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Abstract 
 
Background: Radiomic feature analysis has been shown to be effective at modeling cancer 
outcomes. It has not yet been established how to best combine these radiomic features in patients 
with multifocal disease. As the number of patients with multifocal metastatic cancer continues to 
rise, there is a need for improving personalized patient-level prognostication to better inform 
treatment.  
 
Methods: We compared six mathematical methods of combining radiomic features of 3596 
tumors in 831 patients with multiple brain metastases and evaluated the performance of these 
aggregation methods using three survival models: a standard Cox proportional hazards model, a 
Cox proportional hazards model with LASSO regression, and a random survival forest. 
 
Results: Across all three survival models, the weighted average of the largest three metastases 
had the highest concordance index (95% confidence interval) of 0.627 (0.595-0.661) for the Cox 
proportional hazards model, 0.628 (0.591-0.666) for the Cox proportional hazards model with 
LASSO regression, and 0.652 (0.565-0.727) for the random survival forest model.  
 
Conclusions: Radiomic features can be effectively combined to establish patient-level outcomes 
in patients with multifocal brain metastases. Future studies are needed to confirm that the 
volume-weighted average of the largest three tumors is an effective method for combining 
radiomic features across other imaging modalities and disease sites. 
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Introduction 

Recent advances in machine learning and diagnostic imaging have increased enthusiasm 

surrounding the use of quantitative imaging to model clinical outcomes. One quantitative 

imaging technique that holds particular promise in modeling cancer outcomes is radiomic feature 

analysis. Radiomic features are quantitative metrics of size, shape, intensity, and texture that are 

extracted from medical images using high-throughput computational mining techniques.1,2 These 

features represent unique radiographic signatures that have been shown to reveal prognostic 

insights about underlying gene-expression patterns3 and treatment response4 that may not be 

visible to the human eye.  

 

Although radiomic features have shown the ability to risk stratify cancer patients,5,6 radiomic 

analysis has largely been limited to the evaluation of individual tumor volumes. There is no 

established methodology regarding the best way to combine radiomic features for patients with 

multifocal sites of disease to establish a patient-level correlate of clinical outcomes. Within 

oncology, estimating patient outcomes among patients with multiple sites of metastatic disease is 

of particular interest as it influences multi-disciplinary treatment paradigms.  

 

Prognostication for patients with metastatic disease is an area of increasing need, given as many 

as 49% of lung cancer patients within the United States are diagnosed with metastatic disease 

upon initial presentation.7 More importantly, nearly 75% of patients with metastatic disease have 

greater than 5 lesions at diagnosis.8 Even among non-metastatic cancer patients, as many as 17% 

of patients have multi-focal primary tumors.9 Brain metastases represent a significant proportion 

of metastatic cancer patients, and conservatively, at least half of patients diagnosed with 
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metastatic brain disease have multiple brain lesions.10 With improved MRI brain imaging, it is 

likely that the number of patients found with multiple metastases is even higher.11  

 

In this study, we attempted to identify optimal techniques to combine radiomic features for 

patients with multiple brain metastases to model patient-level outcomes. We compared various 

methods of combining radiomic features of individual tumors in patients with multiple brain 

metastases and evaluated the performance of different radiomic aggregation methods in 

estimating survival in patients using different survival models. 

  

Results  

Patient Demographics 

A total of 831 patients with 3596 brain metastases were included. Patient demographics are 

presented in Table 1. Median overall survival was 12 months, median age was 63 years, and the 

most common primary malignancies were NSCLC (41.0%), melanoma (17.3%), breast (13.1%), 

SCLC (6.6%), renal (5.9%), and GI (5.3%). 543 patients (65.3%) had <5 metastases, 214 

(25.8%) had 5-10 metastases, and 74 (8.9%) had 11+ metastases. 

