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ABSTRACT
In December 2019, COVID-19 epidemic was described in Wuhan, China, and the infection has spread widely
affecting hundreds of thousands. Herein, an effort was made to identify commercially available drugs in
order to repurpose them against coronavirus by the means of structure-based virtual screening. In addition,
ZINC15 library was used to identify novel leads against main proteases. Human TMPRSS2 3D structure was
first generated using homology modeling approach. Our molecular docking study showed four potential
inhibitors against Mpro enzyme, two available drugs (Talampicillin and Lurasidone) and two novel drug-like
compounds (ZINC000000702323 and ZINC000012481889). Moreover, four promising inhibitors were identi-
fied against TMPRSS2; Rubitecan and Loprazolam drugs, and compounds ZINC000015988935 and
ZINC000103558522. ADMET profile showed that the hits from our study are safe and drug-like compounds.
Furthermore, molecular dynamic (MD) simulation and binding free energy calculation using the MM-PBSA
method was performed to calculate the interaction energy of the top-ranked drugs.
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Introduction

Coronavirus disease (COVID-19) has become an important pub-
lic issue across the globe since December 2019. As of 12th of
April 2020, more than 1.79 million cases have been reported in
210 countries and territories (Worldometer, 2020). It affects peo-
ple worldwide and there is no vaccine yet for this virus. Certain
types of pneumonia are implicated to the new coronavirus,
which is considered a big threat to global public health. There is
an urgent need to develop potent anti-COVID-19 agents for the
prevention of the outbreak and stop viral infections.
Repurposing of known small molecules seems to be very effi-
cient way in order to develop potent drugs to combat corona-
virus in this short time period. Recently, a number of efforts
were made to design novel inhibitors or employ drug repurpos-
ing approach to identify anti-COVID-19 drugs, which can act as
promising inhibitors against coronavirus protease (Khan et al.,
2020; Sarma et al., 2020). The known coronavirus 3-chymotryp-
sin-like protease (3CLpro), also known as Mpro, is the main pro-
tease, which is required for proteolytic maturation of the corona
virus. This Mpro have an essential role in the immune regulation
and cleaving the polyproteins pp1a and pp1ab, which making
them attractive and important targets for anti-COVID-19 drugs
(Zhou et al., 2019). Functional proteins such as RNA polymerase,
endoribonuclease and exoribonuclease are generated by cleav-
age of pp1a and pp1ab polyproteins by Mpro (Khan et al.,
2020). Therefore, targeting Mpro enzyme will inhibit the viral
maturation and enhance the host innate immune response
against COVID-19. 3D crystal structure of 3CL hydrolase from
specific coronavirus (PDB ID: 6LU7) is recently reported in the

public domain. This could be an excellent target to be used to
screen small molecule libraries to inhibit the cleavage of the
viral polyprotein and stop the spread of infection. In the Protein
Data Bank (PDB) archive, there are also some proteins whose
sequence identity at least 90% similar to the COVID-19 corona-
virus 3CL hydrolase (Mpro). These proteins structures include
bound inhibitors, which could lead to repurpose novel drug
against coronavirus 3CL hydrolase. Recent study has shown that
the cellular transmembrane protease serine 2 (TMPRSS2) is used
by COVID-19 for the purpose of entering the host cells, and
blocking TMPRSS2 might offer a promising treatment option
and prevent the virus from entering the host cells (Hoffmann
et al., 2020). Transmembrane serine proteases are connected to
some viral respiratory infections, where they facilitate the entry
of the virus into the lungs (Shulla et al., 2011). TMPRSS2 belongs
to the serine protease transmembrane family type II, and it was
recognized by its involvement in the cleavage of the influenza
virus hemagglutinin protein in epithelial cells (B€ottcher et al.,
2006). In addition, studies have shown that TMPRSS2 can drive
the cleavage spike protein, which is a coronavirus fusion glyco-
protein. Spike proteins on the host cell surface are activated by
TMPRSS2 to facilitate the virus cell-membrane fusion and the
entry of the virus (Gierer et al., 2013; Matsuyama et al., 2010).
Targeting TMPRSS2 in some animal studies decreased the
pathological severity of influenza virus infection (Iwata-
Yoshikawa et al., 2019). Hence, TMPRSS2 is an attractive target
for designing and developing antiviral drugs (Laporte &
Naesens, 2017). Herein, our study aims to help in coronavirus
inhibition in one of two ways, preventing the virus from
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entering the host cells, and blocking the virus maturation inside
the host cells. Computer-aided drug design (CADD) has been
used for the identification of potent inhibitors against corona-
virus (Berry et al., 2015; Oany et al., 2014). In this study, we have
applied virtual screening approach, homology modeling of
human TMPRSS2 enzyme, molecular docking study and ADMET
profile analysis in order to identify novel and potential inhibitors
against COVID-19 (Figure 1).

