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Genome integrity is achieved and maintained by the sum
of all of the processes in the cell that ensure the faithful
duplication and repair of DNA, as well as its genetic
transmission from one cell division to the next. As central
players in virtually all of the DNA transactions that occur in
vivo, DNA helicases (molecular motors that unwind double-
stranded DNA to produce single-stranded substrates)
represent a crucial enzyme family that is necessary for
genomic stability. Indeed, mutations in many human helicase
genes are linked to a variety of diseases with symptoms that
can be generally described as genomic instability, such as
predispositions to cancers. This review focuses on the roles of
both DNA replication helicases and recombination/repair
helicases in maintaining genome integrity and provides a
brief overview of the diseases related to defects in these
enzymes.

Introduction

It has been written that “The human body can achieve many
things, but perhaps its greatest role is to act as a storage mecha-
nism for the genetic information of the species.”1 However, an
organism does not merely store genetic information; the integrity
of the genome is also safeguarded through high-fidelity replica-
tion, recombination, and repair of genetic information. Indeed,
breakdown of genome integrity, a state known as genomic insta-
bility, is a characteristic of many diseases such as cancer. Thus,
maintaining genomic stability in the face of the approximately
10,000 DNA damaging events that every cell in the human body
experiences every day2 is essential for the faithful propagation of
genetic material from one generation to the next.

Although a multitude of diverse proteins are involved in DNA
replication, recombination, and repair, members of only 2 enzy-
matic families—DNA helicases and DNA polymerases—play
roles in virtually all aspects of these processes. This review focuses
on the former, but interested readers are directed to several recent
excellent reviews on DNA polymerases and their roles in main-
taining genome integrity.3-5

DNA helicases are molecular motors that in most cases use the
power of ATP hydrolysis to unwind double-stranded (ds) DNA
and RNA-DNA hybrids into single-stranded (ss) DNA tem-
plates. The genomes of all organisms encode a variety of DNA
and RNA helicases and helicase-like proteins, from»30 in model
bacteria like Escherichia coli and Bacillus subtilis, to »100 in the
yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, to
163 in humans.6 Based on conserved sequence motifs, helicases
have been bioinformatically classified into one of 7 superfamilies
(SF-I to SF-VII).7 They have also been further categorized by
their polarity of unwinding (e.g., 30-50 [SF-IA] vs. 50-30 [SF-IB])
and placed into 18 subfamilies (DnaB/MCM, DEAD-box,
DEAH-box, SWI2/SNF2, SKI1, RecD/UPF1, PIF1, MPH1,
DinG/RAD3, RECQ, Lhr/HRQ1, UvrD/SRS2, RuvB/RVB,
KU, YRF1, HsdR/IRC3/SSL2, PhoH/Rho/SecA/HerA/UvrB/
PriA/YgcB, and unclassified) using a variety of bioinformatics
techniques (reviewed in6). Much has also been written about the
various mechanisms used by helicases to unwind dsDNA8-10 and
the biochemical details underpinning this activity.11-13

Attempting to address all of these details with respect to the
roles of DNA helicases in maintaining genome integrity is
beyond the scope of this review. Similarly, each of the multitude
of helicases described above cannot be adequately addressed.
Instead, this review focuses on well-known members of the repli-
cative and recombination/repair helicases, as well as helicase-
linked diseases that result from genomic instability.

Replicative helicases
Replicative helicases are the enzymes responsible for the

bulk dsDNA unwinding necessary for genome replication dur-
ing every cell cycle. These enzymes share several features that
together distinguish them from all other helicases: (1) they are
essential for viability, (2) they are required for both the initia-
tion and elongation steps of DNA replication, (3) they
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function at the point of the replication fork, and (4) nearly all
of them function as ring-shaped hexamers. Evolution has led
to at least 5 distinct families of replicative helicases used by
bacteria, archaea, eukaryotes, viruses, and mitochondria (see
below).

