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Abstract

We assessed abnormalities within the principal brain resting state networks (RSNs) in patients with Leber’s hereditary optic
neuropathy (LHON) to define whether functional abnormalities in this disease are limited to the visual system or, conversely,
tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of
diffusion tensor (DT) MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON
patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI
connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed
regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory
cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal
occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease
duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in
LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds
analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural
connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON
patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity
between these sensory modalities in patients with severe visual deficits.
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Introduction

Leber’s Hereditary Optic Neuropathy (LHON) is a maternally

inherited genetic disease characterised by an acute or subacute

bilateral loss of vision, which predominantly affects young men, with

a clinical onset between 15 and 35 years [1,2,3]. Pathologically,

retinal ganglion cell degeneration and axonal loss in the optic nerve

have been described in these patients [4]. These abnormalities are

associated with an early and selective damage of the small calibre

fibers of the papillomacular bundle. LHON has been linked to three

‘‘primary’’ mitochondrial DNA (mtDNA) point mutations, which

affect oxidative phosphorylation in mitochondria [5,6].

At present, it is still unclear whether central nervous system

(CNS) involvement in patients with LHON is restricted to the

optic nerve and visual pathways via chronic damage (i.e., the

lateral geniculate nucleus and the visual cortex may be involved by

trans-synaptic degeneration phenomena), as has been described in

other ocular pathologies, including optic neuritis [7,8], chronic

glaucoma [9], retinal degeneration [10], and albinism [11].

Against this view militates the well-known association of LHON

with clinical and magnetic resonance imaging (MRI) patterns

indistinguishable from those of multiple sclerosis [12], as well as

clinical observations which reported neurological disturbances,

such as reflex alterations, cerebellar ataxia, periferic neuropathy

and myoclonus in a relatively small percentage of these patients

[13]. In addition, MR spectroscopy (MRS) studies of LHON have

shown an abnormal mitochondrial energy metabolism in the

occipital lobe [14,15,16], and diffuse abnormalities in the normal-

appearing white matter have been detected using magnetization

transfer MRI [17].

Functional MRI (fMRI) is a non-invasive technique which

allows to define how the principal brain systems function in

healthy subjects and to interrogate their alterations in patients with

CNS pathologies. A method that has been introduced recently for

the analysis of functional connections and coherence between

different brain neural networks is based on the assessment of low-

frequency (,0.1 Hz) fluctuations seen on fMRI scans acquired at

rest (i.e., in the absence of any external stimulation). The use of

such an approach has demonstrated the presence of a high

temporal coherence between spatially distinct, functionally-related

brain regions, resembling specific neuroanatomical networks,

including the motor, visual, and dorsal and ventral attention

systems, which characterise the resting-state networks (RSNs) of

the human brain [18,19,20,21]. The main advantage of RSN

analysis is that it is not influenced by task performance and clinical

impairment, as is the case for task-related fMRI.
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In this study, we used fMRI to assess abnormalities within the

principal brain RSNs in patients with LHON with the aim to

define whether functional CNS abnormalities in this disease are

limited to the visual system, or, conversely tend to be more diffuse

and involve additional networks. In this latter case, to identify the

possible anatomical substrates underlying the observed fMRI

changes, an additional analysis was pre-planned, based on the

exploitation of structural connectivity profiles of brain regions with

significantly different activities between LHON patients and

controls, using a connectivity-based analysis of diffusion tensor

(DT) MRI data [22,23,24].

Results

Neuro-ophthalmologic assessment
Table 1 summarises the results of the neuro-ophthalmologic

assessment in LHON patients. At the time of MRI assessment, all

LHON patients had bilateral visual impairment and a variable

degree of optic nerve pallor detectable at fundoscopy, which was

particularly evident in the temporal sector. Standardised auto-

mated perimetry (SAP) showed a central scotoma of variable size

in all affected eyes. Optic coherence tomography (OCT) detected

a thinning of peripapillary retinal nerve fiber layer thickness

(PRNFL) in all affected eyes, especially in the temporal quadrant.

MRI assessment
None of the subjects had T2-hyperintense brain lesions.

a) RS networks. In controls and LHON patients, the analysis

of RS data detected 10 networks with potential functional

relevance: three RSNs included the primary and secondary

visual cortical areas, bilaterally; two the sensorimotor areas,

bilaterally; two a set of cortical areas belonging to the default mode

network (DMN); two a set of fronto-parietal areas lateralized to the

right and the left hemisphere, respectively; and the last the primary

and secondary auditory areas, bilaterally. Maps of RS activity for

each of these networks, from both healthy controls and LHON

patients (one-sample t test), are shown in Figure 1, together with

their associated time courses. All these components were stable

across multiple runs of IC decomposition, with a stability index

assessed by ICASSO ranging from 0.72 to 0.98 for all the

components of interest. RS networks of interest derived from the

two ICA analyses performed on controls and LHON patients,

separately, were very similar to those obtained from ICA

performed on the entire study group (spatial correlation

coefficients between networks ranging from 0.74 to 0.92).

