending on the study phase,
selection criteria may aim to enroll a more homogeneous pop-
ulation, improve protocol adherence and safety, or exclude pa-
tients who are unlikely to benefit from treatment.8,9,16 Trial
eligibility is classically determined by a stepwise assessment of
patient characteristics such as age or disease severity. To illustrate:
trial X aims to reduce dropout and selects patients younger than
75 years with a vital capacity (VC) of ≥60%. However, fulfilling
these criteria does not guarantee that the patient completes the
study. For example, a patient who fails one of the criteria (e.g.,
patient 1, 76 years, VC 100%) may have a higher probability of
completing the study as compared to a patient fulfilling all criteria
(e.g., patient 2, 74 years, VC 61%). This phenomenon is explained
by the fact that progression rate, prognosis, and dropout are
dictated by a multivariable combination of characteristics.5,17,18 In
contrast, stepwise criteria evaluate patient characteristics uni-
variably and ignore their combined effect on prognosis. The ac-
curacy of patient enrollment can thus be improved by evaluating
multiple characteristics simultaneously by, for example, making
use of multivariable prediction models.5

Risk Profile as Prognostic Summary
Prediction models are a method for summarizing multiple pa-
tient characteristics into an individual risk profile. This “prog-
nostic summary” could serve as a targeted approach to exclude
patients with an undesirable prognosis and maximize eligibility
rates (i.e., the number of patients who fulfil the enrolment
criteria).5,6 Here we illustrate patient eligibility based on their
(relative) survival risk profiles as estimated by the cross-validated
European Network for the Cure of ALS (ENCALS) survival
model.17 Nevertheless, other prediction rules have been pro-
posed and may be used in a similar fashion.19 The ENCALS risk
profile, hereafter referred to as “risk profile,” is a weighted av-
erage of patient characteristics; its calculation is available from
Dryad (eAppendix 1, doi.org/10.5061/dryad.fbg79cnv7).

In population-based cohorts, the risk profile ranges approxi-
mately from −12.0 to 0.0, with higher scores indicating a worse
prognosis. Figure 1 depicts the distribution of risk profiles for 6
clinical trial cohorts (n = 3,424) compared to a population-based

Glossary
ALS = amyotrophic lateral sclerosis; ALSFRS-R = ALS Functional Rating Scale–Revised; EMA = EuropeanMedicines Agency;
ENCALS = European Network for the Cure of ALS; HR = hazard ratio; PRO-ACT = Pooled Resource Open-Access ALS
Clinical Trials; VC = vital capacity.
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incidence cohort (n = 5,100); the population ranges are available
from Dryad (eAppendix 1, doi.org/10.5061/dryad.fbg79cnv7).
The distribution of risk scores among clinical trial participants
represents a more favorable prognosis compared to the
population-based cohort. This translates to the increased survival
of trial participants as compared to population-based datasets
observed in previous studies.5,8,20 Notably, patients with a risk
profile of ≥−2.0 (i.e., very short survivors) are virtually non-
existent in trial populations (<1.0%), while they account for 8.5%
of the general ALS population. This observation is primarily
driven by the delay between diagnosis and trial enrollment, a
period in which most very short survivors die or become too
weak to participate in a clinical trial.

Predictive Properties of the Risk Profile for
Disease Progression Rate
A key objective of inclusion criteria may be to remove non-
progressing or rapidly progressing patients as (1) most treat-
ments will require some exposure time before any effect on
clinical endpoints can be detected and (2) therapeutic effects
may not be efficiently measured in nonprogressing patients and

would increase sample size or require a longer trial.21 Previous
studies have revealed the predictive properties of the risk profile
for overall survival.5,17 Here we illustrate that among all clinical
trials reported in figure 1, the rate of decline during follow-up
was strongly related to the patient’s risk profile at baseline (all p
< 0.001; Table 1): with each unit increase in risk profile, the
monthly rate of decline increased by 0.20 (95% confidence
interval, 0.18–0.21) points per month. This observation may
not be surprising given the predictive value of ALS Functional
Rating Scale–Revised (ALSFRS-R) progression for survival
time.18Moreover, there is a natural relationship between a poor
prognosis, a short survival time, and a fast disease progression
rate. Selection based on the risk profile may therefore not only
affect survival and functional decline during follow-up, but
might also be used to replace stepwise criteria that aim to
remove fast or slow progressing patients.

