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Abstract

Green innovation is an important driving force to promote the sustainable development of

urban society and economy. This paper constructs an evaluation index system containing

social undesirable outputs, and uses the Super-SBM model and the Malmquist-Luenberger

index to evaluate green innovation efficiency in 42 cities along the Yangtze River Economic

Belt from 2013 to 2017. Additionally, spatial autocorrelation analysis is used to study the

spatial correlation of green innovation efficiency. Finally, the coupling coordination degree

model is used to study the coupling coordination degree between green innovation effi-

ciency and high-tech industries. The following results were obtained. (1) The average value

of green innovation efficiency increased from 1.0446 to 1.0987, and the annual average

growth rate of total factor productivity of green innovation was 1.1%. (2) Green innovation

efficiency of the Yangtze River Economic Belt had a significant spatial positive correlation,

but the types of agglomeration among cities in different sections of the Yangtze River were

quite different. (3) The coupling coordination degree between green innovation efficiency

and the development level of high-tech industries in the cities of the Yangtze River Eco-

nomic Belt was in the basic coordination stage. Based on the research results, we suggest

that cities in this belt further enhance the interactive relationship between green innovation

and economic development and promote the coordinated development of economy and

society.

Introduction

In the last few decades, countries have invested a large amount of resources to promote rapid

economic development, but this has generated a large amount of pollution, and led to ecologi-

cal destruction, resource depletion, and other problems on a global scale [1,2]. Especially in

developing countries, the contradiction between economic development and environmental

protection is becoming ever more prominent [3]. As one of the developing countries, China’s

economy has developed rapidly since the reform and opening up. In 2019, the GDP per capita
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in China exceeded $10000, and a number of development regions with global influence have

emerged, such as the Pearl River Delta city cluster, the Yangtze River Delta city cluster, and the

Beijing-Tianjin-Hebei city cluster [4]. However, as a result of over-reliance on resources for

development, many cities have overlooked their innovation ability and environmental prob-

lems, hindering their sustainable development in the process [5]. After 2012, China changed

its focus to high-quality economic development instead of high-speed economic development.

This transformation requires a reduction environment pollution and energy-intensive enter-

prises, strengthening of scientific and technological innovation, promotion of high-tech indus-

tries, and improvement in the quality of economic development [6,7]. In this light, green

innovation and high-tech industries have become key factors for the promotion of regional

economic transformation, while solving the problem of environmental pollution and achiev-

ing high-quality development. Accordingly, it is now important to study the efficiency and

spatial agglomeration effect of green innovation, and the synergistic effect of green innovation

and economic development on regional sustainable development.

Green innovation is generally defined as new or improved processes, technologies, systems,

and products that avoid or reduce damage to the environment [8,9]. Green innovation is con-

sidered to be essential for social development and urban environmental transformation [10].

Green innovation efficiency is defined as the input-output efficiency of green innovation [11].

It is associated with various benefits, such as economic, environmental, social benefits, and has

attracted widespread attention from scholars [12]. At present, existing research mainly focuses

on the construction of an evaluation index system, selection of evaluation methods, and analy-

sis of influencing factors.

With regard to construction of an evaluation index system, some scholars use a single tech-

nology index to measure green innovation efficiency [13]. However, a single indicator cannot

truly reflect the scope of green innovation efficiency. This is why some scholars established an

input-output evaluation system based on the Cobb-Douglas production function, Some schol-

ars have established an input-output evaluation system based on Cobb-Douglas production

function, by including R&D personnel full-time equivalent [14], government’s financial sci-

ence and technology expenditure [15], enterprise’s internal science and technology expendi-

ture [16], and energy consumption [11] as input indicators. With regard to the desirable

output index, the existing research mainly considers the sales revenue of new products [9] and

the number of invention patents [17] as good outputs. Some scholars have also added environ-

mental benefits into the evaluation framework and added the environmental governance rate

[18] into the index system as a comprehensive index. With regard to undesired outputs, exist-

ing studies mainly include the number of unauthorized patents [19], and environmental pollu-

tion indicators [12], such as sewage discharge, fixed wastes and air pollution into the

evaluation system.

The evaluation methods for green innovation efficiency mainly include parametric meth-

ods (stochastic frontier analysis, or SFA) and non-parametric methods (data envelopment

analysis, or DEA), because there is no need to set a production function and multiple output

variables are possible. DEA and its improved model have become the mainstream choice for

efficiency evaluation. Some scholars, such as Feng et al. [19], tend to use traditional DEA mod-

els to measure green innovation efficiency in China’s manufacturing industry. However, the

traditional DEA model does not account for the impact of undesirable output on green inno-

vation efficiency, and as a result, comparison is difficult when the number of effective deci-

sion-making units is large. Some scholars tend to use the Super-SBM model to calculate green

innovation efficiency, as the results obtained with this model are comparable. For example,

Long et al. [20] and Li et al. [21] used the Super-SBM model to measure the green innovation
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efficiency of each province in China, and Tang et al. [22] used the Super-SBM model to calcu-

late the green innovation index of 496 A-share industrial enterprises in China.

After analyzing green innovation efficiency, most scholars, such as Zhang [15] and Yi [23],

have carried out empirical analysis on the factors affecting the efficiency of green innovation.

A few scholars have also studied the spatial agglomeration effect of green innovation efficiency.

For example, Teng et al. [24] used spatial autocorrelation to analyze the spatial effect of green

innovation efficiency in China, and Xu et al. [25] analyzed the space-time effect of inter-pro-

vincial green innovation efficiency in the Yangtze River Economic Belt by using spatial

autocorrelation.

In summary, the existing research on green innovation efficiency mainly has the following

gaps: (1) Most scholars have adopted the SBM-DEA model to measure green innovation effi-

ciency. However, the maximum static efficiency measured by this model is 1, which does not

accurately reflect the actual efficiency value of effective decision-making units. Moreover,

when multiple effective decision-making units are included, the decision-making units cannot

be compared effectively. A small number of scholars used Super-SBM to analyze the efficiency

of green innovation, but they did not consider undesired outputs of a social nature. (2) Previ-

ous studies on spatial correlation were conducted in provincial regions, but the development

of different cities in the same province may vary greatly. Therefore, the evaluation of green

innovation efficiency in provincial regions cannot accurately and effectively reflect the devel-

opment and efficiency of green innovation. (3) After evaluating green innovation efficiency,

existing studies mostly use econometric models to analyze the factors that affect efficiency, and

do not consider the suitability of the models to the economic development capabilities and

resource utilization levels, or explore the constraints placed by high efficiency and low quantity

on high-quality development. As a result, the general belief is that the better the economic

development, the higher is the efficiency of green innovation. In order to fix these gaps, this

paper firstly incorporated indexes of a social nature into the traditional index system, which

only includes the economic and environmental index, to construct a more comprehensive

evaluation index system. Next, in order to better distinguish the level of green innovation

development in different cities within the same province, this paper uses the Super-SBM

model to measure green innovation efficiency at the city level. Finally, this paper considers

high-tech industries development as a contribution of green innovation at the economic level,

and accordingly, constructs a coupling coordination degree model of green innovation effi-

ciency and high-tech industries development to study the synergetic relationship between

green innovation efficiency and economic development.

The main contributions of this paper are as follows. First, cities are used as research objects

to explore green innovation efficiency from a more microscopic perspective, as a result of

which accurate suggestions can be provided with regard to the development of green innova-

tion in different cities. Second, the social nature of undesirable outputs is incorporated into

the Super-SBM model in order to enrich the existing research index system. Third, the degree

of interaction and influence between green innovation efficiency and economic development

is quantitatively analyzed to incorporate the synergistic effect into the research framework and

enrich the research perspective. Fourth, the analytical framework and methods used in this

paper are universal in terms of index selection and research methods; therefore, the analytical

framework used here would be relevant to research on green innovation in other countries

too.

The rest of this paper is structured as follows: Section 2 introduces the study area and data.

Section 3 illustrates the methods applied and construction of the models. Section 4 presents

the results derived from the different models. Section 5 discusses the results and limitations.