b) Visual RS networks. Between-group comparisons of the

activity over the spatial extent of visual RSNs showed an increase

of RS fluctuations in LHON patients vs. controls in several areas

of the visual cortex in both primary visual RSNs. In detail,

foci of increased RS fluctuations in the first visual network were

located in the left cuneal cortex (MNI space coordinates: 23, 287,

20; t-value = 3.7; p = 0.05; cluster extent [k] = 5) and right

supracalcarine cortex (MNI space coordinates: 3, 287, 12; t-

value = 3.6; p = 0.05; k = 5). For the second visual network, the foci

of increased RS fluctuations were located in the bilateral occipital

pole (MNI space coordinates: 6, 293, 212; t-value = 4.6; p = 0.05;

k = 5, and 230, 296, 0; t-value = 4.4; p = 0.05; k = 17), and the

left occipital fusiform gyrus (MNI space coordinate: 215, 290,

212; t-value = 4.5; p = 0.05; k = 12) (Figure 2). This analysis also

showed decreased RS fluctuations in the right lateral occipital

cortex (MNI space coordinates: 45, 263, 28; t-value = 4.1;

p = 0.05; k = 7), and right temporal occipital fusiform cortex

(MNI space coordinates: 30, 254, 28; t-value = 3.8; p = 0.05;

k = 5) for the network of the secondary visual areas (Figure 2).

c) Non visual RS networks. Between-group comparisons of

the activity over the spatial extent of the non-visual networks

showed significant increased RS fluctuations in the right superior

temporal gyrus (including the primary auditory cortex) and the

supramarginal gyrus (MNI space coordinates: 60, 233, 12: t-

value = 4.6; p = 0.05; k = 11) for the RSN including the primary

and secondary auditory areas (Figure 2). Using an uncorrected

statistical threshold of 0.01, the same abnormalities were detected

also in the left hemisphere. No between-group difference was

found for the remaining networks/clusters.

d) Correlations of fMRI abnormalities with clinical and

neuro-ophthalmologic measures. In LHON patients,

significant correlations were found of disease duration with RS

activity of the right lateral occipital cortex (r = 20.77, p = 0.01),

left cuneal cortex (r = 0.87, p = 0.003), right occipital pole

(r = 0.87, p = 0.003), and right superior temporal gyrus (r = 0.83,

p = 0.02). In addition, significant correlations were found of

average temporal PRNFL with RS activity of the left cuneal cortex

(r = 0.88, p = 0.002) and right superior temporal gyrus (r = 0.79,

p = 0.05).

e) DT MRI connectivity-based parcellation. The number

of seed points that were used for tractography in each of the

considered areas did not differ between controls and LHON

patients. However, the number of seed points was significantly

different between the left and the right auditory cortices, due to

their different representation in the SPM Anatomical Toolbox

[25]. The silhouette analysis identified a similar number of clusters

in patients and controls for the right V1 (8 clusters in each group),

the left V1 (8 clusters in each group), and the left auditory cortex (7

clusters in each group). Conversely, LHON patients had a higher

number of clusters in the right auditory cortex compared to

controls (4 clusters in patients vs. 2 clusters in controls)

(Figure 3).

The between-group differences in profile analysis are summa-

rised in Table 2. The cluster-centroid profile analysis showed that

the right V1 of LHON patients had a structural connectivity with

the temporal fusiform cortex, which was not detected in controls

(Figure 4). This analysis also showed that, compared to controls,

the right V1 of LHON patients had an increased structural

connectivity with the temporal occipital fusiform cortex and a

decreased structural connectivity with the lateral occipital cortex

and the occipital fusiform gyrus (Figure 4). The left V1 of LHON

patients had a structural connectivity with the middle temporal

gyrus and inferior temporal gyrus, which were not detected in

controls. In addition, compared to controls, the left V1 of LHON

patients had an increased structural connectivity with the frontal

pole and lateral occipital cortex as well as a decreased structural

Table 1. Results of neuro-ophthalmologic assessment in
patients with Leber’s hereditary optic neuropathy.

Left Eye Right Eye

Mean visual acuity (range) 1.33 (3-0) 1.14 (3-0)

Average mean deviation (range) (dB) 215.73 (20.43
to 232.61)

215.48 (21.48
to 233.35)

Average PRNFL thickness (range) (mm) 56.9 (33.1–89.3)* 56.5 (38.1–80.4)*

Temporal PRNFL thickness (range) (mm) 36 (31–47)* 49 (19–95)*

Abbreviations: PRNFL = peripapillary retinal nerve fiber layer, SD = standard
deviation.
*Below normal (,5th percentile) as compared with a database of age-matched
control subjects. See text for further details.
doi:10.1371/journal.pone.0017081.t001
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connectivity with the temporal pole. The right auditory cortex

(Figure 3) of LHON patients had a structural connectivity with the

frontal pole, the pallidum, and the supramarginal gyrus, which

were not detected in controls. Finally, the left auditory cortex of

LHON patients had a structural connectivity with the lateral

occipital cortex, which was not detected in controls. Conversely,

controls had a structural connectivity with the middle temporal

gyrus and inferior temporal gyrus, which was not detected in

patients. Compared to controls, LHON patients had a lower

number of seeds assigned to cluster 2 in the auditory cortex

(Figure 3) (mean numbers of seeds [SD]: 8.1 [4.9] in LHON

patients vs. 16.7 [5.9] in controls, p,0.001).