 
Table 1. Patient Demographics 

 
Age 

<50 121 (14.6%) 
50-59 199 (23.9%) 
60-69 282 (33.9%) 
>70 229 (27.6%) 

 
Primary Cancer Site 

NSCLC 341 (41.0%) 
Melanoma 144 (17.3%) 
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Breast 109 (13.1%) 
SCLC 55 (6.6%) 
Renal 49 (5.9%) 
GI 44 (5.3%) 
Other 89 (10.7%) 

 
Number of Metastases 

<5 543 (65.3%) 
5-10 214 (25.8%) 
11+ 74 (8.9%) 
  

Karnofsky Performance Status* 
100 216 (29.1%) 
90 161 (21.7%) 
80 160 (21.6%) 
70 102 (13.8%) 
60 85 (11.5%) 
50 13 (1.8%) 
<=40 4 (0.5%)  

Presence of Extracranial Metastases 
Yes 608 (73.2%) 
No 223 (26.8%)  

* If available 
 

Overall results 
 
Table 2 presents a comparison of various aggregation methods across several survival models.  

For the standard Cox proportional hazards model, the weighted average of the largest 3 

metastases had the highest C-index (95% confidence interval) of 0.627 (0.595-0.661). The 

weighted average of the largest 3 metastases also had the highest C-index of all the aggregation 

methods on the Cox proportional hazards model with LASSO regression with a C-index of 0.628 

(0.591-0.666) and on the random survival forest with a C-index of 0.652 (0.565-0.727).  
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Table 2. Comparison of Aggregation Methods 
 

Cox Proportional Hazards 

Model C-Index (95% CI)  
Unweighted Average 0.610 (0.570-0.646) 
Weighted Average 0.604 (0.571-0.641) 
Weighted Average of Largest 3 Metastases 0.627 (0.595-0.661) 
Largest + Number of Metastases 0.612 (0.579-0.649) 
Largest Metastasis 0.598 (0.559-0.636) 
Smallest Metastasis 0.595 (0.567-0.631) 
  

Cox Proportional Hazards with LASSO Regression 

Model C-Index (95% CI) 
Unweighted Average 0.612 (0.585-0.647) 
Weighted Average 0.603 (0.573-0.640) 
Weighted Average of Largest 3 Metastases 0.628 (0.591-0.666) 
Largest + Number of Metastases 0.597 (0.560-0.632) 
Largest Metastasis 0.596 (0.562-0.630) 
Smallest Metastasis 0.597 (0.557-0.630) 
  

Random Survival Forest 

Model C-Index (95% CI) 
Unweighted Average 0.649 (0.548-0.709) 
Weighted Average 0.641 (0.567-0.729) 
Weighted Average of Largest 3 Metastases 0.652 (0.565-0.727) 
Largest + Number of Metastases 0.622 (0.542-0.706) 
Largest Metastasis 0.627 (0.544-0.694) 
Smallest Metastasis 0.621 (0.529-0.709) 

 
 

Sub-analysis: Number of Metastases 

Table 3 presents model performance of sub-analyses based on number of brain metastases. For 

patients with <5 metastases, the weighted average of their 3 largest metastases had the highest C-

index on the standard Cox proportional hazards model with a C-index of 0.640 (0.600-0.686). 

For patients with 5-10 metastases, the unweighted average of all their metastases had the highest 
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C-index of 0.697 (0.638-0.762). For patients with 11+ metastases, the model including only data 

from the largest metastasis as well as the number of metastases performed with the highest C-

index of 0.909 (0.803-0.993). 