Computational methods

Protein and ligand setup

The recent resolved crystal structure of 3CL hydrolase enzyme
was retrieved from the Protein Data Bank (PDB ID: 6LU7) with a
resolution of 2.16Å. The enzyme has one chain with a total of
306 amino acids. The enzyme was prepared at physiological pH

(7.4) using “Prepare Protein” protocol in BIOVIA Discovery
Studio 4.5 (DS 4.5) and missing residues insertion was allowed if
found. Water molecules and the inhibitor were removed from
the structure. For the purpose of repurposing of known inhibi-
tors, a total of 4,500 approved drugs were downloaded in SDF
file format from ChEMBL (https://www.ebi.ac.uk/chembl/),
DrugBank (https://www.drugbank.ca/) and Selleckchem (https://
www.selleckchem.com/) databases. In addition, a total of 30,000
drug-like molecules were downloaded from ZINC15 database
(https://zinc15.docking.org/). All small molecules were prepared
and protonated at physiological pH (7.4) and their geometry
was minimized using DS 4.5.

Homology modeling

Lack of information of crystal structures of particular proteins
has delayed and obstructed the drug industry. Homology

Figure 1. Workflow for identification of potential inhibitors against Mpro and TMPSS2 enzymes via structure-based virtual screening.

Table 1. Grid box coordinates and size parameters used in AutoDock Vina.

Mpro TMPRSS2

Center (Å)
x �12.149 �8.951
y 14.097 28.972
z 69.719 19.716
Box dimension (Å)
x 18.75 18.75
y 18.75 18.75
z 18.75 18.75

Table 2. Grid box mapping parameters used in AutoDock 4.2.

Mpro TMPRSS2

Center (Å)
x �12.149 �8.951
y 14.097 28.972
z 69.719 19.716
Box dimension (Å)
x 50 50
y 50 50
z 50 50
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modeling is widely applied to create a reliable structure of a
protein using its own amino acid sequence (Vyas et al.,
2012). To date, TMPRSS2 enzyme structure has not been
resolved yet. Therefore, Basic Local Alignment Search Tool
(BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) search was
carried out to identify the most suitable template for our tar-
get (TMPRSS2). According to the results, the crystal structure
of human transmembrane protease serine (DESC1) showed
high identity of 41%, 187 Bit-Score and 2.55333e-55 E-value
with the query target. Consequently, the 3D structure of
DESC1 was retrieved from PDB website (PDB ID: 2OQ5,
1.61 Å) (Kyrieleis et al., 2007). TMPRSS2 sequence in FASTA
file format (UniProt ID: O15393) was downloaded from
UniProt (http://www.uniprot.org/). The template and the tar-
get sequences were aligned using “Align Sequences” in DS
4.5. Twenty models were created using “Homology
Modeling” protocol in DS 4.5 using MODELLER plug-in
(Webb & Sali, 2016). MODELLER was then used to verify the
20 built models. The best model was found to be M0001
with a Normalized DOPE score of �1.106201. The created
homology modeling was then minimized using the “Clean
Geometry” tool provided by DS 4.5, which minimizes the
energy under CHARMM forcefield. Additionally, the protein
was prepared using “Prepare Protein” protocol and proto-
nated at pH, 7.4. M0001 model was then refined using
3Drefine web server (http://sysbio.rnet.missouri.edu/3Drefine/)
(Bhattacharya et al., 2016).