In the left auditory cortex, significant correlations were found

between:

N the number of seeds assigned to a cluster connected to the

superior temporal gyrus vs. left temporal PRNFL (r = 0.63,

p = 0.02) and average PRNFL (r = 0.61, p = 0.04);

N the number of seeds assigned to a cluster connected to the

insular cortex and the parietal operculum cortex vs. temporal

PRNFL (r = 0.62, p = 0.02).

f) Correspondence between areas of altered functional

and structural connectivities. In LHON patients, a

correspondence was found between:

N decreased functional connectivity in the right temporal

occipital fusiform cortex and increased structural connectivity

between the right visual cortex and the right temporal occipital

fusiform cortex;

N decreased functional connectivity in the right lateral occipital

cortex and decreased structural connectivity between the right

V1 and the previous region;

N increased functional connectivity in the right supramarginal

gyrus and increased structural connectivity between the right

auditory cortex and the previous region.

Figure 1. Spatial pattern and corresponding time courses of potentially functionally relevant resting state networks (RSNs) in
healthy volunteers and patients with Leber’s hereditary optic neuropathy: three RSNs included primary (A, B) and secondary (C)
visual cortical areas; two RSNs (D, E) included sensorimotor areas; two RSNs (F, G) included areas that are part of the default mode
network; two RSNs included fronto-parietal areas lateralized to the right (H) and left (J) hemispheres; one RSN (K) included primary
and secondary auditory areas. See text for further details. Images are in neurologic convention.
doi:10.1371/journal.pone.0017081.g001

Figure 2. Spatial patterns of between-group differences in resting state (RS) fluctuations of the primary visual network (A, B), the
secondary visual network (C) and the auditory network (D) between LHON patients and healthy controls. Clusters of increased RS
activity in LHON patients are color-coded with red to yellow T values, while clusters of decreased RS activity in LHON patients are color-coded with
dark to light blue T values. Images are in neurologic convention.
doi:10.1371/journal.pone.0017081.g002
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Discussion

We investigated RS fluctuations in patients with LHON to

improve our understanding of this disease pathophysiology. The

main advantage of the approach we used is that it does not require

any active task to be performed, therefore its results are not

influenced by possible between-group differences related to

impairment and disability or to eye movements (which require

an accurate monitoring when dealing with visual stimulations). As

a consequence, we believe that these results can be considered

representative of the actual cortical reorganization following tissue

injury in LHON.

We detected 10 RSNs, which were consistently present in both

controls and LHON patients. These RSNs included the

sensorimotor areas, the primary and secondary visual systems,

the auditory system, as well as attention and memory related

networks. The between-group comparisons of the three visual

networks showed increased fluctuations in regions that are part of

the primary visual cortex, as well as decreased fluctuations in the

right lateral occipital cortex and temporal occipital fusiform cortex

in LHON patients in comparison to healthy controls, which might

reflect a functional disconnection between primary and secondary

areas within the visual network. Several studies, in patients with

different ocular and retinal conditions have shown consistently

Figure 3. Clusters and cluster-centroids identified in the right (R) primary auditory cortex (PAC) in healthy controls (blue) and
Leber’s hereditary optic neuropathy (LHON) patients (red). The silhouette analysis identified two clusters in healthy controls and four clusters
in LHON patients. The cluster-centroid profile analysis of the R PAC of LHON patients showed a structural connectivity with the frontal pole, the
pallidum, and the supramarginal gyrus, which was not detected in controls. X-axis reports brain areas classified according to the Harvard-Oxford
cortical and subcortical atlas.
doi:10.1371/journal.pone.0017081.g003

Table 2. Differences in cluster-centroid profiles between patients with Leber’s hereditary optic neuropathy and healthy controls.

Areas R V1 L V1 R Auditory cortex L Auditory cortex

Temporal fusiform cortex LHON only - - -

Temporal occipital fusiform cortex Increased LHON - - -

Lateral occipital cortex Decreased LHON Increased LHON - LHON only

Occipital fusiform gyrus Decreased LHON - - -

Middle temporal gyrus . LHON only - Controls only

Inferior temporal gyrus - LHON only - Controls only

Frontal pole - Increased LHON LHON only -

Temporal pole - Decreased LHON - -

Pallidum - - LHON only -

Supramarginal gyrus - - LHON only -

Abbreviations: LHON = Leber’s hereditary optic neuropathy, R = right, L = left, V1 = primary visual cortex.
doi:10.1371/journal.pone.0017081.t002
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that damage to the most anterior portions of the visual pathways is

associated with functional and structural changes to the striate and

extrastriate cortices, which are most likely secondary to trans-

synaptic degeneration. A volume reduction of the visual cortical

regions has been detected in patients with amblyopia [26],

albinism [11], and retinal damage [10,27]. A positron emission

tomography study has demonstrated a high level of energy

metabolism, at rest, in the visual cortex of early blind adults

compared to age-matched blindfolded controls [28]. Our findings,

combined with the results of these previous studies, suggest that

synapses in the visual cortex of LHON patients are in a

hyperactive state. Alternatively, they might reflect a variation of

synaptic density. However, such an hypothesis is in contrast with

the demonstration of a selective atrophy of the visual cortex in

LHON patients [29].

Another important finding of our study is the demonstration

that RSN abnormalities in LHON patients are not limited to the

visual network, but also involve the auditory network. The

coherence of activity between the visual and the auditory networks

suggests the existence of an interplay between the two, which

corroborates the notion of a cross-modal plasticity involving these

sensory modalities in patients with severe visual deficits. Indeed,

previous functional imaging studies have demonstrated that visual

areas in blind subjects are activated by auditory tasks [30,31].

