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This article provides a brief overview describing how two key signaling pathways, namely the integrated
stress response and the mammalian target of rapamycin complex 1, work together to facilitate cellular
adaptation to dietary amino acid insufficiency. A deeper understanding of these mechanisms is leading to
identification of novel targets which aid in disease treatments, improve stress recovery and increase
health span through slowed aging and enhanced metabolic fitness.
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1. Introduction

All living organisms possess cellular strategies to ensure sur-
vival during times of nutrient scarcity. These survival responses
alter organismal metabolism and cell mass to adapt to availability
of nutrients and maintain essential functions for life. Reductions in
amino acid supply are sensed within the cell by a number of
overlapping signal transduction mechanisms which differentiate
amino acid sufficiency from amino acid deficiency. This article will
provide a brief overview of these mechanisms and provide
examples how these responses are important for prevention and
treatment of disease.
2. Amino acid sensing networks

Sensing of amino acid availability occurs in multiple locations
in and around the cell. Amino acid transporters expressed at the
cell surface play an important role in sensing, carrying, and thus
regulating supply and demand of substrate (Taylor, 2014). These
transporters can also function as transceptors, serving as or
interacting with intracellular sensors which deliver information to
signaling networks. The generation of amino acids from
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endogenous proteolysis via autophagy and/or the ubiquitin-
proteasome system identifies these subcellular organelles and
membranes as additional key sites of amino acid sensing. Further
examination into the anatomical organization and the molecular
identity of the sensing molecules in each space remain to be
discovered.

Two major signal transduction networks responsive to changes
in amino acid supply are the mammalian/mechanistic target of
rapamycin complex 1 (mTORC1) pathway and the integrated stress
response (ISR). The activities of these two signal transduction
cascades in relation to amino acid supply are coordinated together
in order to provide a spectrum of cellular responses, ranging from
the induction of growth to activation of cell death. Exactly how
these pathways are coordinated is for the most part a mystery,
requiring additional research.
3. Mammalian/mechanistic target of rapamycin senses amino
acid sufficiency

The mTORC1 pathway serves as a hub for cellular decision-
making on matters that relate to homeostatic control of the pro-
teome (Laplante and Sabatini, 2012). Located within the
endosomal-lysosomal compartment, assembly of this complex at
the surface of late endosomes and lysosomes promotes mRNA
translation and dampens autophagy. Assembly of mTORC1 is
regulated by many environmental stimuli including insulin/insu-
lin-like growth factors, energy state, redox status and amino acids.
Amino acids stimulate the assembly and translocation of mTORC1
at the lysosomal surface in a manner that requires the Rag,
Ragulator and vacuolar adenosine triphosphatase protein com-
plexes. Reductions in amino acid availability diminish mTORC1
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assembly and signaling to ribosomal proteins and mRNA transla-
tion factors, reducing protein synthesis. At the same time, dis-
assembled mTORC1 permits elevations in autophagy, increasing
proteolysis. The sensing mechanism activating assembly of
mTORC1 upon increased amino acid supply is yet to be clearly
defined. Recent reports by three separate labs have identified
SLC38A9 as a component of the lysosomal amino acid sensing
machinery that controls activation of mTORC1 upon arginine suf-
ficiency (Jung et al., 2015; Rebsamen et al., 2015; Wang et al.,
2015). This protein transports arginine and interacts with the Rag
guanosine triphosphatases, suggesting it functions as a transcep-
tor. How other amino acids are sensed intracellularly remain to be
discovered. Furthermore, the role of SLC38A9 and other putative
transceptors in mammalian tissues and organ systems remain to
be explored.

Studies in animals show that dietary restriction of essential
amino acids reduces mTORC1 signaling in liver (Anthony et al.,
2001, 2004). Pharmaceutical depletion of asparagine by L-aspar-
aginase, a drug used to treat childhood leukemia and canine lym-
phoma, also reduces mTORC1 signaling in liver and pancreas but
not spleen, suggesting tissue-specific effects (Reinert et al., 2006).
Reductions in mTORC1 signaling correlate with reductions in gen-
eral protein synthesis rates and tissue growth. Temporary reduc-
tions in growth help the organism adapt to acute nutrient stress
whereas longer term reductions correspond with life extension.
More specifically, recent studies show that chronic reductions in
mTORC1 activity by diet, drug or genetic knock down promote
longevity (Drake et al., 2013, 2014). Thus the role of mTOR in con-
trolling the homeostatic control of the proteome under dietary
restriction paradigms is important to further understand.
4. General control nonderepressible 2 (GCN2) senses amino
acid insufficiency