As enzymes that interact with every base pair of DNA in the
genome, replicative helicases are also critical for the maintenance
of genome integrity (Fig. 1). They are the first portion of the rep-
lication fork to encounter DNA lesions and proteins bound to
the DNA, both of which can stall DNA replication and lead to
genomic instability.14 DnaB-like helicases, those in the minichro-
mosome maintenance (MCM) family, viral replicative helicases,
and mitochondrial replicative helicases are briefly introduced
below, and their connections to genome maintenance are
described.

Bacterial DnaB-like helicases
All bacteria with sequenced genomes encode a homolog of the

well-studied E. coli DnaB (R. Ramalho, unpublished), the proto-
typical bacterial replicative helicase. In vivo, the E. coli genome is
replicated bidirectionally from a single origin of replication,
(reviewed in15) where homohexameric rings of DnaB are opened
and clamped around the ssDNA by the DnaC loader protein.16

One DnaB hexamer is loaded onto the ssDNA on each side of
the origin, and DNA unwinding proceeds in opposite directions
around both halves of the circular E. coli chromosome.

The importance of DnaB to the integrity of the E. coli
genome is exemplified by experiments performed with tempera-
ture sensitive (ts) alleles of the dnaB gene. At the restrictive tem-
perature, DNA replication elongation is blocked in these cells

and newly replicated DNA is extensively degraded.17 This is in
contrast to types of damage that arrest DNA replication without
directly targeting DnaB (e.g., UV damage), in which the replica-
tion forks are stabilized and protected18 until the damage can be
repaired.19,20 In any event, DnaB(ts)-mediated replication fork
stalling and the associated nascent DNA degradation are disas-
trous to the cell. Therefore, in E. coli (and probably also other
bacteria), a properly functioning replicative helicase is essential to
maintain genome integrity. As such, small molecules that target
and inactivate DnaB-like helicases should function as potent
antibiotics.

MCM helicases
The replicative helicases of all prokaryotes studied to date are

homohexamers, including those found in archaea. However,
unlike the bacterial DnaB helicases, archaeal genomes encode
MCM replicative helicases. Although they are functional homo-
logs (i.e., they are both localized at replication forks to unwind
genomic DNA during replication), DnaB and MCM helicases
are not orthologous. Further, archaeal MCMs translocate along
DNA with an opposite polarity to DnaB (30-50 vs. 50-30; reviewed
in21,22). The eukaryotic replicative helicase is also a 30-50 MCM
family enzyme. However, in contrast to the archaeal MCM, the
eukaryotic Mcm2–7 complex is a heterohexamer comprised of 6
distinct subunits (individually numbered Mcm2 through
Mcm7).23 As with DnaB in bacteria, though, the MCM/Mcm2–
7 helicases are the vanguards of the replication forks in archaea
and eukaryotes.

Biochemical studies of the simpler and more stable archaeal
MCM complexes, especially those from thermophilic archaea,
have yielded a tremendous wealth of structural (e.g.,24-27) and
mechanistic (e.g.,28-31) information about this enzyme family.
However, most work connecting MCM helicases to genomic sta-
bility has been performed with Mcm2–7 and eukaryotic model
organisms.

Because of its essential role in DNA replication, which must
occur once and only once per cell cycle in eukaryotes, loading
and activation of the Mcm2–7 complex at origins of replication
are tightly and redundantly controlled processes.32 As stated
above, genomic instability is a hallmark of cancers, thus perturb-
ing Mcm2–7 regulation or activity can lead to carcinogenesis.
For example, work in S. cerevisiae and mammals indicates that a
hypomorphic allele of Mcm4 (Mcm4Chaos3) is linked to increased
rates of loss33 and mutation34 of genetic information in yeast and
a variety of defects in mice, including mammary adenocarcino-
mas (Table 1).33 Similarly, deregulating Mcm7 expression
actively increases tumor formation in a mouse chemical carcino-
genesis model.35 Indeed, altering the expression levels of any of
the 6 Mcm2–7 subunits renders cells susceptible to chromosome
loss, increased recombination rates, altered viability, and/or
early-onset cancer.36,37