Using a different method of analysis of low frequency RS

fluctuations, based on the assessment of correlation coefficients

between a large sets of brain regions, Liu et al. have recently

shown decreased functional connectivities in the occipital visual

cortex as well as between the visual cortices and the frontal,

parietal and temporal cortices in early blind subjects (loss of sight

at birth or before one year of age) in comparison to sighted

individuals [32]. Differences in the methods of analysis as well as in

the clinical and neuro-ophthalmologic characteristics of the

patients included (early vs. late blindness) might contribute to

explain the discrepancies between our and the previous [32]

findings. In detail, we applied spatial ICA, which allowed us to

cluster brain RS activity into different networks of spatially

independent and temporally coherent brain regions according to

the similarity of the reference time courses. The Z-scores of our

spatial RS maps can be thought as a measure of intrinsic RS

activity at a given voxel, but they do not give information about

the similarity of such an activity with that of voxels from other

distant regions belonging to other networks. On the contrary, the

functional connectivity approach used by Liu et al. [32]

investigated the correlations between pairs of brain regions. Such

a method can detect significant couplings between time courses of

spatially remote brain regions, but it does not provide any

information about the level of RS activity of individual regions.

Alternative applications of ICA, such as temporal ICA, might be

used to obtain pieces of information more similar to those

provided by functional connectivity, but temporal ICA is rarely

used is functional neuroimaging literature, probably because of the

computational challenges created by the higher data dimension-

ality [33].

Concerning the age of the onset of blindness, several studies

have indicated a dramatic change in density of visual synapses

during normal development, characterised by an increase between

2 and 8 months of age, and then by a decline (synaptic revision) to

reach the adult level at 11 years [34,35]. This synaptic revision

corresponds to the elimination of redundant connections and to

the establishment of functional connectivities. Since visual input

interruption occurs prior to the stage of synaptic revision in early

blind and after its establishment in late blind subjects, this might

further contribute to explain the discrepancies between the two

studies. Clearly, if confirmed by further work, our findings might

have important therapeutic implications because they suggest that

LHON patients might benefit from substitutive sensory aids.

Remarkably, a recent gene expression profile study has shown that

the optic atrophy 1 (OPA1) gene, which is related to autosomal

dominant optic atrophy (ADOA), the most common form of

hereditary optic neuropathy, is downregulated in some LHON

patients [36]. Of note, OPA1 is expressed not only in the optic

nerves and in the brain, but also in the inner ear.

To explore possible alterations of structural connections related

to the above RS abnormalities, we performed a DT MRI

connectivity-based parcellation analysis [22], which allowed us to

Figure 4. Cluster-centroid profile analysis of the right V1 (cluster II) in healthy controls (blue) and patients with Leber’s Hereditary
Optic Neuropathy (LHON) (red). The right V1 of LHON patients had a structural connectivity with the temporal fusiform cortex, which was not
detected in controls. In addition, compared to controls, the right V1 of LHON patients had an increased structural connectivity with the temporal
occipital fusiform cortex and a decreased structural connectivity with the lateral occipital cortex and the occipital fusiform gyrus. X-axis reports areas
classified according to the Harvard-Oxford cortical and subcortical atlas.
doi:10.1371/journal.pone.0017081.g004
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investigate the structural connections between the primary visual

and auditory cortices (which showed significant abnormalities of

their functional connections) and other regions of the brain

identified using a standard atlas. We choose such an approach,

among the different strategies available to investigate the structural

architecture of the WM using DT MRI, because the network of

anatomical connections linking the neuronal elements of the

human brain is still largely unknown, and we did not have strong a

priori hypotheses on the possible anatomical connections to be

investigated (with the exception of the optic tracts and radiations).

A valid alternative strategy would have been the use of

fMRI results to guide tractography reconstruction. However, with

such a method we would have limited our results to a few WM

tracts.

Our DT MRI connectivity-based parcellation analysis results

need to be interpreted with caution, but nonetheless provide some

important clues to better understand the RS fMRI changes seen in

LHON patients. Consistently with the fMRI results which showed

abnormalities of function within the auditory network (especially

on the right side), the silhouette analysis identified a different

number of clusters in healthy controls and LHON patients in the

right auditory cortex. Furthermore, subtle differences of cluster-

centroid profiles were found between the two groups for all the

four seeds analyzed. Noteworthy, similarly to functional connec-

tivity results, also the structural connectivity analysis disclosed

areas of increased as well as decreased connectivity in patients vs.

controls. Intriguingly, for a few of the areas identified by the two

analyses, a correspondence was found between abnormalities of

functional and structural connectivities. Remarkably, in one of

these associations (i.e., decreased functional connectivity in the

right temporal occipital fusiform cortex and increased structural

connectivity between the right visual cortex and the right temporal

occipital fusiform cortex) abnormalities of functional and structural

connectivity had an opposite direction. Although we admit that

this is only speculative, this observation suggests that structural and

functional changes associated to the disease might be dynamic. A

‘‘temporal dissociation’’ between the two phenomena might

explain this counter intuitive finding: abnormalities of functional

connectivity might be a consequence of retinal damage, and might

be then followed by an increased structural connectivity as an

adaptive compensatory response.