While mTORC1 mediates cellular growth responses to AA suf-
ficiency, the cellular reaction to amino acid insufficiency is pri-
marily driven by the ISR. Originally defined in yeast as the general
amino acid control pathway, the ISR in mammals comprises
2 signal transduction networks operating in parallel with some
cross-talk (Kilberg et al., 2012; Balasubramanian et al., 2013). The
first signal network is initiated by the protein kinase called GCN2.
In the cytosol, GCN2 acts as an amino acid sensor, autoactivating
itself upon binding deacylated tRNA present in the vicinity of the
ribosome. Activated GCN2 then phosphorylates eukaryotic initia-
tion factor 2 (eIF2), causing the translation initiation machinery to
slow down and conserve energy while at the same time favoring
mRNA translation of specific genes. The best characterized gene in
this regard is activating transcription factor 4 (ATF4), a transcrip-
tion factor which functions to promote cellular survival and
adaptation during AA insufficiency (Kilberg et al., 2009). It
accomplishes this by altering the transcriptome to prevent cellular
oxidative damage and promote macronutrient metabolism. It also
promotes the transcription of genes encoding translation initiation
factors and autophagy-related proteins regulated by mTORC1. The
second signal network activated is the G-protein coupled receptor
(GPCR)-mitogen activated protein kinase (MAPK) pathway. Acti-
vation of this pathway results in increased synthesis of tran-
scription factors such as cJUN and ATF2 which, similar to ATF4,
bind amino acid response elements (AARE) in DNA promoter
region to modulate gene expression. Less is understood about this
pathway and the identity of the proximal sensor is unknown.

Work from our lab and others show GCN2 is essential for
adapting to amino acid deprivation induced by diet (Anthony et al.,
2004; Guo and Cavener, 2007), drug (Wilson et al., 2013, 2014) or
genetic condition (She et al., 2013) by regulating both protein
synthesis and expression of ISR-regulated genes. Mice deleted for
GCN2 (GCN2KO) demonstrate hepatic steatosis and reduced
muscle mass when maintained on a leucine-devoid diet (Anthony
et al., 2004; Guo and Cavener, 2007). Treatment with the che-
motherapy agent asparaginase induces immunosuppression,
hepatic failure and pancreatitis in GCN2KO mice (Bunpo et al.,
2010; Wilson et al., 2013). Furthermore, genetic deletion of both
GCN2 and the branched chain keto acid dehydrogenase kinase
(BDK) in mice results in a novel leukodystrophy that limits lifespan
to less than 2 weeks postnatal (She et al., 2013). All of these dys-
functional and maladaptive outcomes are not present in GCN2KO
mice maintained in an environment that provides a sufficient
supply of amino acids. Indeed, when provided standard nourish-
ment for rodents, GCN2KO mice reproduce normally and live
normal, healthy lives. These data are interpreted to mean that
other mammalian species including humans could harbor a defi-
cient or defective GCN2 gene yet possess a silent phenotype,
revealed only when challenged with amino acid insufficiency.
Identifying these genotypes may help with precision medicine or
individualized nutrition.
5. Amino acid sensing to improve health span

While the critical importance of GCN2 and the ISR is starting to
become recognized, large gaps in knowledge about how GCN2
regulates cytoprotection during amino acid limitation in the whole
animal remain unfilled. Current studies in the lab are focused on
the molecular basis for health benefits of dietary essential amino
acid restriction (Anthony et al., 2013) and the role of ATF4 in
mediating the actions of GCN2 and mTORC1 during amino acid
stress. This information is needed to further delineate the relative
importance of global protein synthesis versus gene-specific
translation in determining overall health outcomes to nutritional
stress. Furthermore, rising rates of obesity and metabolic dys-
function combined with an aging population have prompted
exploration into how dietary restriction of essential amino acids
can improve metabolic health and promote lifespan. In this regard,
dietary restriction of methionine promotes a metabolically
younger phenotype by increasing metabolic flexibility and redu-
cing body fat (Lees et al., 2014). A better understanding of how
dietary methionine restriction regulates mTORC1 in concert with
the ISR may lead to new and improved strategies to improve
health span and treat chronic diseases of aging.
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