The loss of genome integrity in tumor cells allows them to
rapidly accumulate mutations that lead to their uncontrolled rep-
lication and can also lead to the development of resistance to che-
motherapeutic agents. However, as a vital player in DNA
replication, targeting the Mcm2–7 complex with drugs is

Figure 1. Steric exclusion model of DNA unwinding by a ring-shaped
helicase. One strand of ssDNA passes through the central channel of
the helicase, while the other is excluded. Unidirectional movement of
the helicase (in this case, 30-50 as indicated by the arrow) toward the
dsDNA and exclusion of the other strand aid in unwinding the DNA
duplex.
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hypothesized to be a viable method to fight cancer.38 If a drug is
able to inhibit all 6 Mcm2–7 subunits, 6 mutational events
would be needed to develop resistance if drug resistance is even
possible (as these are essential proteins, many mutations will sim-
ply be lethal). Schwacha and colleagues are screening small mole-
cules to uncover Mcm2–7-specific inhibitors and their effects on
yeast and human cells.38

Viral replicative helicases
The replicative helicases from DNA viruses are members

of SF-I to SF-III,39 with well-studied examples that include
simian virus 40 T-antigen (SV40 TAg)40 and the bovine pap-
illoma virus (BVP) E1 protein.41 Both of these helicases bind

to origins of replication in their respective viral genomes in a
sequence-dependent manner. However, TAg is unique among
replicative helicases in that it associates with origin DNA on
its own;40 all of the other helicases require additional DNA
replication initiation proteins to help target them to origins
of replication (e.g., DnaA and DnaC for E. coli DnaB15,16

and the papillomavirus E2 protein for E1).41 In most other
respects, however, TAg and E1are quite similar. They both
load at origins, where they undergo an ATP-dependent
multistep oligomerization process to form 2 ring-shaped
head-to-head hexamers (i.e., double hexamers) with the DNA
topologically constrained within the central channels of the
hexameric rings. Based on a crystal structures of BVP E1 in

Table 1. Helicase-linked diseases

Helicase Disease(s) Symptoms Types of genomic instability References

Mcm2–7 (Mcm4Chaos3) Cancer Predisposition to cancers (e.g.,
mammary adenocarcinoma)
and increased tumor growth

Chromosome breaks 33,35-37

T-antigen Cancer Malignant transformation
(uncontrolled cellular
proliferation)

Inactivation of the Rb and p53
tumor suppressors

40,47

E1 Carcinomas Malignant transformation
(uncontrolled cellular
proliferation)

Inactivation of tumor suppressors
and activation of telomerase

41,48

Twinkle Progressive external opthalmoplegia Weak/paralyzed eye muscles,
drooping eyelids, and general
skeletal muscle weakness

DNA damage from reactive
oxygen species, replication fork
stalling, and mtDNA loss

54,55,100

BLM Bloom syndrome Increased cancer risk, sun
sensitivity, and short stature

Increased levels of sister
chromatid exchange

85,99,100

WRN Werner syndrome Premature aging and increased
cancer risk

Defects in DNA repair, reduced
p53-dependent apoptosis, and
accelerated telomere loss

85,99,100

RECQ4 Rothmund-Thomson syndrome, Baller-
Gerold syndrome, & Rapadilino
syndrome

Increased cancer risk, slow
growth, skeletal defects,
poikiloderma, sparse hair,
cataracts

Chromosome copy number
alterations and sensitivity to
DNA damaging agents

85,99,100,106

PIF1 Cancer Predisposition to inherited
breast cancer

Increased direct repeat
recombination

98

FANCJ Fanconi anemia Bone marrow failure, increased
rates of blood and skin
cancers, congenital defects