Risk-Based Patient Selection and
Heterogeneity in Progression Rates
To illustrate its use as an inclusion criterion, one can define an
eligibility window based on the risk profile, which can be

Figure 1 Distribution of Risk Profiles in Clinical Trial and Population-Based Cohorts

For each patient, we calculated his or her risk profile (horizontal axis), a composite score of 7 prognostic variables, which ranges fromapproximately −12 (very
long prognosis) to 0 (very short prognosis). The distribution of the risk profiles is given as density curves, with the probability density on the vertical axis. The
interpretation of the figure is similar to that of a histogram. The colors represent different trial populations; the population-based cohort is in gray. The solid
squares are the population medians. A clear shift is observed in trial populations towards a better prognosis compared to a population-based cohort, which
reflects the underrepresentation of patients with a poor prognosis in clinical trials. Exact ranges per cohort are available fromDryad (eAppendix 1, doi.org/10.
5061/dryad.fbg79cnv7); LiCALS = lithium carbonate in patientswith amyotrophic lateral sclerosis; PRO-ACT = PooledResourceOpen-Access ALS Clinical Trials.
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determined pragmatically or driven by sample size. For exam-
ple, 202 patients would be required to detect a 25% reduction
in ALSFRS-R slope when enrolling patients with risk profiles
between −4.0 and −2.0, whereas sample size increases to 262
(+30%) when widening the window to −6.0 to −2.0.22 The
exclusion rates for each selection window are 59% and 24%,
respectively. As comparison, utilizing classic criteria, for ex-
ample, symptom duration ≤24 months, age ≤80 years, and VA
≥65%,23 would result in an exclusion rate of 35% and a required
sample size of 278. Although this example reveals the beneficial
effect of risk-based selection on the trial’s sample size, a too
narrow eligibility windowmay restrict the trial’s generalizability
and compromise enrollment rates. It may therefore be advis-
able to define a maximum exclusion rate (say 25%) and sub-
sequently determine which eligibility window results in the
smallest sample size. To illustrate this point, in Table 2 we
provide the patient characteristics of eligible patients with a risk
profile −6.0 to −2.0, resulting in an exclusion rate of less than
25%. The risk-based selection results in a similar excluded
population that contains the patients who are commonly
omitted from trials (e.g., long disease duration, low forced VC,
or rapidly progressive ALS). Of note, the final enrolled pop-
ulation is not solely driven by eligibility, but could also be
affected by latent processes, such as patient preference, cultural
differences, or physician-related factors.

Considerations and Refinement After
Regulatory Feedback
As illustrated previously,5 the approach of using a risk profile as
inclusion criterionmay have potential to include a larger part of the
population by better predicting prognosis, disease progression, and
possibly even dropout. Nevertheless, defining the eligibility window
must be carefullyweighed against the reduction in sample size: can a

minimal exclusion rate be achieved without a relevant increase in
sample size?Thedefinitionof a relevant loss of trial patients, and the
resulting optimal eligibility window, depends on the investigator
preferences and the setting (e.g., broad vs genotype-targeted
treatments, or in combination with additional biomarker criteria),
and may need to be fine-tuned and substantiated on a study-by-
study basis. The comparability of results across trials, or evaluating
shifts in the population risk profile over time, may help to further
refine the eligibility window. Finally, the performance of the model
must be prospectively validated, in external populations, and in-
vestigators should evaluate themodel performance in both included
and excluded patients. During the conduct of the trial, it would be
important to carefully register intercurrent events (e.g., change in
riluzole intake during follow-up) and evaluate whether and how
these affect the prediction accuracy of the model.

Optimizing Analytical Design of
Survival Outcomes
In current regulatory guidelines,3,24 an independent assess-
ment of survival time is required to characterize efficacy in
pivotal clinical trials. In the following sections, we will describe
several key design considerations for ALS survival outcomes,
illustrated for a hypothetical study. Because very short survi-
vors are underrepresented in trial populations (Figure 1), the
number of patients who have an event at the beginning
of follow-up is considerably lower compared to the end of
follow-up.10 All calculations and simulations in the following
sections are therefore based on the Weibull framework, with
an increasing hazard over time and an 18-month survival of
56.1% (based on the placebo patients in PRO-ACTwith a risk
profile between −6.0 and −2.0).10,25