Section 6 presents the conclusions and offers recommendations.
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Study area and data

Study area

The Yangtze River Economic Belt spans 11 provinces and municipalities across the east, middle,

and west of China, and accounts for 45% of the country’s total economic output while covering

21% of the country’s land. It is not only a regional economic center for China’s new round of

opening up and transformation, but also an inland river economic belt with global influence

[26]. However the development of the regional economy has been accompanied by a series of

environmental problems in the past. In 2018, the average R&D intensity of cities along the

Yangtze River Economic Belt was only 90% of the national average, but its energy consumption

and pollution intensity were more than double the national average [27]. This imbalance

between controlling environmental pollution and achieving high-quality development has

become a key factor restricting regional economic transformation. In 2016, China proposed

that by 2020, in the Yangtze River Economic Belt, the ecological environment should be signifi-

cantly improved, significant progress should be made in innovation-driven development, and

the quality and efficiency of economic development should be significantly improved [28].

Another proposition was for the R&D investment intensity to increase to more than 2.5%, so

that this region becomes a strategic support belt in leading national economic and social devel-

opment [29]. In 2018, the state pointed out that it is necessary to give fully utilize the benefits of

the geographical advantages of the Yangtze River Economic Belt, which straddles the eastern

and western parts of the country, in order to strengthen scientific and technological innovation

and promote high-quality development of this region [30]. Therefore, this article includes 38

major cities along the Yangtze River that are involved in the Development Plan Outline of the

Yangtze River Economic Belt, as well as the provincial capital cities of the provinces along the

Yangtze River. Finally, 42 cities were selected as the research object, and according to their loca-

tion with respect to the river, they were divided into upstream, midstream, and downstream cit-

ies (Table 1) [31]. The research area is shown in Fig 1.

Data collection

In space, 42 major cities in the Yangtze River Economic Belt were selected as the research

object (Table 1). The Yangtze River Economic Belt came under the national limelight as a

region of strategic importance in 2013. Therefore, in order to accurately measure the impact of

strategic improvement in green innovation efficiency, the years from 2013 to 2017 are consid-

ered as the evaluation years. Based on the authoritativeness, availability, and continuity of the

data, data on R&D personnel full-time equivalent, internal R&D expenditures, number of

unauthorized patents, and number of invention patents granted were obtained from China

City Statistical Yearbook (2014–2018) [26]; data on fiscal expenditure on science and technol-

ogy, revenue from new product sales, “green governance” inflation pressure, and “transforma-

tive” unemployment rate were obtained from China Statistical Yearbook and China City

Table 1. Cities included as decision-making units.

River

section

City

Upstream Lijiang, Kunming, Liupanshui, Guiyang, Zunyi, Chengdu, Yibin, Luzhou, Chongqing

Midstream Yichang, Jingzhou, Changde, Changsha, Yueyang, Xianning, Wuhan, Ezhou, Huanggang, Huangshi,

Nanchang, Jiujiang

Downstream Anqing, Chizhou, Tongling, Hefei, Wuhu, Maanshan, Nanjing, Zhenjiang, Yangzhou, Taizhou,

Changzhou, Wuxi, Nantong, Hangzhou, Shaoxing, Huzhou, Jiaxing, Suzhou, Shanghai, Ningbo,

Zhoushan

https://doi.org/10.1371/journal.pone.0243459.t001
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Statistical Yearbook (2014–2018) [32]; data on per unit GDP energy consumption were from

China Energy Statistics Yearbook (2014–2018) [33]. The comprehensive environmental treat-

ment rate was calculated using the entropy method based on three indexes, namely, excellent

air quality rate, comprehensive utilization rate of fixed wastes, and centralized treatment rate

of waste water, which were all derived from China Environmental Statistics Yearbook (2014–

2018) [33]. Interpolation was used to make up for missing data from any of the years. Descrip-

tive statistics and data sources of each variable are shown in Table 2.

Methods

In this paper, in order to get a clear grasp of the development level of green innovation in the

Yangtze River Economic Belt, the Super-SBM model was used to measure the static efficiency

Fig 1. Research cities and locations for assessing green innovation efficiency.

https://doi.org/10.1371/journal.pone.0243459.g001

Table 2. Descriptive statistics and data sources.

Variable Mean Std.Dev. Min Max Data sources

R&D personnel full-time equivalent 26550.14 36376.01 872 184000 China City Statistical Yearbook

Internal R&D expenditures 1060000 1700000 15771 12100000 China City Statistical Yearbook

Fiscal expenditure on science and technology 271000 499000 12130 3900000 China Statistical Yearbook

Per unit GDP energy consumption 0.567 0.37 0.116 1.729 China Energy Statistics Yearbook

Number of unauthorized patents 12162.26 14443.16 114 72868 China City Statistical Yearbook

“Green governance” inflation pressure 0.019 0.006 0.002 0.039 China Statistical Yearbook

“Transformative” unemployment rate 0.028 0.008 0.013 0.045 China Statistical Yearbook

Number of invention patents granted 2204.538 3417.924 10 20681 China City Statistical Yearbook

Revenue from new product sales 14300000 18500000 57821 101000000 China Statistical Yearbook

Comprehensive environmental treatment rate 0.819 0.071 0.507 0.958 China Environmental Statistics Yearbook

https://doi.org/10.1371/journal.pone.0243459.t002
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of green innovation. Second, the Malmquist-Luenberger index was used to analyze the

dynamic efficiency of green innovation in the Yangtze River Economic Belt and its driving fac-

tors from 2013 to 2017. Following this, spatial autocorrelation analysis was used to analyze the

spatial distribution of green innovation efficiency. Finally, the coupling coordination degree

model was used to quantitatively analyze the interaction and degree of influence between

green innovation efficiency and economic development.

Construction of an evaluation index system

Based on actual data on the development of the Yangtze River Economic Belt from the techno-

logical, ecological, and environmental perspectives and the green innovation efficiency evalua-

tion index system constructed in the previous literature, this paper incorporates social

indicators into the evaluation system and constructs an index system to measure green innova-

tion efficiency from the economy, ecology, and society perspectives. The index system is

shown in Table 3.

With regard to the input indicators, according to the Cobb-Douglas production function

[40], research on green innovation efficiency generally uses three kinds of input: capital,

human and resources [41]. The existing literature mostly considers R&D personnel full-time

equivalent [14], and per unit GDP energy consumption [15] as human input and resources

input, respectively, and internal R&D expenditures as capital input [42]. Government support

is an important factor that affects the innovation ability of cities [34]. Therefore, this article

adds fiscal expenditure on science and technology as innovation capital input.

With regard to desirable output indicators, green innovation can promote economic, tech-

nological, and environmental development, so most scholars choose the number of invention

patents granted [9] and revenue from new product sales [35] as the output of technological

benefits and economic benefits. Green innovation is a comprehensive consideration of energy

conservation and a measure to improve the innovative development of the ecological environ-

ment [36]. Here, we used the comprehensive environmental governance rate to characterize

environmental benefits. The cities in the Yangtze River Economic Belt focus on water, atmo-

sphere, and fixed waste as aspects of comprehensive environmental governance. In this

respect, the excellent air quality rate, the comprehensive utilization rate of fixed waste, and the

centralized treatment rate of wastewater are used to determine the comprehensive environ-

mental treatment rate [43].

With regard to undesirable output, not all patents filed are granted, and the number of

unauthorized patents related to green innovation cannot bring actual benefits [37] and may

lead to a waste of resources. This may be an indicator of undesirable output from the

Table 3. Evaluation index system for green innovation efficiency.