Increased sensitivity to DNA
interstrand crosslinking agents,
sensitivity to G-quadruplex
stabilizing ligands

101,107

FANCM Fanconi anemia Bone marrow failure, increased
rates of blood and skin
cancers, congenital defects

Increased sensitivity to DNA
interstrand crosslinking agents
and increased levels of sister
chromatid exchange

101,108

CHLR1/DDX11 Warsaw Breakage syndrome Growth retardation, intellectual
disabilities, microcephaly,
congenital defects

Increased sensitivity to DNA
interstrand crosslinking agents
and sister chromatid cohesion
defects

102

RTEL1 Dyskeratosis congenital & Hoyeraal-
Hreidarsson syndrome

Nail dystrophy,
hyperpigmentation, growth
retardation, aplastic anemia

Dysfunctional telomere
maintenance, increased levels
of spontaneous DNA damage
and anaphase bridges

103,104

XPB Xeroderma pigmentosum, Cockayne
syndrome, and trichothiodystrophy

Sensitivity to UV light and
increased levels of skin
cancers

Defects in DNA repair, sensitivity
to oxidative stress

70,105

XPD Xeroderma pigmentosum, Cockayne
syndrome, and trichothiodystrophy

Sensitivity to UV light and
increased levels of skin
cancers

Defects in DNA repair and reduced
p53-dependent apoptosis

70,105

*Mcm, mini-chromosome maintenance; mtDNA, mitochondrial DNA.
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the presence and absence of DNA and nucleotides,42,43 it is
believed that these ring-shaped helicases contain ssDNA
within their central channels and thus move along only one
strand of the DNA, melting the double helix by steric exclu-
sion of the unbound strand (Fig. 1). Similar unwinding mod-
els have also been proposed for DnaB and the MCM/Mcm2–
7 helicases (see29,44 and references therein).

Initially, the replicative helicases from eukaryotic viruses
served as models to begin delineating the similarities and differ-
ences between bacterial and eukaryotic DNA replication in vitro.
This is because the Mcm2–7 helicase has only recently been
found to be amenable to biochemical investigations through the
use of buffer conditions that more closely resemble the nuclear
milieu45 and the discovery of associated factors that stimulate its
activity.46 However, like Mcm2–7, both SV40 TAg and the E1
proteins of papillomaviruses are linked to genome stability. For
example, SV40 (a non-human primate virus that was widely
introduced into the human population through polio vaccines
contaminated with the virus),47 and related polyomaviruses
induce malignant transformation of cells.40 This process occurs
when TAg binds to and suppresses the activity of the tumor sup-
pressor proteins p53 and Rb, inducing uncontrolled cellular pro-
liferation and rendering the genome susceptible to damage.
Papillomaviruses are similarly linked to tumorigenesis.48 As the
most conserved protein encoded by papillomavirus genomes and
the only one with enzymatic activity, E1 is vital for the virus to
commandeer the normal DNA replication machinery of the
cell.41 Thus, although the TAg and E1 helicases may help to
ensure the integrity of their viral genomes, they also lead to
genetic instability in host cells.

Mitochondrial replicative helicases
It is widely believed that mitochondria arose as the result of an

ancient endosymbiosis between a eukaryotic cell and an a-pro-
teobacterium.49 As such, these organelles contain a separate
genome (mtDNA) from the nuclear DNA that encodes genes
with homology to bacteria and bacteriophages. It has also become
clear in recent years that the replication of mtDNA involves a dif-
ferent repertoire of enzymes than replication of the nuclear
genome, including a mitochondrial replicative helicase known as
Twinkle in metazoans.50