Further verification of our homology modeling was carried
out using web-based tools ProSA (Wiederstein & Sippl, 2007),
PROCHECK (Laskowski et al., 1993) and ERRAT (Colovos &
Yeates, 1993) to assess the quality of the model structure.

Structure-based virtual screening

Structure-based virtual screening refers to in silico identifica-
tion of potential chemical molecules out of large number of
compound libraries, which have high affinity to proteins of
known structure, based on the binding of the small molecule
with the protein binding pocket (Sliwoski et al., 2014). To
perform the virtual screening approach in our study,
AutoDock Vina was used. AutoDock Vina offers an accurate
and high performance docking tool, which relies on both
empirical and knowledge-based scoring functions (Trott &
Olson, 2009). The docking parameters for both Mpro and
TMPRSS2 are given in Table 1. AutoDock Vina was used to
assess the binding affinity of the native inhibitor (N3)
obtained from the crystal structure of Mpro, as well as the
binding affinity of selected known inhibitors of TMPRSS2
retrieved from the literature (Sielaff et al., 2011). The binding
energy threshold was based on the average binding energy
scores of docked known inhibitors against Mpro and
TMPRSS2, which found to be �6.2 kcal/mol and �7.2 kcal/
mol, respectively. In the present study, the threshold was set
to �8 kcal/mol due to the fact that hit compounds were
expected to show lower binding energy scores, and to nar-
row down the search space. Selection criterion was set to
ensure that the virtual screening will end up only with those
molecules with the highest binding affinities to their respect-
ive targets. A total of 3451 molecules satisfied our selection
criterion (DG� � �8 kcal/mol) and showed the highest bind-
ing affinity against Mpro and TMPRSS2 enzymes,
respectively.

Molecular docking study

The hits compound from the virtual screening study were
further docked into the studied targets using AutoDock 4.2
(Morris et al., 2009). Grid box mapping parameters are shown
in Table 2. Grid box parameters were set to cover the whole
binding pocket and its adjacent residues. Twenty million
energy evaluations were performed for each compound with

Figure 2. TMPRSS2 and human DESC1sequences alignment. Amino acids identity is shown in dark blue, and similarity is represented in light blue.

Figure 3. Structural alignment between the homology modeling of TMPRSS2
(target) and the crystal structure of DESC1 (template) showed an RMSD value
of 0.40 Å.
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a total of twenty runs using AutoDock 4.2. Lamarckian
Genetic Algorithm was used and Gasteiger partial charges
were added onto all studied proteins.

Electrostatic potential calculation

Electrostatic potential was predicted using DelPhi program
included in DS 4.5, which employs the Poisson-Boltzmann
formula on a cubic lattice using the finite-difference

technique to calculate the electrostatic charge distribution of
TMPRSS2 and Mpro enzymes (Nicholls & Honig, 1991).

ADMET profile and drug-like prediction

Absorption, distribution, metabolism, excretion and toxicity
(ADMET) profile has a great importance in drug industry and
is widely used in CADD to reduce undesired effects. In our
study, web-based tools admetSAR (Yang et al., 2019) and

Figure 4. Homology modeling (M0001) validation. (a) z-score plot shows model M0001 (black dot) within the range of native structure. (b) Local energy plot. (c)
Ramachandran plot.

Figure 5. ERRAT scheme plot for the TMPRSS2 model. Red bars refer to the misfolded region at the 99% confidence level. Regions that exhibit misfolding at 95%
confidence level are in yellow bars. Green bars specify the regions with the proper protein folding.
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SwissADME (Daina et al., 2017) were used to predict the
drug-likeness and ADMET profile.