Table 3. Sub-Analysis: Number of Metastases 
 

<5 Metastases (n = 543) 
Model C-Index (95% CI) 
Unweighted Average 0.621 (0.583-0.661) 
Weighted Average 0.617 (0.570-0.651) 
Weighted Average of Largest 3 Metastases 0.640 (0.600-0.686) 
Largest + Number of Metastases 0.639 (0.593-0.676) 
Largest Metastasis 0.619 (0.580-0.653) 
Smallest Metastasis 0.612 (0.566-0.655) 

 
5-10 Metastases (n=214) 

Model C-Index (95% CI) 
Unweighted Average 0.697 (0.638-0.762) 
Weighted Average 0.682 (0.617-0.743) 
Weighted Average of Largest 3 Metastases 0.688 (0.635-0.749) 
Largest + Number of Metastases 0.691 (0.634-0.750) 
Largest Metastasis 0.688 (0.623-0.740) 
Smallest Metastasis *** 

 
11+ Metastases (n=74) 

Model C-Index (95% CI) 
Unweighted Average 0.876 (0.776-0.964) 
Weighted Average 0.872 (0.771-0.965) 
Weighted Average of Largest 3 Metastases 0.880 (0.787-0.964) 
Largest + Number of Metastases 0.909 (0.803-0.993) 
Largest Metastasis 0.894 (0.765-0.974) 
Smallest Metastasis *** 

*** Collinear 
 

Sub-analysis: Volume of Largest Metastasis 

Table 4 describes model performance of sub-analyses based on volume of the largest metastasis. 

Across all sub-groups, the weighted average of the largest 3 metastases had the highest C-indices 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2020. ; https://doi.org/10.1101/2020.11.04.20226159doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.04.20226159
http://creativecommons.org/licenses/by-nd/4.0/


 8 

of 0.701 (0.652-0.748), 0.687 (0.622-0.728), 0.679 (0.623-0.733) for volumes <0.200 cc, 0.200-

0.700 cc, and >0.700+ cc, respectively. 

Table 4. Sub-Analysis: Volume of Largest Metastasis 
 

Largest Metastasis <0.200 cc (n=261) 
Model C-Index (95% CI)  
Unweighted Average 0.674 (0.630-0.729) 
Weighted Average 0.694 (0.639-0.749) 
Weighted Average of Largest 3 0.701 (0.652-0.748) 
Largest + Number of Metastases 0.698 (0.644-0.767) 
Largest 0.695 (0.634-0.736) 
Smallest *** 
   

Largest Metastasis 0.200-0.700 cc (n=281) 
Model C-Index (95% CI)  
Unweighted Average 0.663 (0.615-0.719) 
Weighted Average 0.675 (0.622-0.731) 
Weighted Average of Largest 3 0.687 (0.622-0.728) 
Largest + Number of Metastases 0.668 (0.621-0.727) 
Largest 0.656 (0.611-0.717) 
Smallest *** 
    
Top 20 Features Largest Metastasis 0.700+ cc (n=289) 
Model C-Index (95% CI) 
Unweighted Average 0.671 (0.616-0.717) 
Weighted Average 0.656 (0.602-0.718) 
Weighted Average of Largest 3 0.679 (0.623-0.733) 
Largest + Number of Metastases 0.675 (0.614-0.715) 
Largest 0.666 (0.615-0.714) 
Smallest *** 

*** Collinear 
 

Discussion 

The emerging field of radiomic feature analysis has shown particular promise in cancer research. 

However, traditional radiomic feature analysis has had limited utility for patients with metastatic 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2020. ; https://doi.org/10.1101/2020.11.04.20226159doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.04.20226159
http://creativecommons.org/licenses/by-nd/4.0/


 9 

or multifocal disease because there is a paucity of established methods which aggregate radiomic 

features across multiple tumors to establish patient-level outcome estimates. Given the majority 

of cancer patients with brain metastases have multifocal disease, they represent an optimal 

patient population to study this question. We compared different methods of aggregating 

radiomic features and tested their performance across different survival models. Our study 

suggests that a volume-weighted average of the radiomic features of the largest three brain 

metastases is the most effective technique to model survival across various methods of survival 

analysis. Furthermore, this suggests that in patients with multi-focal disease, the largest tumors 

may be driving prognosis. 

 

Practical implications of these findings include more efficient computational and clinical 

resource utilization. As server costs, data storage requirements, and computation time increase 

with increasing dataset size and complexity, effective models of prognosis may potentially be 

developed with just the data from the largest three metastases alone. Furthermore, clinicians may 

save time by only needing to manually segment the largest three metastases.  