Twinkle is a 50-30 helicase51,52 that is more similar to bacterio-
phage and DnaB-like helicases than to MCM proteins, support-
ing a bacterial origin for mitochondria. Like all of the replicative
helicases described above, though, Twinkle forms a hexameric
complex to unwind DNA, and its proper function is linked to
maintaining genome integrity. For example, in tissues under
high oxidative stress, high Twinkle levels are necessary to over-
come replication fork stalling and reduce mtDNA mutations
caused by damage from reactive oxygen species.53 Mutations in
the gene encoding human TWINKLE are causative of autosomal
dominant progressive external opthalmoplegia (PEO) as a result
of associated deletions in the mtDNA (Table 1).54 PEO is a dis-
ease characterized by weak or paralyzed eye muscles, drooping
eyelids, and general skeletal muscle weakness that can be

exacerbated by exercise and results from depletion of mitochon-
dria,55 i.e., from loss of mtDNA as a result of genomic instability.

Although all multicellular and most unicellular eukaryotes
have mitochondria (very simple parasitic eukaryotes lack
them56), not all of these organisms encode a Twinkle homolog.
Such organisms include the well-studied budding yeast S. cerevi-
siae and kinetoplastid parasites such as Trypanosoma brucei. How-
ever, these organisms encode one or more members of the Pif1
family of helicases (reviewed in57), which in S. cerevisiae58-62 and
T. brucei63-65 are necessary for mtDNA maintenance. It is tempt-
ing to speculate that Pif1 helicases may act as replicative helicases
in these cases, although unlike the enzymes discussed above, Pif1
proteins are not known to form hexamers66 nor do they display
the levels of processivity (the number of base pairs unwound per
helicase-DNA binding event) that one would expect to be neces-
sary to unwind the mtDNA genome.67 Speculation aside, the
roles of Pif1 family helicases in maintaining the integrity of the
nuclear genome are discussed in greater detail below.

Recombination and repair helicases
In addition to replicative helicases, cells encode a cadre of

additional helicases that have a variety of functions. For example,
accessory helicases such as E. coli Rep, UvrD, and DinG and S.
cerevisiae Rrm3 can act in conjunction with their replicative heli-
cases to drive replication fork progression past impediments (e.g.,
protein-bound DNA) in vivo.68,69 Additionally, helicases can
serve more than one role, such as the human XPB and XPD
enzymes (S. cerevisiae Ssl2 and Rad3, respectively) that function
in both transcription and nucleotide excision repair.70 Many
more have niche roles in DNA recombination and repair, both
of which are essential for maintaining genome integrity. Exam-
ples of such helicases from 2 evolutionarily conserved families
and their roles in genome maintenance are discussed below.

RecQ helicase family
RecQ proteins are 30-50 helicases that have DNA structure-

specific roles in vivo, often functioning at recombination inter-
mediates (reviewed in71). E. coli expresses the founding member
of this family, known simply as RecQ, but eukaryotes tend to
express several RecQ helicases. Indeed, the human genome enco-
des 5 RecQs (RECQ1, BLM, WRN, RECQ4, and RECQ5),
and even single-celled eukaryotes like yeasts express 2 or 3
RecQs.72-75 Mutations in 3 of the human RecQ helicases (BLM,
WRN, and RECQ4) cause diseases characterized by a predisposi-
tion to cancers and/or premature aging (Table 1), pathologies
that are linked to loss of genome integrity.71

Perturbation of the expression levels and biochemical activities
of the RecQ helicases have such negative consequences on
genome integrity because these enzymes interact with a host of
important protein cofactors. Indeed, RecQs affect DNA replica-
tion (RECQ176 and RECQ477), recombination (all 5 human
RecQs71), repair (all 571), and telomere maintenance (BLM,78

WRN,79 and RECQ480), as well as transcription (BLM,81

WRN,82 and RECQ583) and mtDNA maintenance (RECQ484).
In other words, one or more of the RecQ helicases function in
virtually all aspects of DNA metabolism.
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RecQs are perhaps best
known for their roles in
homologous recombination
(HR; reviewed in85). Indeed,
they are involved in multiple
steps of the HR repair path-
way, from beginning to end
(Fig. 2). In human cells,
when a DNA double-strand
break (DSB) occurs, the
DNA ends are initially
resected in the 50-30 direction.
The resulting 30 ssDNA is the
perfect substrate for the 30-50