Molecular dynamic (MD) simulation

Molecular dynamic approach is widely used to assess atoms
behavior, structural stability and to study the conformational
changes on atomic level. Herein, top-ranked compounds,
homology model of TMPSS2 as well as the crystal structure
of Mpro enzyme were subjected to MD simulation by nano-
scale molecular dynamics (NAMD) software (Phillips et al.,
2005), and the temperature was set to 303 K. Configuration
files for MD simulations were generated by CHARMM-GUI
website (http://www.charmm-gui.org/) (Jo et al., 2008).
Ligand parameterization was performed using CHARMM
General Force Field (CGenFF) web-based tool (https://cgenff.
umaryland.edu/). All systems were solvated using transferable
intermolecular potential water molecules (TIP3P) model
(Boonstra et al., 2016). MD simulations were performed in
two steps; equilibration under NVT ensemble for 5 ns time-
scale, where the systems’ energy was minimized for 10,000
steps, and production for 50 ns timescale under the
NPT ensemble.

Binding free energy calculation

The binding free energy (DGbin) between protein and ligand is
controlled by three factors; the gas-phase free energy (DGMM),
the solvation free energy (DGsol) and the change in the system
entropy (�TDS), which can be calculated by molecular
mechanics Poisson-Boltzmann Surface Area (MM-PBSA) mod-
ule, as expressed in Equation (1) (Kollman et al., 2000):

DGbin ¼ DGMM þ DGsol�TDS (1)

In the present study, MM-PBSA calculations were per-
formed using Calculation of Free Energy (CaFE) tool to calcu-
late the interaction energy between the ligand and the
residues of the protein active site (Liu & Hou, 2016). In the
MM-PBSA calculations, the external dielectric constant was
set to 80.0, the internal dielectric constant was 1.0 and the
reciprocal of grid spacing of 1.0 Å was employed.

Results and discussion

Homology modeling

Out of the 20 models generated by MODELLER, we selected
model M0001, which had the lowest Normalized DOPE score
(�1.106201). Sequence alignment for M0001 and the human
DESC1were performed unsing DS 4.5, and the sequence identity
was 39.4%, while sequence similarity was 61% (Figure 2). In fact,
if the target and template sequences share 30% and more of
amino acid identity, the homology modeling is considered to be
reliable and successful (Xiang, 2006). Structural alignment of our
homology modeling structure (target) with the 3D structure of
DESC1 (template) was performed using DS 4.5, and the calculated
RMSD was 0.40Å, which suggests the high similarity between the
target and the template (Figure 3). Our model (M0001) was veri-
fied using the Web-based version of Protein Structure Analysis
tool, ProSA. ProSA is used to calculate the z-score of a specific
model and correlate this score to those calculated scores from all
publicly available structures on PDB website. Accordingly, the z-
score of our model M0001 was -6.69, which is in the range of all
PDB conformations (Figure 4a). Moreover, the energy plot
describes amino acid position depending on its local energy,
where negative values relate to the accuracy of the structure
(Figure 4b). In addition, PROCHECK web-based tool was used to
generate Ramachandran plot to assess the energetically allowed
regions of our model (Figure 4c). 83.8% of the residues are in the
most favored regions, 15.2% are in additional allowed regions
and 1.0% of the residue are in disallowed regions. ERRAT (https://
servicesn.mbi.ucla.edu/ERRAT/) was used to calculate the overall
quality factor (OQF) for non-bonded atomic interactions, and gen-
erally any structure with OQF of 50% and more is considered as a
high quality model. For our homology modeling, the overall qual-
ity factor calculated by the ERRAT server was 62% (Figure 5).

Structure-based virtual screening and molecular
docking results

Calculated binding energies and estimated inhibition con-
stants of the top-ranked ligands retrieved in our study are
given in Table 3.