Indicator type First-level indicators Secondary indicators References

Input indicators Human input R&D personnel full-time equivalent Chen [14]

Resources input Per unit GDP energy consumption Liu [17]

Capital inputs Fiscal expenditure on science and technology Zhang [15]; Clausen [34]

Internal R&D expenditures Sueyoshi [16]

Output indicators Technological benefit Number of invention patents granted Liu [17]; Cuerva [35]

Economic benefit Revenue from new product sales Liu [9]; Cuerva [35]

Environmental benefit Comprehensive environmental treatment rate Du [18]; Song [36]

Undesirable outputs Number of unauthorized patents Feng [19]; Carayannis [37]

“Green governance” inflation pressure LYU [38]

“Transformative” unemployment rate Reiff [39]

https://doi.org/10.1371/journal.pone.0243459.t003

PLOS ONE Spatial analysis, coupling coordination, and efficiency evaluation of green innovation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243459 December 9, 2020 6 / 29

https://doi.org/10.1371/journal.pone.0243459.t003
https://doi.org/10.1371/journal.pone.0243459


technology aspect. The input of green innovation forces the urban industry to transform from

labor-intensive to technology-intensive and capital-intensive industries. This will lead to the

creation of a large number of new jobs, but the transition from low-end industries to high-end

industries will be accompanied by structural unemployment and “transitional” unemploy-

ment, which is one of the socially undesirable outputs [39]. At the same time, increasing the

city’s investment in green innovation will cause large-scale agglomeration of production fac-

tors, subject to the constraints of the external environment. Accordingly, urban price levels

will continue to rise and even cause inflation; such “green governance” inflation stress is also

considered as an undesirable output [38].

Super-SBM model

Among various methods used for objective weighting, factor analysis and principal component

analysis are relatively simple. SFA is a parametric analysis method that is very effective in

determining the efficiency when there are several input indicators and only one output index

[13]. However, the characteristics of the input and output indicators need to be set in advance

according to the specific function form. In contrast, DEA is a nonparametric analysis method

that can solve the problem of multiple input and multiple output indicators without the pro-

duction function being set [19]. As the efficiency of green innovation is dependent on multiple

input and multiple output factors, we chose DEA for evaluating green innovation efficiency.

The DEA model was proposed by Charnes et al. for the evaluation of relative efficiency of mul-

tiple decision-making units with multiple inputs and multiple outputs [44]. Since the tradi-

tional DEA model does not consider the correlation between the input-output indicators, it is

not suitable for output indicators with negative externalities such as environmental pollution.

Thus, Tone [45] incorporated the undesirable output into the DEA model and proposed a

non-radial SBM-DEA model based on measured relaxation variables. Although the SBM-DEA

model can avoid errors caused by relaxation variables and angle selection, the maximum effi-

ciency value of this model is 1. However, if multiple cities become optimal decision-making

units, effective comparison between cities cannot be carried out. In order to fix the shortcom-

ings of the SBM model, this paper uses the Super-SBM model that considers slack variables

[46], which allow the green innovation efficiency of city k to be higher than 1. The Super-SBM

model can be used to effectively compare decision-making units with an efficiency value of

more than 1, as shown below.

r� ¼ min
1

m

Xm

i¼1

�xi
xi0

1

s1þs2

Xs1

r¼1

�ygr
ygr0
þ
Xs2

r¼1

�ybr
ybr0

� �

s:t:

�x �
Xn

j¼1;6¼0
ljxij

�yg �
Xn

j¼1;6¼0
ljy

g
rj

�yb �
Xn

j¼1;6¼0
ljybrj

�x � x0; �yg � yg0; �yb � yb
0
; �yg � 0; l � 0

ð1Þ

8
>>>>>>>><

>>>>>>>>:

In the equation, ρ� is the value of green innovation efficiency; n is the number of samples; x, yg,
and yb represent input, desirable output and undesirable output, respectively;m indicates the

number of input indicators; s1 indicates the desirable output indicators; s2 indicates undesir-

able output indicators; and λj is the weight vector. When ρ� � 1, the decision-making unit is

relatively effective; when ρ� < 1, the decision-making unit is relatively invalid.
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Malmquist-Luenberger index

After determining the static green innovation efficiency through the Super-SBM model, this

paper uses the Malmquist-Luenberger index (ML index), which includes undesirable outputs

to study the dynamic changes in green innovation efficiency and its driving factors [47]. The

direction vector is gt = yt − zt and the ML index from period t to t + 1 is as follows.

MLtþ1

t ¼
1þ D

!

0
tðxt; yt; zt; yt; � ztÞ

1þ D
!

0
tðxtþ1; ytþ1; ztþ1; ytþ1; � ztþ1Þ

�
1þ D

!

0
t þ 1ðxt; yt; zt; yt; � ztÞ

1þ D
!

0
t þ 1ðxtþ1; ytþ1; ztþ1; ytþ1; � ztþ1Þ

" #1
2

ð2Þ

x, y, and z represent the input, expected output, and undesirable output, respectively, of the

decision-making unit; D
!

0
t xt; yt; zt; yt; � ztð Þ is the direct distance function of the t period of

the decision-making unit; D
!

0
t þ 1 xtþ1; ytþ1; ztþ1; ytþ1; � ztþ1ð Þ is the direct distance function of

the t + 1 period; andMLtþ1
t is the total factor productivity of the change index from period t to

t + 1. WhenMLtþ1
t > 1, it means that the green innovation total factor productivity has

improved. WhenMLtþ1
t < 1, it indicates that the green innovation total factor productivity has

deteriorated. WhenMLtþ1
t ¼ 1, it indicates that the green innovation total factor productivity

has remained unchanged. The ML index can be decomposed into technology efficiency change

(EFFCH) and technical change (TECH), which can be expressed as follows.

MLtþ1

t ¼ EFFCH
tþ1

t � TECH
tþ1

t ð3Þ

TECHtþ1

t ¼
1þ D

!

0
t þ 1ðxt; yt; zt; yt; � ztÞ

1þ D
!

0
tðxtþ1; ytþ1; ztþ1; ytþ1; � ztþ1Þ

�
1þ D

!

0
t þ 1ðxt; yt; zt; yt; � ztÞ

1þ D
!

0
tðxtþ1; ytþ1; ztþ1; ytþ1; � ztþ1Þ

" #1
2

ð4Þ

EFFCHtþ1

t ¼
1þ D

!

0
tðxt; yt; zt; yt; � ztÞ

1þ D
!

0
tðxtþ1; ytþ1; ztþ1; ytþ1; � ztþ1Þ

ð5Þ

In the equation, TECHtþ1
t and EFFCHtþ1

t represent the change index of technical change and

the technology efficiency change, respectively, from period t to t + 1. When TECHtþ1
t and

EFFCHtþ1
t are greater than 1, it indicates improvement in technical change and technology

efficiency change. When TECHtþ1
t and EFFCHtþ1

t are less than 1, it indicates a reduction in

technical change and technology efficiency change. When TECHtþ1
t and EFFCHtþ1

t are equal to

1, it indicates that technical change and technology efficiency change are unchanged.

Spatial autocorrelation analysis

Spatial autocorrelation analysis is used to determine potential interdependencies between the

observed data of some variables within the same distribution area, and includes global spatial

autocorrelation and local spatial autocorrelation [48]. In this paper, global spatial autocorrela-

tion and local spatial autocorrelation analysis are used to explore the spatial correlation and

spatial variation of green innovation efficiency in the Yangtze River Economic Belt.

Spatial weight matrix. Before spatial autocorrelation analysis is performed, the spatial

weight matrix of the study area must be set. This paper constructs a comprehensive economic-

geographic distance weight matrix [49], as shown below.

Wij ¼

1

dij � j�Y i �
�Y jj
ði 6¼ jÞ

0ði ¼ jÞ
ð6Þ

8
><

>:
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dij is the spatial distance between the research objects i and j, and �Y i and �Y j are the average

GDP of research objects i and j, respectively, during the research period.

Global space autocorrelation. Global spatial autocorrelation represents the overall spatial

correlation of or spatial differences within the study area. This paper uses the global Moran’s I

index to measure the overall spatial correlation of the green innovation efficiency of 42 cities

in the Yangtze River Economic Belt. The equation is as follows.

I ¼

Xn

i¼1

Xn

j¼1
WijðXi � �XÞðXj � �XÞ

S2
Xn

i¼1

Xn

j¼1
Wij

ð7Þ

n is the number of study areas;Wij is the spatial weight; xi and xj are the green innovation effi-

ciency values of cities i and j, respectively; �x ¼ 1

n

Pn
i¼1
xi is the mean value of the green innova-

tion efficiency of the study city; S2 is the observed value variance; and I is the global Moran’s I

index. The value of the index ranges from -1 to 1. The closer the I value is to 1, the stronger the

spatial agglomeration of the research object. The closer the I value is to -1, the stronger the spa-

tial difference. I values close to 0 indicate that the research object does not have spatial correla-

tion. The significance of Moran’s I index is determined using the Z statistic, the formula for

which is as follows.