Clearly, we can not define whether the abnormalities of WM

architecture and function we detected in LHON patients are

congenital or secondary to damage to the optic nerve. However,

the extent of RS and DT MRI abnormalities observed in LHON

patients was related to retinal damage (quantified using OCT) and

disease duration, supporting the notion that they are likely to be

the consequence of their deafferentation, following neuroaxonal

damage to the retina and optic nerve.

Future investigations should evaluate whether the abnormal-

ities we observed are stable or, conversely, whether they change

over time, the factors influencing these changes, and, finally,

whether they are specific of LHON or shared among other forms

of hereditary optic neuropathy. This would help to define

whether the analysis of RS connectivity might offer clinically

relevant biomarkers of disease severity and duration in LHON

patients.

Materials and Methods

The study was approved by the Ethics Committee of Scientific

Institute and University Ospedale San Raffaele, Milan, Italy and a

written informed consent was obtained from all subjects prior to

study entry, according to the Declaration of Helsinki.

Subjects
We studied 13 patients with LHON (11 men and 2 women;

mean age = 35.6, range = 20–61 years; mean disease duration = 9,

range = 2–34 years) recruited from the Neuro-Ophthalmology

Clinic at San Raffaele Scientific Institute, Milan, Italy. Inclusion

criteria were: (i) presence of one of the three primary mtDNA

mutations associated with LHON, (ii) disease duration .12

months, (iii) no history of concomitant neurological, psychiatric,

ophthalmological diseases or drug abuse. Eight patients carried the

11778, three the 3460, and two the 14484 mtDNA mutation.

Thirteen sex- and age-matched healthy subjects, with no history of

neurological and ophthalmological disorders served as controls (11

men and 2 women; mean age 35.2, range 19–59 years).

Neuro-ophthalmologic assessment
LHON patients underwent a complete neuro-ophthalmologic

examination at the time of the enrolment. Best-corrected visual

acuity was assessed with LogMAR notation performed with high-

intensity red-free light. Visual field examination was performed

with SAP and mean deviation was quantified (Humphrey Zeiss,

30-2 SITA standard program). Average and temporal PRNFL

measurements were obtained using a commercially available

optical coherence tomographer as previously described (Stratus

OCT, Carl Zeiss Ophthalmic Systems Inc, fast RNFL thickness

3.4) [29].

MRI acquisition
On a 3.0 Tesla Philips Intera scanner, RS fMRI scans were

acquired within 24 hours from neuro-ophthalmologic assessment

using a T2*-weighted single-shot echo planar imaging (EPI)

sequence (repetition time [TR] = 3000 ms, echo time [TE] =

35 ms, flip angle = 90u, field of view [FOV] = 240 mm2; ma-

trix = 1286128, slice thickness = 4 mm, 200 sets of 30 contiguous

axial slices, parallel to the anterior-posterior commissural plane).

Total acquisition time was about 10 minutes. During scanning,

subjects were instructed to remain motionless, to close their eyes

and not to think to anything in particular. All subjects reported

they had not fallen asleep during scanning. Movements were

minimised using foam padding and ear blocks.

A dual-echo turbo spin echo (TSE), a pulsed-gradient SE EPI

(with diffusion gradients applied in 35 non-collinear directions; b

factor = 900 mm2/s and a single b0 image), and a 3D high-

resolution T1-weighted fast field echo (FFE) sequence were also

obtained, as previously described [37].

RS fMRI analysis
RS fMRI data were first pre-processed using Statistical

Parametric Mapping (SPM5). All images were realigned to the

first one to correct for subject motion (mean cumulative

translations: 1.5 mm, SD = 0.27, and 1.9 mm, SD = 0.19 for

controls and LHON patients, p = n.s.; mean rotation ,0.2 degrees

in both groups). The mean individual motion was calculated for

each subject as the average of the six realignment parameters

estimated by SPM5. Data were then spatially normalised into the

standard Montreal Neurological Institute (MNI) space (with a sub-

sampling to 36364 mm3 resolution, leading to images with a

matrix = 53663635, and, therefore, a total number [N] of

voxels = 116865), using the standard SPM5 EPI template as a

reference, and smoothed with a 6-mm, 3D-Gaussian filter. Linear

detrending and band-pass filtering between 0.01 and 0.08 Hz

were performed using the REST software (http://resting-fmri.

sourceforge.net/) to partially remove low-frequency drifts and

physiological high-frequency noise.

Connectivity Changes in LHON
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Independent Component Analysis (ICA) was used to decompose

RS fMRI data into spatially independent maps and time courses

using the GIFT software (Group ICA of FMRI Toolbox) [33].