Table 1 Overview of the Interaction Between Disease Progression Rate and Individual Risk Profile

Clinical trial Year Patients (observations), n
Rate of progression
(points/mo)

Interaction risk profile–progression rate

Points/mo 95% CI p Value

Creatine 2001 175 (777) −0.95 −0.22 −0.30 to −0.15 <0.001

Valproic acid 2009 163 (717) −1.01 −0.14 −0.21 to −0.07 <0.001

LITRA 2012 133 (782) −1.11 −0.18 −0.27 to −0.09 <0.001

LiCALS 2013 214 (1,125) −1.05 −0.22 −0.29 to −0.16 <0.001

Ozanezumab 2017 303 (3,493) −0.92 −0.23 −0.30 to −0.16 <0.001

PRO-ACT I 1996–2016 1,688 (17,942) −1.04 −0.20 −0.23 to −0.17 <0.001

PRO-ACT II 1996–2016 748 (6,231) −0.98 −0.19 −0.22 to −0.16 <0.001

Pooled estimate: −1.01 −0.20 −0.21 to -0.18 <0.001

Abbreviations: ALSFRS-R = ALS Functional Rating Scale–Revised; CI = confidence interval; LiCALS = lithium carbonate in patients with amyotrophic lateral
sclerosis; PRO-ACT = Pooled Resource Open-Access ALS Clinical Trials.
Rate of progression is based on the ALSFRS (creatine trial and PRO-ACT II) or ALSFRS-R. The PRO-ACT database was split into 2 cohorts as some trials only
measured the ALSFRS as opposed to ALSFRS-R. The interaction term indicates the increase in progression rate with each unit increase in the risk profile.
Results are based on linear mixed effects models with a fixed effect for time, risk profile, and the interaction between time and risk profile. The random part
contained a random slope for time and random intercept per individual. Missing information required for the calculation of the risk profile (6.63%) was
imputed by multiple imputations and summarized using the Rubin rule. The pooled estimate is the meta-analyzed average across trial populations.
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Optimizing Time Requirements: Extended
Randomized Follow-up
Optimizing the use of time can considerably improve the power
of survival outcomes to detect treatment responses.26 Because the
number of events (e.g., deaths) drives their power,27,28 solely
extending follow-up time, while keeping the sample size constant,
can increase the power to detect treatment effects. An important
consideration is therefore to extend the randomized follow-up for
early-enrolled patients and, as a consequence, generate more
events within the same timeframe.10 To illustrate: an 18-month
trial (n = 300) with a 12-month enrollment period could extend
the follow-up for early-enrolled patients, while retaining an 18-
month follow-up for late-enrolled patients, increasing power from
68.5% to 84.6% to detect a hazard ratio (HR) of 0.63.28,29 The
extended follow-up can be implemented with minimal effort and
could result in important reductions in sample size and costs.10,26

From a patient perspective, the drawback of such an approach is
the uncertainty about the length of trial participation and the
potentially longer time on placebo if enrolled early. These limi-
tations could be mitigated by implementing interim analyses
(illustrated below), or by using a hybrid approach, with a maxi-
mum follow-up period for early enrolled patients. An example of
the latter can be found in the dexpramipexole study.23

Accuracy of a Priori Assumptions and
Trial Design
Designing clinical trials with time-to-event endpoints requires
a considerable number of assumptions; for example, we made

assumptions above about the survival pattern (Weibull),
survival probability (56.1%), and enrollment period (12
months). Despite the fact that these assumptions can be es-
timated using historical data, an inherent risk of inaccuracy
remains. Making inaccurate a priori assumptions at the design
stage (i.e., misspecification) can have detrimental conse-
quences for a trial’s ability to draw definite conclusions.30,31 If
the observed 18-month survival is 50.0% or 60.0% instead of
56.1%, the required sample size fluctuates between 237 and
286 patients (a difference of up to 21%; data available from
Dryad, eAppendix 1, doi.org/10.5061/dryad.fbg79cnv7). As a
result, inaccuracy in design assumptions could significantly
over- or underpower clinical trials and unnecessarily expose
patients to harmful or ineffective treatments.