Z ¼
Moran0sI � EðMoran0sIÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðMoran0sIÞ

p ð8Þ

In the equation, E(Moran’s I) and VAR(Moran’s I) are the expected value and variance, respec-

tively, of Moran’s I index. When the Z statistic is greater than 1.96, it indicates that Moran’s I

index has significant spatial autocorrelation.

Local spatial autocorrelation. Local spatial autocorrelation indicates the spatial correla-

tion or spatial heterogeneity of a certain attribute of an individual region in relation to its sur-

rounding individual units. Usually, the local indices of spatial association (LISA) index is used

to measure the degree of correlation and significance [50]. The common LISA analysis tools

include local Moran’s I and Moran scatter plots. The equation is as follows.

Ii ¼
ðXi � �XÞ

S2

X

i6¼j
WijðXj � �XÞ ð9Þ

When Ii is greater than 0, it indicates that the observed values of the research individuals are

spatially high or low or concentrated; that is, a spatial agglomeration phenomenon is observed.

When Ii is less than 0, it indicates that the observed values of the research individuals are spa-

tially high or low or are highly or lowly concentrated, that is indicative of spatial heterogeneity.

When Ii is equal to 0, it indicates that there is no spatial correlation between the study subjects.

The Moran scatter plot is an intuitive display of the local Moran’s I index of each research

object in the quadrant graph. The horizontal and vertical axes of the quadrant graph represent

the observations and spatial lag terms of the research object, respectively. The first and third

quadrants represent positive spatial correlation: the former represents high-valued regions sur-

rounded by high-valued regions (HH), and the latter represents low-valued regions sur-

rounded by low-valued regions (LL). The second and fourth quadrants represent negative

spatial correlations: the former represents low-value regions surrounded by high-value regions

(LH), and the latter represents high-value regions are surrounded by low-value regions (HL).
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Coupling coordination degree

The coupling degree indicates the physical degree of interdependence between two or more

entities [51], When applied to the field of social economics, it reflects the interaction and close-

ness between two or more social economic systems [52]. The coupling coordination degree

can also be used as a measure of the degree of benign coupling [53]. The major cities in the

Yangtze River Economic Belt have vigorously promoted the development of green innovation.

However, with regard to the interaction between green innovation efficiency and economic

development, it is not clear whether a higher level of urban economic development indicates

higher efficiency of green innovation or whether improvement in green innovation efficiency

promotes economic development. Few scholars have tried to explain or study these relation-

ships. Therefore, this study uses the coupling coordination degree model to quantitatively ana-

lyze the interaction and degree of influence between green innovation efficiency and

economic development. Firstly, in order to eliminate data dimensions and avoid the zero value

of standardized data, an intercept term is added in the standardization [54,55], ass shown

below.

For positive indicators:

Xijt ¼
xijt � minxjt

max xjt � minxjt
� 0:9þ 0:1 ð10Þ

For negative indicators:

Xijt ¼
max xjt � xijt

max xjt � minxjt
� 0:9þ 0:1 ð11Þ

Where xijt indicates the original value of the i − th city for the j − th index in t;max xjt andmin
xjt indicate the maximum and minimum values, respectively, of the j − th index in t; Xijt is the

value after the variable is standardized.

Next, a coupling coordination model was constructed to examine the orderliness and over-

all coordination of the interaction between green innovation efficiency and the development

level of high-tech industries in 42 cities in the Yangtze River Economic Belt. The model is

shown below.

C ¼ 2
G1 � E1

ðG1 þ E1Þ
2

( )1
2

ð12Þ

T ¼ aG1 þ bE1 ð13Þ

D ¼ ðC � TÞ
1
2 ð14Þ

In Eqs (12) to (14), G1 and E1 represent green innovation efficiency and the level of high-tech

industries development, respectively; C represents the coupling degree; T represents the com-

prehensive reconciliation index of green innovation efficiency and the level of high-tech indus-

tries development; D represents the coordination degree; α, and β are the coefficients to be

determined; and α + β = 1 mainly indicates the importance of each system [56]. In this paper,

it is presumed that α = β = 0.5 [57]. According to the coupling coordination degree D and the

measured values of G1 and E1, the cities can be classified as described by Cui [58] and Wu [59]

(Table 4).
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Results

Static green innovation efficiency

The green innovation efficiency values of 42 major cities in the Yangtze River Economic Belt

from 2013 to 2017 were calculated using MaxDEA 8 Pro, as shown in Table 4. From a global

perspective, the average green innovation efficiency of the Yangtze River Economic Belt from

2013 to 2017 is 1.0694, and the overall input and output are in a valid stage. This indicates that

the green innovation efficiency of the Yangtze River Economic Belt has been increasing on a

yearly basis since 2013. From the perspective of time, the green innovation efficiency of major

cities in the Yangtze River Economic Belt has shown an increasing trend: from 2013 to 2015,

the green innovation efficiency increased gradually from 1.0446 to 1.0962. In 2016, the green

innovation efficiency was significantly reduced to 1.0406, which is the lowest value in the past

five years. In 2017, green innovation efficiency in the Yangtze River Economic Belt increased

significantly to 1.0987.

From a spatial perspective (Fig 2), there are significant spatial differences in the green inno-

vation efficiency of the Yangtze River Economic Belt. The downstream regions have the high-

est average green innovation efficiency. Suzhou, Shanghai, Zhoushan, and Nanjing have high

efficiency values, and Suzhou ranks first among all the cities with an average efficiency over

the past five years of 1.3731. However, Huzhou, Nantong, Hefei, and Maanshan have values

below 1. They have large-scale R&D input, but the output efficiency is low and is accompanied

with high levels of pollutant emissions. The upstream cities rank second, and the efficiency val-

ues of Lijiang, Kunming, and Chengdu place them among the top ten of all cities. The average

efficiency of Liupanshui in the recent five years is only 0.9545, and it ranks last among the

upstream cities. Due to limitations in economic development and industrial structure, the

midstream cities are always in the last place. Among these cities, the average efficiency of

Changsha in the past five years is 1.2418, and it ranks fourth among all the cities. On the other

hand, Yichang is placed last with an efficiency of 0.8678.

ArcGIS 10.2 was employed to classify the green innovation efficiency values of cities in the

Yangtze River Economic Belt from 2013 to 2017 (Fig 3). As shown in Table 5, since 2013, the

green innovation efficiency value of the Yangtze River Economic Belt has remained high, but

Table 4. Classification of coupling coordination degree.

Section Classification Calculation results Characteristic

0� D < 0.2 No coordination G1 –E1 > 0.1 High-tech industries development is blocked

E1 –G1 > 0.1 Green innovation efficiency is blocked

0� |G1−E1|� 0.1 No coordination

0.2� D < 0.4 Low coordination G1 –E1 > 0.1 High-tech industries development is blocked

E1 –G1 > 0.1 Green innovation efficiency is blocked

0� |G1−E1|� 0.1 Low coordination

0.4� D < 0.6 Basic coordination G1 –E1 > 0.1 High-tech industries development is blocked

E1 –G1 > 0.1 Green innovation efficiency is blocked

0� |G1−E1|� 0.1 Basic coordination

0.6� D < 0.8 Good coordination G1 –E1 > 0.1 High-tech industries development is blocked

E1 –G1 > 0.1 Green innovation efficiency is blocked

0� |G1−E1|� 0.1 Good coordination

0.8� D < 1 Excellent coordination G1 –E1 > 0.1 High-tech industries development is blocked

E1 –G1 > 0.1 Green innovation efficiency is blocked

0� |G1−E1|� 0.1 Excellent coordination

https://doi.org/10.1371/journal.pone.0243459.t004
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the spatial distribution is uneven. That is, low-value cities and high-value cities are distributed

in various regions of the Yangtze River Economic Belt.

Dynamic green innovation efficiency

In order to further analyze the changes in green innovation efficiency and to identify the rea-

sons for the change, the ML index of green innovation efficiency was calculated with the panel

data of 42 cities along the Yangtze River from 2013 to 2017. The data include the total factor

productivity index (Tfpch) by city (Fig 4) and by year (Table 6 and Fig 5).