GIFT analysis was performed following three main steps: (i) data

reduction, (ii) ICA, and (iii) back reconstruction. First, single-

subject fMRI data were reduced to a lower temporal dimension-

ality by using a principal component analysis. The number of

independent group components was 40, a dimension determined

using the minimum description length criterion [33]. Then, for

each time-component of each subject, the 3D fMRI image was

flattened to a 1D vector (with dimension N = 116865 voxels) and a

single-subject 406N matrix was created, containing all flattened

images for the 40 temporal components. Finally, the matrices from

each of the 26 subjects were vertically concatenated into a M6N

multi-subject matrix (M = 26640 = 1040) containing the fMRI

data from all subjects. The group independent components (ICs)

were estimated using the Infomax approach [38], and each

component was represented by a spatial map and a temporal

profile. The group mixing matrix estimated by Infomax, which

describes group ICs, can be also thought as made by many side-

by-side partitions, each of which is related to ICs of a single

subject. Individual subject components maps and time courses

were back-reconstructed by subdividing group ICs into the

corresponding single subject partitions [33]. Statistical reliability

of IC decomposition was tested by using the ICASSO toolbox

[39]. Stability of the obtained ICs was assessed by running

Infomax 10 times with different initial conditions and boot-

strapped datasets, by clustering the results of each run, and by

calculating a stability index for each component. Two separate

spatial ICAs were also performed in controls and LHON patients

to ensure that the resulting components were similar in the two

groups. Similarity was assessed by calculating the spatial

correlation coefficient between components estimated by each

ICA analysis, using the ‘‘fslcc’’ utility included in FSL toolbox

(http://www.fmrib.ox.ac.uk/fsl/).

Each individual functional map was converted into Z-scores

before entering group statistics, to have voxel values comparable

across subjects.

A systematic process was applied to inspect and select the

components of interest from the 40 estimated components. The

association of each component spatial map with a priori

probabilistic maps of gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF) within the MNI space contributed to

identify the components with a signal change correlated to the

GM. Components with a high correlation to CSF or WM, or with

a low correlation with the GM, were excluded. In addition, to

identify components with potential functional relevance, a

frequency analysis of IC time courses was performed to detect

those with a high (50% or greater) spectral power at a low

frequency (between 0.01 and 0.05 Hz) [40]. The spatial patterns of

the remaining ICs were sorted out on the basis of their matching

with relevant RSNs found in previous studies [18,19,20,21].

The magnitude of RS activity within each group, as well as

between-group RS activity differences were assessed using SPM5

and a one-sample t test and a two-sample t test, respectively,

including the mean subject’s motion (calculated as the mean of the

six motion parameters estimated by SPM) [41,42] as a

confounding covariate. SPMs produced at one-sample t tests were

thresholded at p = 0.001 and combined (intersection) in a single

image, which was used as mask for the subsequent between-group

comparisons. Results of between-group comparisons were then

superimposed to the Harvard-Oxford cortical atlas (http://www.

fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html#ha) to have the

results in the same atlas of the structural connectivity results.

In LHON patients, using SPM5 and multiple regression models,

a linear regression analysis was performed to assess spatial

correlations of RS abnormalities with clinical and neuro-

ophthalmologic measures. Clusters exceeding a threshold of

p,0.001 (uncorrected for multiple comparisons) underwent a

small volume correction (SVC) for multiple comparisons, setting

the cut off value for significance at p,0.05 and using a 10-mm

radius around the peak derived from the between-group

comparisons.

We used a family wise error (FWE) correction at p,0.05 for

multiple comparisons at a cluster level as the threshold for

statistical significance for between-group comparisons. Only

clusters having an extent of k$5 were included in this analysis.

This extent should not be considered small, because RS data, due

to image subsampling to 36364 mm ( = 36 cubic mm volume of

each voxel), have a single voxel volume equivalent to that of 4.5

voxels of active fMRI data pre-processed with a standard SPM5

analysis, having usually a dimension of 26262 mm ( = 8 cubic

mm volume).

DT MRI connectivity-based parcellation analysis
DT images were first corrected for distortion induced by eddy

currents using an in-house software [43]. The DT was then

calculated on a pixel-by-pixel basis, using FSL tools (http://www.

fmrib.ox.ac.uk/fsl).

Based on the results of RS fMRI analysis (see above), a

parcellation analysis was performed on the primary visual (V1) and

auditory cortices, bilaterally. They were segmented on 3D T1-

weighted images using an atlas-based approach. To this aim, V1

and the auditory cortex (Areas TE 1.0, TE 1.1 and TE 1.2) [44]

were selected using the SPM Anatomy Toolbox [25], normalised,

using SPM5, to single-subject 3D T1-weighted images (which were

previously scalped using the Brain Extraction Tool [BET] [45]

and coregistered to the b0 images), and thresholded at 50%. Seeds

for tractography were selected as follows: 3D T1-weighted images

were segmented into WM, GM and CSF using SPM5 and

registered to diffusion space; then, a 2D sobel filter was applied to

the GM maps (not binarized) to obtain the boundaries between

GM and WM. Finally, the resulting contours were masked with

the visual and auditory cortical probability maps derived

previously; seeds facing the CSF were removed manually. The

resulting seeds were used as starting points for probabilistic

tractography [24]. The output of tractography is a file containing

the number of visits of tracts in each voxel; this is considered as an

index of structural connectivity. Due to computational demands,

this output is saved at a 5 mm resolution [23]. Connectivity values

from tractography were then summed up within cortical regions

identified with the Harvard-Oxford cortical and subcortical atlas

available within FSL (http://www.fmrib.ox.ac.uk/fsl/fslview/at-

las-descriptions.html#ha). The regions containing the starting

seeds were excluded. Connections to the contralateral hemisphere

were not considered. Finally, data were reformatted in a matrix

layout in which each row is the connectivity profile of a single seed

to each of the considered cortical areas, and matrices for all

subjects were concatenated in a single matrix, which is the input of

the k-means algorithm for clustering. Since the k-means method

requires as an input the number of clusters, we used the silhouette

method [46,47] to estimate the number of clusters that fitted best.