Event-Driven Trial Design as Guard
Against Misspecification
The required sample size for time-to-event outcomes is cal-
culated as the required number of events divided by the
probability of an event.29 The probability of an event depends
on various assumptions (e.g., survival distribution, dropout
rate, and enrollment period), whereas the number of events
depends solely on the hypothesized treatment effect (HR),
allocation ratio, power, and type 1 error.27,28 In other words,
irrespective of the follow-up duration, survival distribution, or
enrollment rate, as long as the required number of events is
obtained, the trial will reach its designated power. This is a
useful feature of time-to-event endpoints and it has been

Table 2 Population-Based Characteristics of Eligible Patients at Diagnosis

Characteristics
All patients
(n = 5,100)

Eligible patients
(n = 3,872)

Excluded patients

Slow progressors
(<26.0) (n = 793)

Fast progressors
(>22.0) (n = 435)

Age at diagnosis, y 65 (11) 65 (11) 60 (14) 71 (8)

Bulbar site of onset, n (%) 1,618 (32) 1,270 (33) 94 (12) 254 (58)

Diagnostic delay, monthsa 10 (11) 10 (7) 29 (23) 5 (3)

FVC, % predicted 84 (22) 85 (21) 92 (19) 60 (21)

ALSFRS-R total score 38 (7) 38 (6) 40 (6) 31 (6)

DFRS, points/mo, median (interquartile range) −0.68 (1.03) −0.74 (0.84) −0.23 (0.16) −2.86 (1.28)

Definite El Escorial category, n (%) 1,330 (26) 961 (25) 132 (17) 237 (54)

Presence of ALS-FTD, n (%) 307 (6.0) 216 (5.6) 25 (3.2) 66 (15.2)

12-month survival since diagnosis, % 66.9 67.3 87.6 24.5

Estimated median survival, monthsa

Receiving placebo 18.7 18.6 37.4 6.1

Receiving treatment (HR 0.63) 27.4 (+8.7) 27.2 (+8.6) 52.0 (+14.6) 9.8 (+3.7)

Abbreviations: DFRS = ALSFRS-R score – 48/diagnostic delay; ALSFRS-R = ALS Functional Rating Scale–Revised; FTD = frontotemporal dementia; FVC = forced
vital capacity; HR = hazard ratio.
Patients <−6.0 are patients with an excellent prognosis; patients >−2.0 are patientswith a poor prognosis. Data aremean (SD) or% (n) unless noted otherwise.
a Median survival was estimated from a parametric Weibull survival model. “Receiving placebo” is the median survival time of the cohort with no benefit of
treatment, whereas “Receiving treatment” reflects a hypothetical scenario that illustrates how median survival improves when treatment is effective.
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suggested, therefore, to run the trial until a prespecified
number of events is reached (i.e., event-driven or information-
based trials) rather than concluding the trial after a fixed du-
ration of follow-up (i.e., duration-based trials).32-34 The major
benefit of the event-driven approach is that the accuracy of the
event probability becomes irrelevant. The major drawback is
that the exact trial duration is unknown (i.e., when is the target
number of events reached?) and cannot be fixed from the
outset.32 Nevertheless, using various projections about the
underlying assumptions, the uncertainty in trial duration can
be estimated and used as a guide by investigators, or to inform
patients about the expected individual follow-up time.

Group-Sequential Interim Analyses
The last design consideration is to implement an interim
analysis scheme to stop the trial early because of either in-
efficacy (i.e., futility or harm) or efficacy (i.e., superiority).
Implementing interim analyses could considerably increase a
trial’s efficiency and reduce the exposure of patients to in-
effective treatments or placebo.7,35 Similar to the final analysis,
the timing of interim analyses can be guided by the number of
events. Implementing an interim analysis scheme does,
however, increase the required number of events to account
for multiplicity. For example, incorporating a single interim
analysis after the occurrence of 60% of the events requires
2.9% more events compared to a design without interim
analyses (using a conservative O’Brien-Fleming type alpha-

spending function).36 The expected number of events re-
quired to reach a conclusion is, however, 25.6% less if the
treatment is futile, and 13.9% less if the treatment is superior.
Thus, if a trial cannot be stopped early, slightly more events
are needed, but on average fewer events are required to reach
a conclusion compared to a design without interim analyses.7