As shown in Fig 4, the average total factor productivity of green innovation in the 42 major

cities in the Yangtze River Economic Belt from 2013 to 2017 was 1.011; with an average annual

growth rate of 1.1%, the overall green innovation total factor productivity was on the rise. The

total factor productivity of green innovation was lower than 1 in 42.86% of the cities, among

which Huzhou had the lowest total factor productivity (0.868), with an average annual decline

of 13.2%. Suzhou and Nanchang also showed a decline in total factor productivity. Among all

the cities, Shanghai ranked first with an annual growth rate of 14.3%, and Nanjing and Wuhan

had an annual growth rate of over 5%.

According to Eq (3), the ML index is decomposed into technology efficiency change (Effch)

and technical change (Tech). From the results of the decomposition, the average technology

efficiency change of the 42 cities in 2013–2017 was 0.983. Shaoxing ranked first with a change

Fig 2. Changing trends in green innovation efficiency in each section of the Yangtze River Economic Belt (2013–

2017).

https://doi.org/10.1371/journal.pone.0243459.g002
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of 1.045, and only Chengdu, Yangzhou, Yichang, Zunyi, and Maanshan had change values

lower than 1. The average technical change was 1.029. Shanghai ranked first with an average

annual growth rate of 17.3%, and Nanjing and Ningbo were among the top five. In general, the

improvement of technical change has promoted increase in factor productivity.

As illustrated in Table 6, the average values of total factor productivity and technical change

are more than 1. This indicates that overall efficiency and technical change showed an increase

from 2013 to 2017. In particular, it appears that technical change, with an average annual growth

rate of 2.9%, has become the main driving force for the continuous growth of total factor produc-

tivity. The average technology efficiency change is less than 1, which indicates that technology

efficiency change showed a downward trend over the five years. As shown in Fig 4, technology

efficiency change and technical change show a trend that is indicative of reverse development.

Fig 3. Spatial-temporal differentiation of green innovation efficiency in the Yangtze River Economic Belt (2013–2017).

https://doi.org/10.1371/journal.pone.0243459.g003
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Table 5. Green innovation efficiency of different cities in the Yangtze River Economic Belt.

City 2013 2014 2015 2016 2017 Mean Rank

Lijiang 1.4396 1.2170 1.3298 1.2853 1.2873 1.3118 3

Kunming 1.2836 1.3108 1.0744 0.9709 1.1419 1.1563 8

Liupanshui 0.8297 0.9889 1.0361 0.9025 1.0154 0.9545 39

Guiyang 0.7432 0.9080 1.1193 1.1171 1.0585 0.9892 36

Zunyi 1.0112 1.0091 1.0344 0.9402 1.0518 1.0093 32

Chengdu 1.1185 1.2145 1.2163 1.2390 1.2261 1.2029 6

Yibin 1.0985 1.0289 1.0490 1.0385 1.1070 1.0644 18

Luzhou 1.0801 1.0089 0.9539 0.9730 1.0391 1.0110 31

Chongqing 1.0589 1.0698 1.0134 0.9632 1.0988 1.0408 24

Upstream 1.0737 1.0840 1.0919 1.0477 1.1140 1.0823

Yichang 0.7693 0.8147 0.9384 0.8167 0.9999 0.8678 42

Jingzhou 0.8269 0.8319 1.0499 0.8496 0.9173 0.8951 40

Changde 1.0675 1.0326 1.1108 1.0859 1.0168 1.0627 19

Changsha 1.2854 1.2619 1.2400 1.1509 1.2709 1.2418 4

Yueyang 1.0989 1.0936 1.0941 0.9354 1.0301 1.0504 21

Xianning 1.0796 1.0622 1.0694 1.0110 1.1042 1.0653 17

Wuhan 1.0763 1.1127 1.1689 1.0117 1.0985 1.0936 13

Ezhou 1.0927 1.0890 1.0502 1.0916 1.0816 1.0810 14

Huanggang 0.6476 0.8082 0.9350 0.9829 1.0339 0.8815 41

Huangshi 1.0422 1.0662 1.0052 0.9521 1.0094 1.0150 29

Nanchang 1.0260 1.0105 1.0249 1.0267 1.0189 1.0214 27

Jiujiang 1.0364 1.0592 1.0676 0.9536 0.9932 1.0220 23

Midstream 1.0041 1.0202 1.0629 0.9890 1.0479 1.0248

Anqing 1.1105 1.1022 1.1827 1.1675 1.0992 1.1324 9

Chizhou 1.0282 1.0150 1.0464 0.9280 1.0003 1.0036 33

Tongling 1.0190 1.0610 1.0997 0.9555 1.0234 1.0317 26

Hefei 0.8329 0.9950 1.0419 0.8157 1.1009 0.9573 38

Wuhu 1.0403 1.0802 1.1001 1.0689 1.0825 1.0744 15

Maanshan 0.8975 0.9976 1.0756 0.9501 1.0623 0.9966 34

Nanjing 1.0990 1.1418 1.1828 1.2261 1.2126 1.1725 7

Zhenjiang 1.0556 1.1186 1.1305 1.1271 1.1148 1.1093 11

Yangzhou 0.9141 0.9503 0.9964 1.0085 1.1999 1.0139 30

Taizhou 1.0321 1.0349 1.0333 0.9882 1.1089 1.0395 25

Changzhou 1.0044 1.0122 1.0117 1.0091 1.0494 1.0174 28

Wuxi 1.0836 1.0276 1.0411 1.0361 1.1522 1.0681 16

Nantong 0.9998 1.0090 1.0208 0.8513 1.0607 0.9883 37

Hangzhou 1.1136 1.1748 1.1341 1.0414 1.0393 1.1006 12

Shaoxing 1.0177 1.0473 1.1214 1.0902 1.0260 1.0605 20

Huzhou 0.8070 0.8813 1.0957 1.0883 1.0984 0.9941 35

Jiaxing 1.1207 1.1996 1.1184 1.0321 1.0987 1.1139 10

Suzhou 1.3617 1.2749 1.3537 1.4888 1.3867 1.3731 1

Shanghai 1.4127 1.5085 1.2187 1.3365 1.3199 1.3592 2

Ningbo 1.0504 1.0581 1.0575 1.0389 1.0175 1.0445 22

Zhoushan 1.1592 1.1224 1.3973 1.1577 1.1910 1.2055 5

Downstream 1.0552 1.0863 1.1171 1.0669 1.1164 1.0884

Mean 1.0446 1.0669 1.0962 1.0406 1.0987 1.0694

https://doi.org/10.1371/journal.pone.0243459.t005
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Spatial correlation analysis

Global spatial correlation analysis. This paper uses GEODA to examine the spatial cor-

relation of green innovation efficiency in 42 cities of the Yangtze River Economic Belt from

2013 to 2017. The results are shown in Table 7. According to this table, the overall Moran’s I

index of green innovation efficiency of the Yangtze River Economic Belt from 2013 to 2017 is

positive and passes the significance test at the 10% level. This indicates that the green innova-

tion efficiency of neighboring cities has a spatial agglomeration effect.

Local spatial correlation analysis. Global spatial correlation analysis was employed to

examine the overall spatial agglomeration effect of green innovation efficiency in the 42 cities

of the Yangtze River Economic Belt. In order to further discriminant cities surrounding the

Fig 4. ML index and decomposition of green innovation efficiency in the Yangtze River Economic Belt (2013–

2017).

https://doi.org/10.1371/journal.pone.0243459.g004

Table 6. Annual ML index and decomposition of green innovation efficiency in the Yangtze River Economic Belt.

Year Effch Tech Tfpch

2013–2014 0.978 1.094 1.069

2014–2015 0.992 0.995 0.987

2015–2016 0.988 0.971 0.959

2016–2017 0.974 1.054 1.027

Mean 0.983 1.029 1.011

https://doi.org/10.1371/journal.pone.0243459.t006
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existence of spatial agglomeration phenomenon, this paper uses GEODA to calculate the

green innovation efficiency of local Moran scatter diagram in Yangtze River Economic Belt

from 2013 to 2017 (Fig 6), and the Moran scatter diagram of each quadrant changes the condi-

tion of a city are analyzed (Table 8).