 

This study corroborates studies that have found radiomic features to correlate with prognosis 

among lung,12 breast,13 and prostate cancer patients.6 To address the issue of combining multi-

focal data at a patient-level, prior studies have implemented a weighted average of features of all 

metastases14 while others have included all tumors from a specific patient assigned to either a 

training or validation set to avoid cluster-correlation biases.15 While tumor-level data may be 

useful for certain tasks like primary-site prediction, there is a need for aggregation of patient-

level data for overall outcomes like survival or recurrence.  
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A notable finding of this study is that across all models, it was important that some measure of 

multi-focality was incorporated, whether aggregating radiomic features from the three largest 

metastases or including a clinical measure of multi-focality in the number of metastases.  

 

On sub-analysis, across all volume groups of the largest metastasis, the weighted average of the 

largest three tumors had the highest performance. As the number of metastases increased greater 

than 5, models incorporating radiomic data from the largest metastasis with the addition of the 

number of metastases performed better, suggesting that with a higher number of metastases, 

additional non-imaging data (i.e. clinical data) may improve model performance, as prior studies 

have demonstrated the promise of clinical data alone in modeling survival.16  

 

This study has limitations. First, there is an inherent selection bias since all the patients in this 

study were limited to those with brain metastases so results may vary across other disease sites. 

Second, these patients were all treated at one institution with the same MRI protocol. Third, 

these patients were treated with the same treatment modality.  

 

In conclusion, this study suggests that radiomic features can be effectively combined to establish 

patient-level outcomes in patients with multifocal disease. Future studies are needed to confirm 

that the volume-weighted average of the largest three tumors is an effective method for 

combining radiomic features across other imaging modalities and disease sites. 

 

Methods 
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Patient Data 

Research was conducted in accordance with the Declaration of Helsinki guidelines and approved 

by the Yale University Institutional Review Board. Informed consent was obtained from all 

participants in this study. We analyzed 831 patients with 3,596 brain metastases treated with 

primary stereotactic radiosurgery (SRS) at our institution between 2000-2018. Patients with prior 

resection or prior radiation treatment were excluded. Metastases <5 mm were also excluded. The 

primary outcome of interest was overall survival following SRS treatment defined as time from 

SRS treatment date to date of death or last follow-up. 

 

Image Preprocessing 

The image preprocessing workflow is illustrated in Figure 1. Individual metastases were 

segmented on T1-weighted contrast enhanced MRI images and approved by both a radiation 

oncologist and a neurosurgeon. A bounding box with 1mm of peri-tumoral tissue around the 

maximum dimension of the tumor contour in the axial plane was created to ensure edge detection 

of the tumor. Images were resampled to 1 mm pixel spacing, corrected for low frequency 

intensity non-uniformity present in MRI data with the N4ITK bias field correction algorithm,17 

and z-score normalized to reduce inter-scan bias.  
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Figure 1. Preprocessing Workflow. (A) Input: slices of pre-treatment T1-post contrast brain MRI 
scans. (B) Identification of the region of interest from manual segmentations. (C) Output: 

extracted tumors with pixel resampling, N4ITK bias field correction, and z-score normalization. 
 

Radiomic Feature Extraction and Aggregation 

851 radiomic features2 (Supplement 1) were extracted from the processed images of each brain 

metastasis and analyzed as predictors of survival. The following aggregation methods were 

compared to estimate patient-level risk for patients with multiple metastases: (1) Unweighted 

Average (UWA): Radiomic size and shape features were summed while all other features were 

averaged for each patient. (2) Weighted Average (WA): Radiomic size and shape features were 

summed while all other features were averaged for each patient based on a weighted proportion 

of total volume of all metastases per patient.14 (3) Largest 3 Metastases: Radiomic size and shape 

features from the largest 3 metastases of each patient were summed while all other features from 

the largest 3 metastases were averaged based on a weighted proportion of the total volume of the 

largest 3 metastases.18 (4) Largest Metastasis + Number of Metastases: The features from the 

largest metastasis of each patient were selected, and the total number of metastases for each 

patient was included as an additional variable.16 (5) Largest Metastasis Alone. (6) Smallest 

Metastasis Alone as a control with the assumption that the smallest tumor would have decreased 

prognostic value compared to larger tumors. 

