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ABSTRACT We report the genome of a circular replication-associated protein (Rep)-
encoding segmented or satellite virus, which we have provisionally named rengasvi-
rus. In metagenomic studies of virus-enriched fractions, rengasvirus was detected
widely, including in reagent-negative controls. We thus report this genome to help
others recognize a probable contaminating sequence.

Here, we describe a circular replication-associated protein (Rep)-encoding single-stranded
(CRESS) DNA virus-related genome discovered in metagenomic data from human sub-

jects and also in negative controls, suggesting that it originates from laboratory reagents.
The rengasviral (rengas = Finnish for “ring”) sequence was first detected in metagenomic
sequence data from bronchoalveolar lavage (BAL) fluid samples from lung transplant recipi-
ents (1). Default parameters were used for all software except where otherwise indicated.
Contig building, open reading frame (ORF) prediction, and mapping of reads to contigs
were performed using the Sunbeam pipeline version 2.1 (2); candidate CRESS viruses were
identified by screening against vFam models for CRESS viral Reps using HMMER version 3 (3,
4). We confirmed the circularity of these sequences using PCR by amplifying around the
DNA circles. For this, we used divergently oriented “back-to-back” primer pairs and recov-
ered product bands of genome length. This was repeated with two primer sets binding to
different locations on the circular DNA (set A forward [Fwd], GGCAGATCTAGATCA
CTACTCTGGAC; set A reverse [Rev], GCCAATGCGGGAGTAAATAGCTTG; set B Fwd,
CCCTATCACTCTATAACATAACAAATGTCATTAGG; set B Rev, GGGTAATACTGATCCTATCACTC
CTTTATAAC). We identified 105� coverage of the PCR-confirmed rengasvirus full-genome
sequence in the sample in which we initially identified the rengasvirus sequence (SRA run
accession number SRR5826708).

The rengasvirus genome is a 1,045-bp DNA sequence containing a single ORF encoding
the Rep with a GC content of 49.7% (GenBank accession number MW559600). Based on
BLASTp searches, the closest reported Rep amino acid sequences were from a circular DNA
molecule from a glacial ice core (QGF19362.1), a CRESS virus helicase (AWW06123.1), and a
dragonfly larva-associated circular virus (ALE29688.1), with sequence identities of 51.49%,
42.91%, and 41.11%, respectively (online search, February 2021). A maximum-likelihood phylo-
genetic tree of Rep placed rengasvirus as a member of the CRESSV2 viral cluster (Fig. 1A) (5).

To investigate the prevalence of rengasvirus sequences, we interrogated publicly
available metagenomic data sets for homologous sequences generated by our lab and
by other groups. Alignments were performed using the hisss pipeline (https://github
.com/louiejtaylor/hisss), described in reference 6, which uses grabseqs and sra-tools to
access public metagenomic data, Bowtie 2 (option, –very-sensitive-local) to align reads
to target genomes, and ggplot2 (R version 3.2.3) (7–11). A positive rengasvirus hit in a
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metagenomic sample was defined as reads aligning to $25% of the viral genome; we
discussed the rationale for this cutoff for CRESS virus genomes in a previous publica-
tion (6). Of the 40 data sets and 3,568 samples queried for sequence homology to the
rengasvirus genome, positive hits were detected in 6 data sets, with percentages of
positive samples ranging from 0.70% to 10.9% of samples (Table 1). We identified hits
to the rengasvirus genome in various control samples from two different in-house
studies, including two buffer-negative controls performed using the All Prep extraction
kit (SRA numbers SRR6316280 and SRR6316219) (1) and one water extraction blank
using the UltraSens virus kit (SRR7430813) (both kits from Qiagen, Valencia, CA) (12).
Few public data sets include sequenced negative controls, precluding a detailed analy-
sis of the origin of this putative genome or segment. However, circular DNAs have

FIG 1 (A) Phylogenetic tree of CRESS virus Rep amino acid sequences. The rengasvirus Rep is shown
in green. Rep amino acid sequences were aligned using MUSCLE version 3.8; trees were constructed
using RaxML version 8.2 and visualized using iTOL version 6. (B) Comparison between rengasvirus
DNA stem-loop and that of a circular DNA encoding capsid found in one rengasvirus-positive sample.

Keeler et al.

Volume 10 Issue 18 e00273-21 mra.asm.org 2

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6316280
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6316219
https://www.ncbi.nlm.nih.gov/sra/?term=SRR7430813
https://mra.asm.org


previously been identified as contaminants in nucleic extraction kit columns (13), rep-
resenting a potential source for rengasvirus DNA in negative-control samples.

The rengasvirus genome described encodes only a Rep, raising the question of how
it becomes encapsidated in viral particles. In one BAL fluid sample containing rengasvi-
rus (SRA number SRR5826708), we also identified another circular DNA of 933 bases in
length encoding a capsid protein with a GC content of 41.3% (GenBank accession number
MW559599). We identified this sequence from metagenomic contigs using a method similar
to the initial rengasvirus detection method (described above), except for using hidden Markov
models (HMMs) based on viral capsid instead of Reps from vFam (3). For this molecule, we
also confirmed circularity using whole-genome PCR with two sets of back-to-back primers as
described above (set A Fwd, GCCTCACTTAAATAGATGTTAAGGTATGCAATG; set A Rev,
GGCAAGTACTGGTACTGCACC; set B Fwd, GCCATAAGCATTCCGCGTG; set B Rev,
GGCGAAGAGGAAGAGGAAGATG). This sequence also contained a DNA stem-loop with some
resemblance to that of the rengasvirus Rep-encoding DNA (Fig. 1B). Thus, the two molecules
together might comprise a bipartite genome. It is also possible that rengasvirus is a satellite vi-
rus relying on capsid and other functions produced by another unknown virus.

In summary, our results indicate that rengasvirus sequences are a common labora-
tory contaminant and provide an alignment target that can be used for quality control
in future metagenome studies.

Data availability. The sequences described above been deposited in GenBank under
the accession numbers MW559599 and MW559600. The sequence data set in which both
sequences were originally identified is available under BioProject number PRJNA390659.
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