As shown in Table 8, in 2013, a total of 9 cities exhibited “HH” agglomeration, including

Lijiang, Chengdu, Suzhou, and Shanghai. Further, 13 cities exhibited “HL” agglomeration,

including Chongqing, Wuhan, Changsha, Nanjing, and Hangzhou, which accounted for

30.95% of the total cities. Further, the number of “LH” agglomeration and “LL” agglomeration

cities was 8 and 11, respectively. In 2017, the number of “HH” agglomeration cities increased

to 11, and they accounted for 26.2% of the total number of cities. The number of “HL” agglom-

eration and “LH” agglomeration cities was 7 and 5, respectively, and the number of “LL”

agglomeration cities increased to 19 and included Wuhan and Hangzhou. From a spatial

Fig 5. Decomposition of green innovation efficiency in the Yangtze River Economic Belt based on a time-varying

trend.

https://doi.org/10.1371/journal.pone.0243459.g005

Table 7. Global autocorrelation analysis of green innovation efficiency in the Yangtze River Economic Belt

(2013–2017).

Year Moran’s I P-value

2013 0.620 0.003

2014 0.712 0.001

2015 0.204 0.020

2016 0.134 0.060

2017 0.378 0.042

https://doi.org/10.1371/journal.pone.0243459.t007
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perspective, “LL” agglomeration cities are mainly in the middle reaches of the Yangtze River,

for example, Huangshi, Jingzhou, and Yichang, and “HH” agglomeration cities are mainly in

the lower reaches of the Yangtze River, for example, Shanghai, Suzhou, and Ningbo.

Coupling coordination degree analysis

After exploring green innovation efficiency and its spatial effect in the Yangtze River Eco-

nomic Belt, the next step was to analyze the synergetic effect of green innovation efficiency

Fig 6. Moran scatter plot of green innovation efficiency in the Yangtze River Economic Belt (2013, 2017).

https://doi.org/10.1371/journal.pone.0243459.g006

PLOS ONE Spatial analysis, coupling coordination, and efficiency evaluation of green innovation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243459 December 9, 2020 17 / 29

https://doi.org/10.1371/journal.pone.0243459.g006
https://doi.org/10.1371/journal.pone.0243459


and economic development with the coupling coordination degree model. Accordingly, the

coupling coordination degree between green innovation efficiency and the development of

high-tech industries in the Yangtze River Economic Belt from 2013 to 2017 was calculated (Fig

7). The mean value of coupling degree C fluctuated between 0.85 and 0.95, and the mean value

of coupling coordination degree D was generally between 0.5 and 0.6 (Table 9). This means

that the area is in the basic coordination stage, and there is still scope for future development.

According to the standard classification of coupling coordination degree (Table 4), Arcgis10.2

was used to conduct spatial classification of the coupling coordination degree between green

innovation efficiency and high-tech industry development (Fig 8). As seen from the figure, from

2013 to 2017, there were no uncoordinated cities along the Yangtze River. In 2013, the average

coupling coordination degree of cities in the Yangtze River Economic Belt was 0.556. The cou-

pling coordination degree for Suzhou was 0.977, which means that it was the only city that

achieved excellent coordination. Ten other cities showed good coordination, including Chengdu,

Chongqing, Changsha, Wuhan, Hangzhou, and Shanghai, and only Huanggang and Guiyang

showed low coordination. By 2017, the average coupling coordination degree of all the cities

increased to 0.570, and Changsha, Zhenjiang, and Suzhou showed excellent coordination.

Twelve other cities, including Kunming, Chengdu, Chongqing, Wuhan, Hefei, Nanjing, Hang-

zhou, Shanghai, and Ningbo, achieved good coordination. The coupling coordination degree of

Jingzhou was 0.343, and this makes it the only city with low coordination.

Discussion

In recent years, China has strongly supported the promotion of high-quality development in

the Yangtze River Economic Belt. Therefore, it is important for the government to formulate

development policies to comprehensively explore the current situation with regard to green

innovation and efficiency development in various cities.

Changes in green innovation efficiency and its driving factors

China focused on improving the development of the Yangtze River Economic Belt to meet the

national strategic level and announced a series of important policies to promote green innovation

in the region from 2012, such as opinions on the full implementation of the river system [60], the

Table 8. Results of the Moran scatter chart (2013, 2017).

City 2013 2017 City 2013 2017 City 2013 2017

Lijiang HH HH Xianning HH HL Zhenjiang HL HH

Kunming HL HH Wuhan HL LL Yangzhou LH HH

Liupanshui LH LL Ezhou HL LL Taizhou LL HL

Guiyang LL LL Huanggang LH LL Changzhou LH LH

Zunyi LL LL Huangshi LL LL Wuxi HL HH

Chengdu HH HL Nanchang LH LL Nantong LH LH

Yibin HL HL Jiujiang LH LL Hangzhou HL LL

Luzhou HL LL Anqing HL HL Shaoxing LL LL

Chongqing HL HL Chizhou LL LL Huzhou LH LH

Yichang LL LL Tongling LL LL Jiaxing HH HH

Jingzhou LL LL Hefei LL HH Suzhou HH HH

Changde HL LL Wuhu LL LH Shanghai HH HH

Changsha HL HL Maanshan LL LL Ningbo HH LH

Yueyang HH LL Nanjing HL HH Zhoushan HH HH

https://doi.org/10.1371/journal.pone.0243459.t008
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plan for industrial transformation and upgrade driven by innovation in the Yangtze River Eco-

nomic Belt [61], and guiding opinions on improving the relevant policies of the sewage treatment

charging mechanism of the Yangtze River Economic Belt [62]. In keeping with these policy

changes, the static and dynamic green innovation efficiency results in this study show a trend

towards growth. As a result of the Yangtze River Economic Development Symposium, major cit-

ies along the Yangtze River adjusted their industrial structure on a large scale and reduced high-

polluting enterprises, and the green innovation efficiency declined from 2015 to 2016, as reported

by Liu [63] and Yi [23]. However, the measured green innovation efficiency in Liu’s study did not

consider differences in the input-output indicators or undesirable outputs. According to the pres-

ent results, with regard to the development of different cities, Suzhou and Shanghai show a high

level of economic strength and scientific research strength, and have achieved the transformation

and upgrade of high-pollution industries at an earlier stage. Green innovation efficiency has

always been in the top two. Although Lijiang, Kunming, Yibin, and other western cities show

weak innovation development, they value environmental protection and rank high in green inno-

vation efficiency. Additionally, Chongqing, Chengdu, Nanjing, and Wuhan have achieved effec-

tive levels of green innovation efficiency earlier due to their economic strength and scientific

research advantages. In Nantong and Huzhou, environmental protection was not considered in

Fig 7. Trends in coupling coordination degree.

https://doi.org/10.1371/journal.pone.0243459.g007
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the early pursuit of economic development, but this resulted in a low level of green innovation

efficiency in 2013. However, in light of the new round of domestic industrial transfer, these cities

quickly adjusted their industrial structure and improved their green innovation efficiency.

Among the cities at the bottom, in Yichang and Jingzhou, the chemical industries account for a

Table 9. Coupling coordination degree of green innovation efficiency and high-tech industries development in the Yangtze River Economic Belt (2013–2017).