Illustration of Event-Driven, Group-
Sequential Trial
Finally, by means of simulation, we will illustrate the above-
mentioned design considerations for a hypothetical study.
The study targets a total of 153 events to detect an HR of 0.63
with 80% power and a 1-sided α of 2.5%. In this setting, an HR
of 0.63 translates to a median survival increase after enroll-
ment from 19.7 to 24.8 months (+5.1 months); in Table 2, the
median survival estimates are provided for other populations.
A single interim analysis will occur after 60% of the required
events. Assuming an enrollment period of 12 months, it can
be estimated that 278 patients are required (139 active vs 139
placebo) to reach the target number of events within 30
months after first enrolled patient.10 The trial setting was
simulated under both the null (i.e., HR 1) and the alternative
(i.e., HR 0.63) hypothesis, where each simulated trial was run
until an interim decision was reached or until 153 events
occurred. Based on 100,000 simulations, the 1-sided type I
error was 2.45%, whereas the empirical power was 80.4%,
confirming the validity of the design.

Figure 2 Expected Trial Duration Under the Null and Alternative Hypothesis

Distribution of simulated trial duration under the null hypothesis (H0, i.e., hazard ratio [HR] 1, panel A) and alternative hypothesis (H1, i.e., HR 0.63, panel B).
The vertical axis reflects the probability density; its interpretation is similar to a histogram. Due to the lack of a treatment benefit under H0, the required
number of events occursmore rapidly and the average duration is shorter compared toH1. The peaks reflect the average analysis time points; the last peak in
panel B is centered around 30 months (i.e., when all assumptions hold). In gray is a scenario when the survival probability in the placebo arm is better than
expected (60.0% instead of 56.1%). FPI = first patient first visit; PI = percentile interval of the empirical trial duration ranging from the 2.5th to the 97.5th
percentile.
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The stopping times of each simulated trial are provided in
Figure 2. The peaks reflect the average (interim) analysis time
points. The last peak in Figure 2B is centered on the 30
months mark; this reflects the expected trial duration if all
assumptions hold, including the treatment effect, and the trial
cannot be stopped early. If the treatment is futile compared to
placebo (e.g., HR 1), the target number of events is reached
sooner and the trial can be stopped earlier. Table 3 provides a
comparison with a classical design; the illustrated design re-
sults in considerable reductions in sample size, trial duration,
total placebo exposure time, and costs. Individual patients, on
average, may be exposed longer (+7.4%) to placebo compared
to a fixed design when treatment is effective, but shorter when
treatment is ineffective (−7.0%). The event-driven design
naturally adapts the trial duration to reach the target number
of events when one of the design assumptions is inaccurate
(e.g., underestimation of the survival probability, illustrated in

gray, Figure 2). This underscores the resilience of event-
driven designs against misspecification of assumptions and
the assurance that power will be attained.

Considerations and Refinement After
Regulatory Feedback
An effect on only function without an effect on survival has so
far not been accepted by the EMA. This may change in the
future if the association between survival and function
becomes more firmly established (e.g., when a study reveals
how a treatment benefit on ALSFRS-R is reflected in life
expectancy). For current pivotal studies, it remains therefore
critical to obtain adequate information on survival time.
Group-sequential methodology results, on average, in smaller
and shorter trials, although the number of interim analyses
should be justified and not large. A helpful guide could be to
determine whether sufficient information on safety, important
subgroups, and observational time per patient would be
available if a trial is stopped early. To illustrate: if an interim
analysis in Figure 2 were performed after 10% of the events,
the average follow-up time per patient would only be 4.9
months (vs 14.4 months at 60% of the events). Should a study
be stopped early for efficacy, existing safety datasets and
means of collecting additional safety data (e.g., utilizing
postapproval studies) would have to be discussed with regu-
latory authorities.

Discussion
Modifications in the design of clinical trials may not only
result in large efficiency gains and reductions in costs, but also
widen eligibility criteria and minimize patients’ exposure time
to ineffective treatments or placebo. Considering the high
futility rates in previous ALS clinical trials, and the consider-
able number of promising treatments, it is critical that the
design of future studies is optimized. Our proposed design
modifications could provide an important step forwards,
where the concepts may serve as a blueprint for future clinical
trials with time-to-event endpoints in ALS.