The silhouette method is based on the production of a silhouette

profile for each cluster found, which defines how good is the

classification of each seed in comparison with its assignment to a

second most appropriate cluster. For each seed, the profile plots an

index, which is calculated from the ratio between the average

similarity of the seed to all other seeds in the cluster and the
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maximum similarity of the seed to all seeds of other clusters. Index

values close to 1 indicate a well-clustered seed, whereas values

close to -1 indicate a bad assignment of the seed to a given cluster.

Once all silhouettes are combined in a single plot, the average

value can be used to select the most appropriate number of

clusters.

To do this, we run silhouette for different number of clusters

(ranging from 2 to 15) and calculated the average silhouette values

for each trial. The optimal number of clusters was that

corresponding to the maximum value of the average silhouette

profile. During both the optimization and the clustering phase, the

control and patient groups were treated separately. The clustering

analysis also provided the cluster-centroids, which summarise the

structural connectivity profile of each cluster. First, a visual

inspection was performed to identify between-group differences in

cluster-centroid profile (e.g., presence/absence of a given peak and

peak amplitude). Then, for each subject, the number of seeds

assigned to each cluster was used as a subject-wise measure to

compare patients with controls (t test for independent samples),

and to assess correlation with clinical and ophthalmological

measures (non parametric correlation, Spearman Rank Correla-

tion Coefficient).

Author Contributions

Conceived and designed the experiments: MAR SB-M AF GC MF.

Performed the experiments: MAR JM AF. Analyzed the data: MAR PV

EP. Contributed reagents/materials/analysis tools: PV EP. Wrote the

paper: MAR PV EP SB-M JM AF GC MF.

References

1. Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, Savontaus ML (1991) A new

mtDNA mutation associated with Leber hereditary optic neuroretinopathy.

Am J Hum Genet 48: 1147–1153.

2. Newman NJ, Lott MT, Wallace DC (1991) The clinical characteristics of

pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation.

Am J Ophthalmol 111: 750–762.

3. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, et al. (1988)

Mitochondrial DNA mutation associated with Leber’s hereditary optic

neuropathy. Science 242: 1427–1430.

4. Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V (2000) Leber’s

hereditary optic neuropathy differentially affects smaller axons in the optic

nerve. Trans Am Ophthalmol Soc 98: 223–232; discussion 232–225.

5. Johns DR, Smith KH, Miller NR (1992) Leber’s hereditary optic neuropathy.

Clinical manifestations of the 3460 mutation. Arch Ophthalmol 110:

1577–1581.

6. Mackey D, Howell N (1992) A variant of Leber hereditary optic neuropathy

characterized by recovery of vision and by an unusual mitochondrial genetic

etiology. Am J Hum Genet 51: 1218–1228.

7. Audoin B, Fernando KT, Swanton JK, Thompson AJ, Plant GT, et al. (2006)

Selective magnetization transfer ratio decrease in the visual cortex following

optic neuritis. Brain 129: 1031–1039.

8. Ciccarelli O, Toosy AT, Hickman SJ, Parker GJ, Wheeler-Kingshott CA, et al.

(2005) Optic radiation changes after optic neuritis detected by tractography-

based group mapping. Hum Brain Mapp 25: 308–316.

9. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of

retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral

geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:

465–481.

10. Kitajima M, Korogi Y, Hirai T, Hamatake S, Ikushima I, et al. (1997) MR

changes in the calcarine area resulting from retinal degeneration. AJNR

Am J Neuroradiol 18: 1291–1295.

11. von dem Hagen EA, Houston GC, Hoffmann MB, Jeffery G, Morland AB

(2005) Retinal abnormalities in human albinism translate into a reduction of

grey matter in the occipital cortex. Eur J Neurosci 22: 2475–2480.

12. Harding AE, Sweeney MG, Miller DH, Mumford CJ, Kellar-Wood H, et al.

(1992) Occurrence of a multiple sclerosis-like illness in women who have a

Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain 115(Pt

4): 979–989.

13. Nikoskelainen EK, Marttila RJ, Huoponen K, Juvonen V, Lamminen T, et al.

(1995) Leber’s ‘‘plus’’: neurological abnormalities in patients with Leber’s

hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 59: 160–164.

14. Cortelli P, Montagna P, Avoni P, Sangiorgi S, Bresolin N, et al. (1991) Leber’s

hereditary optic neuropathy: genetic, biochemical, and phosphorus magnetic

resonance spectroscopy study in an Italian family. Neurology 41: 1211–1215.

15. Barbiroli B, Montagna P, Cortelli P, Iotti S, Lodi R, et al. (1995) Defective brain

and muscle energy metabolism shown by in vivo 31P magnetic resonance

spectroscopy in nonaffected carriers of 11778 mtDNA mutation. Neurology 45:

1364–1369.

16. Lodi R, Carelli V, Cortelli P, Iotti S, Valentino ML, et al. (2002) Phosphorus

MR spectroscopy shows a tissue specific in vivo distribution of biochemical

expression of the G3460A mutation in Leber’s hereditary optic neuropathy.

J Neurol Neurosurg Psychiatry 72: 805–807.