BLM helicase, which partners
with the nuclease DNA2 to
processively unwind dsDNA
and degrade the resulting 50

ssDNA strand, leading to fur-
ther resection. The remaining
30 ssDNA is eventually coated
by the RAD51 recombinase,
which aids in the homology
search, strand invasion, and
D-loop formation necessary
to carry out HR. One path-
way used to resolve the
D-loop involves the forma-
tion of double Holliday junc-
tions, which themselves are
resolved by BLM in a com-
plex with TOP3 (a topoisom-
erase) and RMI1/RMI2
(factors that stimulate TOP3
activity). Furthermore, bio-
chemical experiments suggest
that RECQ1,86 BLM,87 and
RECQ588 can inhibit or
correct the formation of
unproductive recombination
intermediates. All of these
steps are vital to proper HR,
a DSB repair pathway that
does not result in loss of genetic information and hence aids in
maintaining genomic integrity.

Pif1 helicase family
Pif1 helicases function with a 50-30 polarity, and like the

RecQs, perform a diverse set of known and hypothesized func-
tions in vivo.57 Although Pif1s were originally thought to be pres-
ent only in eukaryotes, genes encoding these enzymes have
recently been identified in numerous bacteria, bacteriophages,
and eukaryotic viruses.89 To date, little is known about the func-
tions of Pif1s in bacteria and viruses, but the roles of Pif1 heli-
cases in genome maintenance in S. cerevisiae, S. pombe, and other

eukaryotes have been investigated by several groups (reviewed
in57).

Unlike most model eukaryotes (e.g., mice and humans), S.
cerevisiae encodes 2 Pif1 family helicases: the founding member
Pif1 and its paralog Rrm3.57 Neither protein is essential, nor are
cells lacking both the PIF1 and RRM3 genes inviable (N. Ahmad
and M. Bochman, unpublished). However, Pif1 and Rrm3 per-
form multiple (and often opposing) functions to help maintain
both nuclear and mitochondrial genome integrity.57 As the best-
studied family member, the S. cerevisiae Pif1 is focused on here.

As hypothesized above, Pif1 may be the S. cerevisiae mito-
chondrial replicative helicase.58-62 In the nucleus, however, Pif1
is a veritable jack-of-all-trades. It acts as a catalytic inhibitor of

Figure 2. Simplified model of double-strand break (DSB) repair. When a DSB occurs, the DNA surrounding the
break is initially resected in the 50-30 direction to produce 30 ssDNA overhangs. The BLM helicase can load onto
this 30 ssDNA and translocate in the 30-50 direction, unwinding the double helix to create additional 50 ssDNA that
the DNA2 nuclease degrades to further resect the DNA away from the lesion. The RAD51 recombinase (not pic-
tured) coats the ssDNA to initiate a homology search, strand invasion, and D-loop formation on the undamaged
chromosome (red). DNA synthesis (red dashed arrow) serves to copy the missing genetic information. One of the
pathways used to resolve these recombination intermediates involves the formation of double Holliday junctions
and their branch migration and resolution by a complex composed of BLM, TOP3, RMI1, and RMI2 (purple).
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telomerase by using its helicase activity to physically evict telome-
rase from chromosome ends and DSBs.90 Additionally, Pif1 is
involved in Okazaki fragment maturation, where it probably cre-
ates long ssDNA flaps that are degraded by the Dna2 nuclease
during Okazaki fragment processing.91,92 Pif1 also helps to
oppose DNA replication at rDNA repeats, where it aids in estab-
lishing replication fork barriers to prevent the head-on collision
of replication and transcription.93 More recently, S. cerevisiae
Pif1 was shown to suppress genomic instability at DNA motifs
with the potential to form very stable secondary structures that
can impede replication fork progression (G-quadruplex
motifs)94,95 and to promote break-induced repair by helping to
migrate a bubble-like replication fork.96,97