ALS clinical trials are primarily affected by clinical and path-
ophysiologic heterogeneity, which complicates the detection
of treatment effects. Here we quantified the prognostic het-
erogeneity in clinical trials by using individual risk profiles,
and subsequently reduced the observed heterogeneity by
using the risk profile as the eligibility criterion.5,37 Neverthe-
less, the risk profile may also be used to study between-trial
differences and improve between-study comparability,
whereas its distribution can provide insight into the general-
izability of trial results and help to define the label for market
authorization.38 For trial design specifically, risk profiles can
be used to improve randomization,6 explore risk-based sub-
group analyses,38 or increase statistical power as a covariate in
the final analysis.39 Although the risk profile in our study was
based on the ENCALSmodel, the methodology is not limited
to a specific model. Continuously optimizing the available

Table 3 Classical vs Event-Driven, Group-Sequential
Design of a Hypothetical Clinical Trial for
Amyotrophic Lateral Sclerosis

Parameter
Classical
design

Event-driven, GSD
design

Planned sample size 400 278 (−30.5%)

Required number of events 148 153 (+2.9%)

Empirical power, % 79.5 80.4

Trial duration, mo

HR 1.00 (H0) 35.3 22.8 (−35.4%)

HR 0.63 (H1) 35.3 26.9 (−23.8%)

Total placebo exposure, person-
months

HR 1.00 (H0) 3,012 1,947 (−35.4%)

HR 0.63 (H1) 3,012 2,249 (−25.3%)

Average placebo exposure, mo

HR 1.00 (H0) 15.1 14.0 (−7.0%)

HR 0.63 (H1) 15.1 16.2 (+7.4%)

Follow-up costs (million $)

HR 1.00 (H0) 2.94 1.90 (−35.2%)

HR 0.63 (H1) 3.02 2.18 (−27.7%)

Abbreviations: GSD = group-sequential design; HR = hazard ratio.
Classical design illustrates a 1:1 randomized trial with a fixed follow-up of 18
months and 80% power to detect an HR of 0.63 with an expected survival
probability in the placebo arm of 56.1% after 18 months. The event-driven
GSD design extends randomized follow-up for early enrolled patients, stops
when the target number of events is reached, and incorporates one interim
analysis after 60% of the required number of events during which the trial
can be stopped for either efficacy or futility. We assumed a constant en-
rollment rate of 278 patients over 12months. Trial duration is defined as the
time from first patient first visit to last patient last visit (Figure 2). The total
placebo exposure is defined as the sum of all follow-up times for placebo
patients. The average placebo exposure is the mean follow-up time for
placebo patients. Follow-up costs are defined as the sum of individual fol-
low-up costs for all patients (data available from Dryad, eAppendix 1, doi.
org/10.5061/dryad.fbg79cnv7).
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prediction rules remains of importance to improve future
study design.

As ALS trials are becoming increasingly complex with the arrival
of platform trials (e.g., NCT04297683 and NCT04302870) and
genotype-targeted studies (e.g., NCT03626012), uncertainty at
the design stage may play a progressively more important role.
Event-driven or information-based designs may serve as a rela-
tively straightforward strategy to ameliorate the consequences of
inaccurate design assumptions, and protect the trial’s (or sub-
studies’) ability to draw definite conclusions. Themain limitation
of event-driven designs is the relatively unknown trial duration,
both for investigators and patients, and the potentially longer
exposure to placebo when enrolled early. This is balanced by the
guarantee in statistical power, where simulations can provide
extensive insights into the variability between best- and worst-
case scenarios and help to refine sample size calculations, also by
implementation of interim analyses.

The proposed design can be further refined by integrating
clinical outcomes with survival time.18,40 These composite
endpoints could provide enhanced insights into the expected
treatment effect, reduce the effects of (informative) missing
data, and may further optimize decision-making about whether
to stop a trial early or continue it. Moreover, the position of the
regulator may change in the future with a shift towards in-
termediate endpoints such as ALSFRS-R or respiratory func-
tion. Group-sequential designs, extended randomized follow-
up, and information-based design may be of similar value in
these settings, and a continued dialogue with regulatory bodies
will be essential to bring innovation to clinical trials in ALS.

Ultimately, trial design is a dynamic process, where obtaining
input from patients, industry, regulators, and funders will be
fundamental to the outline of a definite roadmap and to
achieving wide-scale adoption. Introducing alternative concepts
for the design of clinical trials in ALSmay circumvent important
pitfalls encountered by classical designs and speed up the de-
velopment of effective therapy for this debilitating disease.
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