17. Inglese M, Rovaris M, Bianchi S, La Mantia L, Mancardi GL, et al. (2001)

Magnetic resonance imaging, magnetisation transfer imaging, and diffusion

weighted imaging correlates of optic nerve, brain, and cervical cord damage in

Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 70:

444–449.

18. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, et al. (2008)

Reduced resting-state brain activity in the ‘‘default network’’ in normal aging.

Cereb Cortex 18: 1856–1864.

19. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, et al. (2006)

Consistent resting-state networks across healthy subjects. Proc Natl Acad
Sci U S A 103: 13848–13853.

20. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into

resting-state connectivity using independent component analysis. Philos
Trans R Soc Lond B Biol Sci 360: 1001–1013.

21. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. (2009)

Correspondence of the brain’s functional architecture during activation and

rest. Proc Natl Acad Sci U S A 106: 13040–13045.

22. Perrin M, Cointepas Y, Cachia A, Poupon C, Thirion B, et al. (2008)
Connectivity-based parcellation of the cortical mantle using q-ball diffusion

imaging. Int J Biomed Imaging 2008: 368406.

23. Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, et al.
(2004) Changes in connectivity profiles define functionally distinct regions in

human medial frontal cortex. Proc Natl Acad Sci U S A 101: 13335–13340.

24. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-

Kingshott CA, et al. (2003) Non-invasive mapping of connections between
human thalamus and cortex using diffusion imaging. Nat Neurosci 6: 750–757.

25. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, et al. (2005) A new

SPM toolbox for combining probabilistic cytoarchitectonic maps and functional
imaging data. Neuroimage 25: 1325–1335.

26. Mendola JD, Conner IP, Roy A, Chan ST, Schwartz TL, et al. (2005) Voxel-

based analysis of MRI detects abnormal visual cortex in children and adults with

amblyopia. Hum Brain Mapp 25: 222–236.

27. Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, et al.
(2009) Changes in cortical grey matter density associated with long-standing

retinal visual field defects. Brain 132: 1898–1906.

28. De Volder AG, Bol A, Blin J, Robert A, Arno P, et al. (1997) Brain energy
metabolism in early blind subjects: neural activity in the visual cortex. Brain Res

750: 235–244.

29. Barcella V, Rocca MA, Bianchi-Marzoli S, Milesi J, Melzi L, et al. (2010)

Evidence for retro-chiasmatic tissue loss in Leber’s hereditary optic neuropathy.
Hum Brain Mapp.

30. Leclerc C, Saint-Amour D, Lavoie ME, Lassonde M, Lepore F (2000) Brain

functional reorganization in early blind humans revealed by auditory event-
related potentials. Neuroreport 11: 545–550.

31. Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, et al. (2006)

Auditory motion perception activates visual motion areas in early blind subjects.

Neuroimage 31: 279–285.

32. Liu Y, Yu C, Liang M, Li J, Tian L, et al. (2007) Whole brain functional
connectivity in the early blind. Brain 130: 2085–2096.

33. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making

group inferences from functional MRI data using independent component
analysis. Hum Brain Mapp 14: 140–151.

34. Herschkowitz N (2000) Neurological bases of behavioral development in infancy.
Brain Dev 22: 411–416.

35. Herschkowitz N, Kagan J, Zilles K (1997) Neurobiological bases of behavioral

development in the first year. Neuropediatrics 28: 296–306.

36. Abu-Amero KK, Jaber M, Hellani A, Bosley TM (2010) Genome-wide
expression profile of LHON patients with the 11778 mutation.

Br J Ophthalmol 94: 256–259.

37. Rocca MA, Valsasina P, Ceccarelli A, Absinta M, Ghezzi A, et al. (2009)

Structural and functional MRI correlates of Stroop control in benign MS. Hum
Brain Mapp 30: 276–290.

38. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind

separation and blind deconvolution. Neural Comput 7: 1129–1159.

39. Himberg J, Hyvarinen A, Esposito F (2004) Validating the independent
components of neuroimaging time series via clustering and visualization.

Neuroimage 22: 1214–1222.

40. Harrison BJ, Pujol J, Ortiz H, Fornito A, Pantelis C, et al. (2008) Modulation of

brain resting-state networks by sad mood induction. PLoS ONE 3: e1794.

Connectivity Changes in LHON

PLoS ONE | www.plosone.org 9 February 2011 | Volume 6 | Issue 2 | e17081



41. Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, et al. (2010)

Default-mode network dysfunction and cognitive impairment in progressive MS.
Neurology 74: 1252–1259.

42. Roosendaal SD, Schoonheim MM, Hulst HE, Sanz-Arigita EJ, Smith SM, et al.

(2010) Resting state networks change in clinically isolated syndrome. Brain 133:
1612–1621.

43. Haselgrove JC, Moore JR (1996) Correction for distortion of echo-planar images
used to calculate the apparent diffusion coefficient. Magn Reson Med 36:

960–964.

44. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, et al. (2001)

Human primary auditory cortex: cytoarchitectonic subdivisions and mapping
into a spatial reference system. Neuroimage 13: 684–701.

45. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:

143–155.
46. Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data: An Introduction to

Cluster Analysis. Hoboken, NJ: John Wiley & Sons, Inc.
47. Rousseeuw PJ (1986) Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. J Comp and Applied Mathematics 20: 53–65.

Connectivity Changes in LHON

PLoS ONE | www.plosone.org 10 February 2011 | Volume 6 | Issue 2 | e17081