Coupling Coordination Degree 2013 2014 2015 2016 2017

Lijiang 0.5623 0.5001 0.5429 0.5194 0.5334

Kunming 0.5740 0.5874 0.4987 0.4881 0.6091

Liupanshui 0.4206 0.4283 0.4154 0.3862 0.4202

Guiyang 0.3822 0.3929 0.4670 0.4912 0.4701

Zunyi 0.4805 0.4418 0.4212 0.4147 0.5032

Chengdu 0.6773 0.6664 0.6537 0.7401 0.7710

Yibin 0.5146 0.4629 0.4435 0.4783 0.5217

Luzhou 0.5157 0.4524 0.3598 0.4368 0.5038

Chongqing 0.7026 0.7344 0.6641 0.4696 0.6860

Yichang 0.4307 0.3732 0.3807 0.3785 0.4764

Jingzhou 0.4307 0.3542 0.4478 0.3666 0.3434

Changde 0.5123 0.4727 0.4941 0.5032 0.4849

Changsha 0.7030 0.7539 0.7770 0.7366 0.9313

Yueyang 0.5528 0.5361 0.5268 0.4730 0.5346

Xianning 0.4994 0.4651 0.4494 0.4509 0.4938

Wuhan 0.6597 0.6792 0.7152 0.6417 0.7634

Ezhou 0.5092 0.4807 0.4419 0.4864 0.4864

Huanggang 0.3252 0.3301 0.3312 0.4470 0.4674

Huangshi 0.5090 0.4878 0.4143 0.4322 0.4491

Nanchang 0.5439 0.5103 0.4601 0.5057 0.5287

Jiujiang 0.5087 0.4929 0.4742 0.4508 0.5363

Anqing 0.5256 0.5002 0.5191 0.5117 0.5048

Chizhou 0.4822 0.4456 0.4317 0.4083 0.4209

Tongling 0.5289 0.5431 0.4803 0.4379 0.4504

Hefei 0.5421 0.5966 0.5370 0.4151 0.6810

Wuhu 0.5819 0.5873 0.5409 0.5604 0.6108

Maanshan 0.4823 0.4760 0.4449 0.4270 0.4688

Nanjing 0.5813 0.5356 0.8736 0.8975 0.7133

Zhenjiang 0.5774 0.5282 0.5362 0.5065 0.8318

Yangzhou 0.5120 0.4440 0.4427 0.4799 0.6064

Taizhou 0.6042 0.4639 0.4971 0.5090 0.4844

Changzhou 0.5771 0.4868 0.4221 0.4624 0.5217

Wuxi 0.5789 0.4992 0.4339 0.4645 0.5271

Nantong 0.6057 0.4792 0.4992 0.4239 0.5361

Hangzhou 0.6320 0.6270 0.6188 0.5935 0.6384

Shaoxing 0.6016 0.4560 0.5299 0.5329 0.5217

Huzhou 0.4293 0.4058 0.5009 0.5158 0.5314

Jiaxing 0.6681 0.6850 0.5513 0.5336 0.6060

Suzhou 0.9771 0.9146 0.7745 0.7936 0.8229

Shanghai 0.7455 0.8350 0.7773 0.8751 0.7854

Ningbo 0.5974 0.5792 0.5527 0.5755 0.6516

Zhoushan 0.5422 0.5104 0.6110 0.5225 0.5123

https://doi.org/10.1371/journal.pone.0243459.t009
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large proportion of the economic development and are located at the edge of the Chengdu-

Chongqing city cluster and Wuhan metropolitan area. Poor talent attraction, infrastructure, and

green innovation efficiency are some of the reasons why these cities are at the bottom of the list.

Spatial correlation analysis of green innovation efficiency

According to the results of spatial correlation analysis, green innovation efficiency in the Yangtze

River Economic Belt showed significant and positive spatial correlation, but the agglomeration

patterns are different in different sections of the Yangtze River. In agreement with these findings,

Xu [25] also found that green innovation efficiency has a spatially positive correlation in the Yang-

tze River Economic Belt. The Yangtze River Economic Belt covers a wide area across which there

is a significant gap in regional development. The upstream cities attach importance to environ-

mental protection, while the downstream cities attach importance to economic development.

Fig 8. Spatial pattern evolution of the coupling coordination degree of green innovation efficiency and high-tech industries development (2013–2017).

https://doi.org/10.1371/journal.pone.0243459.g008
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Further, the development characteristics of the midstream cities are not obvious. In the local spa-

tial autocorrelation analysis, cities in the middle reaches of the Yangtze River, such as Yueyang

and Changde, are dominated by resource-intensive industries such as chemical industries. They

consume large amounts of energy resources and cause serious environmental pollution and are

characterized by “LL” agglomeration. The cities on the upper reaches of the Yangtze River, such

as Kunming, Chengdu, and Chongqing, as the capital cities of the western region, have absorbed

the resources of the surrounding cities on a large scale, and their own economic development has

been rapid. However, this has seriously affected the development of other surrounding cities and,

thereby, resulted in “HL” agglomeration. According to Lijiang, the development of traditional

manufacturing is difficult because of inconvenience in transportation. Therefore, the government

has vigorously promoted the development of technology-intensive industries to promote eco-

nomic development, and this explains the “HH” agglomeration. Cities in the lower reaches of the

Yangtze river, such as Shanghai, Suzhou, and Ningbo, are economically developed cities. These

cities are more attractive to scientific research talents, and have realized industrial transformation

and upgrading at an earlier stage, achieved high-quality economic development, and formed an

“HH” agglomeration. Hangzhou and Shaoxing are both cities in the lower reaches of the Yangtze

River, but their talents are far less attractive than those of Shanghai. Hangzhou has vigorously

developed the e-commerce industry and Shaoxing has a large-scale chemical industry. The high-

tech industries development atmosphere is poor, resulting in their “LL” agglomeration.

Coupling coordination relationship between green innovation efficiency

and high-tech industries development

According to the results of coupling coordination degree analysis, the coupling coordination

degree between green innovation efficiency and high-tech industries development is basic, and

the interaction between green innovation and economic development is not obvious. Improving

green innovation efficiency can promote economic development, especially through innovation

in high-tech industries. Observing development from the perspective of coupling coordination

would be beneficial in terms of formulating different policies based on the current situation. The

upstream cities Lijiang, Liupanshui, and Kunming are located in the west of China. Their geo-

graphical location is poor and scientific research foundation is weak, and this has led to the lag in

the development of high-tech industries. The populations of midstream and downstream cities,

such as Wuhan, Shanghai, and Nanjing, are concentrated, and there is a need for long-term

industrial development that is beneficial to the ecological environment. However, these cities lag

behind in terms of green innovation efficiency, in accordance with the results of Liu [64].

Limitations

Although this paper studies green development efficiency, its driving factors, spatial distribu-

tion, and the coupling coordination relationship between the Yangtze River Economic Belt

and high-tech industries with a variety of methods, it still has the following limitations. First,

there is no empirical research on the influencing factors associated with green innovation effi-

ciency in the Yangtze River Economic Belt. Therefore, it is impossible to propose effective

improvement strategies in a targeted manner. Second, the input-output indicators need to be

improved, because economic development will bring new innovations to green innovation

that will require the selection of new indicators in the future.

Conclusions

Green innovation is conducive to the high-quality development of China’s economy. There-

fore, this paper studies 42 major cities in the Yangtze River Economic Belt as the research
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object. The static and dynamic efficiency of green innovation is measured, and a comprehen-

sive analysis of green innovation efficiency from the two dimensions of spatial effects and syn-

ergistic effect is presented. The research conclusions are as follows:

From 2013 to 2017, the average values of green innovation efficiency in the Yangtze River

Economic Belt increased from 1.0446 to 1.0987. Due to differences in geographical location

and resource endowment of each city, the development speed of green innovation in cities

along the Yangtze River was different. The average value of green innovation efficiency in the

downstream cities was the highest at 1.0884; they were followed by the upstream cities with an

average value of 1.0823 and the midstream cities with the lowest value of 1.0248.

The total factor productivity of green innovation in the Yangtze River Economic Belt

increased by 1.1% per year from 2013 to 2017. Technical change, with an average annual

growth rate of 2.9%, was the main driving force of green innovation total factor productivity,

but technology efficiency change fell by an average of 1.7% a year.

All cities in the Yangtze River Economic Belt present a significant positive spatial corre-

lation: “HH” agglomeration cities are mainly distributed in the lower reaches of the Yang-

tze River; “LL” agglomeration cities are mainly distributed in the middle reaches of the

Yangtze River; and the capital cities in the upper reaches of the Yangtze River exhibit “HL”

agglomeration.

The coupling coordination degree between green innovation efficiency and the develop-

ment of high-tech industries in cities of the Yangtze River Economic Belt is between 0.5 and

0.6, which indicates that this region in the basic coordination stage. Additionally, the coupling

coordination degree presents a fluctuating rising trend. Overall, the synergies between green

innovation efficiency and economic development need to be improved.