It is unclear how many of these activities are conserved in the
human PIF1 helicase, but defects in any of them could explain
why mutation of a conserved residue in the PIF1 ATPase/helicase
domain is linked to inherited breast cancer (Table 1).98 It is also
unclear what bacterial Pif1 helicases do in vivo, especially in organ-
isms encoding more than one family member.89 However, if the
bacterial Pif1s are as vital to genome integrity as S. cerevisiae Pif1,
they may also prove to be useful drug targets in human pathogens.

Helicase-linked diseases
An obvious theme that arises from the above examples of heli-

cases and their roles in maintaining genome integrity is that
when the activity of these enzymes is altered (either by mutation
or changes in expression level), disease ensues. Many of these
pathologies are predispositions to cancer, suggesting that a large
number of helicases are tumor suppressors (see Table 1). Addi-
tional helicases that are known to be linked to disease have been
covered in several excellent reviews.99,100 Some of the best stud-
ied include those linked to Fanconi anemia (FANCJ and
FANCM in humans; Chl1 and Mph1 in S. cerevisiae), a genetic
disease leading to cancer and bone marrow failure in most
patients as a result of defects in repairing DNA interstrand cross-
links (ICLs).101

ICLs are covalent linkages between the two strands of the dou-
ble helix and are particularly dangerous DNA lesions because
they block both replication and transcription. Indeed, mutations
in many other human helicases are linked to ICL sensitivity,
including BLM, CHLR1/DDX11, HELQ, the Mcm8/9 com-
plex, RECQ4, RECQ5, RTEL1, and WRN (Table 1) (Rogers,
van Kessel, and Bochman, in press). Unsurprisingly, there are
known and suspected disease links with these enzymes, such as
the CHLR1/DDX11 mutations that cause Warsaw breakage syn-
drome, which is characterized by defects in sister chromatid

cohesion and Fanconi anemia-like symptoms.102 Similarly,
RTEL1 mutations are associated with dyskeratosis congenita103

and Hoyeraal-Hreidarsson syndrome,104 related diseases that are
characterized by bone marrow and telomere maintenance defects.

Adjacent nucleotides in DNA can also be crosslinked (i.e.,
form intrastrand crosslinks), such as the thymine-thymine dimers
caused by UV irradiation. Although not as deleterious as ICLs to
cells, intrastrand lesions must still be repaired to maintain geno-
mic integrity, and helicases are involved in this repair. Indeed,
mutations in the XPB and XPD helicases mentioned above are
linked to xeroderma pigmentosum, Cockayne syndrome, and tri-
chothiodystrophy – diseases that share the symptom of light sen-
sitivity due to deficiencies in repairing UV damage.70,105

Conclusions

Based on their evolutionary conservation, known and hypoth-
esized in vivo roles, and links to diseases when mutated, it is clear
that DNA helicases are essential for maintaining genomic integ-
rity. What is unclear, however, is how defects in these enzymes
lead to disease. Indeed, many of the helicases described above are
multifunctional, and deficiencies in any one (or more) of the in
vivo processes that they take part in could result in a predisposi-
tion to cancer. For example, do mutations in RECQ4 alter its
activities in DNA replication, recombination, repair, telomere
maintenance, or mtDNA maintenance? Furthermore, do differ-
ent mutations differentially affect RECQ4, accounting for the
spectrum of diseases that it is linked to? In the future questions
such as these must be addressed, both biochemically using puri-
fied protein and in vivo using mutant cell lines and simple model
systems (e.g.,72). Such investigations will delineate exactly which
of the pathways these helicases are involved in safeguard genome
integrity and suggest targets for clinical interventions in helicase-
linked diseases.
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