 

Statistical Analysis and Survival Models  

Similar to prior radiomic analysis, minimum redundancy maximum relevance (mRMR) was used 

for dimensionality reduction of radiomic features.19 Relevant features were tested with survival 

models proposed in the literature including a traditional Cox proportional hazards model,20 a Cox 

proportional hazards model with LASSO (least absolute shrinkage and selection operator) 
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regression,21 and a random survival forest.22 Discriminatory ability of each model was assessed 

with calculated concordance indices (c-index) using 100 bootstrapped samples of 416 patients 

(50%). Multiple survival models were assessed to determine if particular aggregation methods 

were superior for specific survival models.  

 

Sub-Group Analysis 

A sub-group analysis was performed to evaluate the role of the following potential drivers of 

patient prognosis: the overall number of metastases16 and the volume of the largest metastasis of 

each patient.18 The robustness of the various radiomic aggregation techniques was evaluated by 

comparing the Cox proportional hazards model across these sub-groups: the number of 

metastases (<5 metastases, 5-10 metastases, 11+ metastases) as well as the volume of the largest 

metastasis (<0.200 cc, 0.200-0.700 cc, > 0.700+ cc) per patient. 

 

Code Availability:  

Radiomic features were extracted using PyRadiomics (version 2.2.0).23 Minimum redundancy 

maximum relevance feature selection was performed with the mRMRe package using R version 

3.6.2.24 Image preprocessing and comparison of aggregation were performed with Python 

version 3.7. Survival analysis was performed with the lifelines and scikit-survival packages.25 

Our code is available at https://github.com/Aneja-Lab-Yale. 
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Table and Figure Legend: 
 
Table 1. Patient Demographics 
 
Table 2. Comparison of Aggregation Methods 
 
Table 3. Sub-Analysis: Number of Metastases 
 
Table 4. Sub-Analysis: Volume of Largest Metastasis 
 
Figure 1. Preprocessing Workflow. (A) Input: slices of pre-treatment T1-post contrast brain MRI 
scans. (B) Identification of the region of interest from manual segmentations. (C) Output: 
extracted tumors with pixel resampling, N4ITK bias field correction, and z-score normalization. 
 
Supplemental Table S1. Radiomic Features 
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Supplemental S1. Radiomic Features 
 

The following Original feature classes were extracted using the Pyradiomics package.1 Features 
for each of the Wavelet filter classes (HHH, HLL, LHH, HHL, LHL, LLH, HLH, LLL) were 

also extracted for a total of 851 extracted radiomic features.  
 

Original Number of 
Features 

Wavelet (HHH, HLL, LHH, 
HHL, LHL, LLH, HLH, LLL) 

Number of 
Features 

Shape-Based (3D) 14 
  

First Order Statistics 18 First Order Statistics 18 

Gray Level Co-occurrence 
Matrix (GLCM) 

24 Gray Level Co-occurrence Matrix 
(GLCM) 

24 

Gray Level Size Zone Matrix 
(GLSZM)  

16 Gray Level Size Zone Matrix 
(GLSZM)  

16 

Gray Level Run Length Matrix 
(GLRLM) 

16 Gray Level Run Length Matrix 
(GLRLM) 

16 

Neighboring Gray Tone 
Difference Matrix (NGTDM) 

5 Neighboring Gray Tone Difference 
Matrix (NGTDM) 

5 

Gray Level Dependence Matrix 
(GLDM)  

14 Gray Level Dependence Matrix 
(GLDM)  

14 
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