Based on the research results, in order to effectively improve the green innovation efficiency

of the Yangtze River Economic Belt and promote the healthy development of economy and

environment, the following suggestions are proposed:

While promoting overall green innovative development in the Yangtze River Economic

Belt, more attention should be paid to coordinated development in different sections of the

Yangtze River. The upstream cities can strengthen the construction of infrastructure, and

improve the economic level and innovation capacity of all the cities. While promoting the

transformation of green and innovative development, midstream cities can consistently coor-

dinate the relationship between economic growth and ecological governance, strengthen the

transformation of innovative achievements and the introduction of new and advanced tech-

nologies, and realize sustainable development. Downstream cities can invest large amounts of

capital and cooperate with each other to promote ecological and environmental governance,

so as to achieve harmonious coexistence of economy and society.

The green innovation technical changes of the Yangtze River Economic Belt has greatly

improved, but technology efficiency change is still a shortcoming of development. Therefore,

technology efficiency change should be actively guided by cities with abundant innovation

resources to improve the utilization rate of innovation factors, improve the ability to transform

innovation achievements, and reduce the consumption of innovation resources.

The spatial spillover effect of high-value cities with green innovation efficiency should be

used to broaden the channels for the diffusion of innovation achievements, and policies and

markets should be designed to promote the coordinated development of green innovation in

the Yangtze River Economic Belt.

Cities with good economic development should use their capital advantages to increase

R&D and introduce advanced innovations to promote the development of green innovation;

at the same time, cities with better green innovation development can strengthen their ability
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to transform innovations, promote urban economic development and, ultimately, promote

green innovation alongside economic development.

Appendix

Table A1. Coupling degree of green innovation efficiency and high-tech industries development in the Yangtze River Economic Belt (2013–2017).

Coupling Degree 2013 2014 2015 2016 2017

Lijiang 0.5750 0.6895 0.6085 0.6517 0.6257

Kunming 0.6903 0.7620 0.9246 0.9684 0.9392

Liupanshui 0.8654 0.8463 0.8691 0.9352 0.8910

Guiyang 0.9398 0.9280 0.7756 0.7800 0.8795

Zunyi 0.7483 0.8403 0.8853 0.9113 0.9430

Chengdu 0.9494 0.9457 0.9194 0.9812 0.9886

Yibin 0.7286 0.8514 0.8899 0.8642 0.8731

Luzhou 0.7480 0.8618 0.9985 0.8925 0.9638

Chongqing 0.9904 0.9779 0.8625 0.9571 0.9988

Yichang 0.9695 0.9695 0.9543 0.9429 0.9917

Jingzhou 0.8896 0.9992 0.8956 0.9969 0.9865

Changde 0.7537 0.8646 0.8463 0.8437 0.9779

Changsha 0.8818 0.9833 0.9904 0.9999 0.9941

Yueyang 0.7988 0.8929 0.9286 0.9888 0.9949

Xianning 0.7165 0.8069 0.8514 0.8550 0.8292

Wuhan 0.9567 0.9980 0.9967 0.9918 0.9661

Ezhou 0.7235 0.8012 0.8840 0.8044 0.8605

Huanggang 0.9984 0.9963 0.9958 0.8942 0.9275

Huangshi 0.7725 0.8457 0.9507 0.9203 0.9522

Nanchang 0.8511 0.9498 0.9667 0.9245 0.9986

Jiujiang 0.7778 0.8642 0.9007 0.9462 0.9182

Anqing 0.7388 0.8218 0.7623 0.7583 0.8588

Chizhou 0.7334 0.8384 0.8741 0.9230 0.9318

Tongling 0.8327 0.9369 0.8433 0.9239 0.9240

Hefei 0.9985 0.9990 0.9978 0.8683 0.9997

Wuhu 0.8957 0.9659 0.9369 0.9468 0.9939

Maanshan 0.8863 0.9194 0.8273 0.9149 0.8689

Nanjing 0.8456 0.8384 0.9646 0.9770 0.9647

Zhenjiang 0.8764 0.8520 0.8812 0.7971 0.9358

Yangzhou 0.9143 0.9385 0.9936 0.9103 0.8627

Taizhou 0.9300 0.8445 0.9865 0.9710 0.8018

Changzhou 0.9190 0.9162 0.9461 0.8798 0.9669

Wuxi 0.8549 0.9153 0.8920 0.8418 0.8047

Nantong 0.9538 0.9089 0.9976 0.9808 0.9657

Hangzhou 0.9047 0.9340 0.9715 0.9914 0.9805

Shaoxing 0.9375 0.8099 0.8868 0.8879 0.9922

Huzhou 0.9169 0.9867 0.8878 0.8626 0.9030

Jiaxing 0.9396 0.9694 0.9221 0.9530 0.9806

Suzhou 0.9989 0.9843 0.9170 0.9019 0.9286

Shanghai 0.8630 0.9383 0.9971 0.9992 0.9430

Ningbo 0.9080 0.9746 0.9947 0.9832 0.9339

Zhoushan 0.7276 0.8160 0.6553 0.7902 0.7140
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Supporting information

S1 Raw data.

(DOCX)

Table A2. Coordinate values of green innovation efficiency and high-tech industries development in the Yangtze River Economic Belt (2013–2017).

T 2013 2014 2015 2016 2017

Lijiang 0.5500 0.3627 0.4843 0.4140 0.4547

Kunming 0.4773 0.4527 0.2690 0.2461 0.3950

Liupanshui 0.2045 0.2168 0.1985 0.1595 0.1982

Guiyang 0.1554 0.1663 0.2813 0.3093 0.2512

Zunyi 0.3085 0.2323 0.2004 0.1887 0.2685

Chengdu 0.4832 0.4696 0.4648 0.5582 0.6013

Yibin 0.3634 0.2516 0.2210 0.2647 0.3118

Luzhou 0.3555 0.2375 0.1297 0.2138 0.2633

Chongqing 0.4984 0.5515 0.5114 0.2304 0.4711

Yichang 0.1914 0.1436 0.1519 0.1520 0.2288

Jingzhou 0.2085 0.1256 0.2239 0.1348 0.1196

Changde 0.3482 0.2585 0.2885 0.3001 0.2405

Changsha 0.5604 0.5780 0.6095 0.5426 0.8724

Yueyang 0.3826 0.3219 0.2989 0.2263 0.2873

Xianning 0.3481 0.2681 0.2372 0.2378 0.2940

Wuhan 0.4548 0.4623 0.5133 0.4152 0.6032

Ezhou 0.3584 0.2884 0.2209 0.2941 0.2750

Huanggang 0.1059 0.1094 0.1101 0.2234 0.2355

Huangshi 0.3354 0.2814 0.1805 0.2030 0.2119

Nanchang 0.3475 0.2742 0.2190 0.2767 0.2799

Jiujiang 0.3327 0.2812 0.2496 0.2148 0.3132

Anqing 0.3740 0.3044 0.3535 0.3453 0.2967

Chizhou 0.3170 0.2368 0.2132 0.1806 0.1902

Tongling 0.3359 0.3148 0.2735 0.2075 0.2195

Hefei 0.2943 0.3563 0.2890 0.1984 0.4639

Wuhu 0.3781 0.3571 0.3122 0.3317 0.3753

Maanshan 0.2624 0.2465 0.2392 0.1993 0.2529

Nanjing 0.3996 0.3422 0.7912 0.8244 0.5274

Zhenjiang 0.3804 0.3275 0.3262 0.3219 0.7393

Yangzhou 0.2867 0.2101 0.1972 0.2530 0.4263

Taizhou 0.3926 0.2549 0.2505 0.2668 0.2926

Changzhou 0.3625 0.2586 0.1883 0.2430 0.2815

Wuxi 0.3920 0.2723 0.2110 0.2563 0.3453

Nantong 0.3846 0.2527 0.2498 0.1832 0.2976

Hangzhou 0.4415 0.4208 0.3942 0.3553 0.4157

Shaoxing 0.3861 0.2567 0.3166 0.3199 0.2743

Huzhou 0.2010 0.1669 0.2827 0.3084 0.3128

Jiaxing 0.4750 0.4841 0.3296 0.2988 0.3745

Suzhou 0.9557 0.8499 0.6541 0.6983 0.7293

Shanghai 0.6440 0.7430 0.6060 0.7664 0.6542

Ningbo 0.3930 0.3441 0.3071 0.3369 0.4547

Zhoushan 0.4041 0.3193 0.5697 0.3455 0.3675
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