Mpro potential inhibitors
Our molecular docking study revealed two of the approved drugs
Talampicillin and Lurasidone with the highest binding affinities to
Mpro enzyme. Talampicillin was found to have a binding energy
score of �11.17 kcal/mol and an inhibition constant of 6.49nM.
Talampicillin is a prodrug of ampicillin, an antibacterial drug with
a high potency against gram-negative bacteria. Talampicillin
formed conventional and carbon hydrogen bonds with residues
Gly143, Glu166, Gln189 and Gln192, p-r bond with His41, two
alkyl interactions with the residues Met165 and Met49, two
p-alkyl bonds with the residues Cys145 and Pro168, a p-stacked
interaction with Leu167 and many van der Waals interactions
were found as well (Figures 6a, 7a). Lurasidone was the second-
best candidate inhibitor against Mpro that showed and estimated
inhibition constant value of 6.52nM with a predicted binding
energy score of �11.17 kcal/mol. Lurasidone was approved by

Table 3. Computed binding energy (DG�) and calculated constant inhibition
(Ki) values of the top-ranked ligands from ZINC15 and approved
drugs libraries.

Mpro

Binding Energy Inhibition Constant
DG� (kcal/mol) Ki (nM)

Talampicillin �11.17 6.49
Lurasidone �11.17 6.52
ZINC000015988935 �12.39 0.826
ZINC000103558522 �12.36 0.866

TMPRSS2
Binding Energy Inhibition Constant
DG� (kcal/mol) Ki (nM)

Rubitecan �9.47 115
Loprazolam �9.31 149
ZINC000000702323 �12.18 1.18
ZINC000012481889 �12.14 1.26
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the FDA in 2010 as an antipsychotic drug for treating schizophre-
nia patients (Corponi et al., 2019). Different ligand-protein interac-
tions formed after the molecular docking study with Lurasidone,
which includes hydrogen bonds with the residues His41 and
Glu166, alkyl interactions with Met165 and Met49, p-alkyl inter-
action with Pro168, Met165 and His41 and multiple van der

Waals interactions with the receptor (Figures 6b and 7b).
Talampicillin and Lurasidone showed a reliable binding mode in
Mpro and blocking the active site of the enzyme. The two top-
ranked compounds from the ZINC15 library were
ZINC000015988935 and ZINC000103558522. ZINC000015988935
was found to have a binding energy of �12.39 kcal/mol and an

Figure 6. 3D-interaction diagram for the top-ranked compounds. Mpro complexes: (a) Talampicillin, (b) Lurasidone, (c) ZINC000015988935, (d) ZINC000103558522.
TMPRSS2 complexes: (e) Rubitecan, (f) Loprazolam, (g) ZINC000000702323, (h) ZINC000012481889.
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inhibition constant of 826pM, while ZINC000103558522 had a
binding energy of -12.36 kcal/mol and an inhibition constant of
866pM. ZINC000015988935 showed a p-sulfur interaction with
Met49, seven H-bonds with the residues Arg188, Asp187, Gln189,

Ser144, Cys145 and Glu166, alkyl interaction with Met165 and a
p-alkyl interaction with Cys145 (Figures 6c and 7c).
ZINC000103558522 shared two p-sulfur interactions with residues
Met49 and Cys145, hydrogen bonds with Glu166, Gln189,

Figure 7. 2D-interaction diagram for the top-ranked Mpro-complexes: (a) Talampicillin, (b) Lurasidone, (c) ZINC000015988935, (d) ZINC000103558522.
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Cys145, Ser144 and Gly143, alkyl interactions with Met165 and
Met49 and lastly p-alkyl interactions with Cys145 and Met49 and
various van der Waals interactions with the enzyme (Figures 6d
and 7d). ZINC000015988935 and ZINC000103558522 depicted

more hydrogen bond numbers shared with the enzyme in com-
parison to Talampicillin and Lurasidone, and this explains the
higher binding affinity estimated for the Mpro enzyme (Figures 6
and 7).

Figure 8. 2D-interaction diagram for the top-ranked TMPRSS2-complexes: (a) Rubitecan, (b) Loprazolam, (c) ZINC000000702323, (d) ZINC000012481889.
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TMPRSS2 potential inhibitors
Rubitecan drug bound to our model with a binding energy
value of �9.47 kcal/mol and an inhibition constant of
115.06 nM. Rubitecan is a potent antitumor drug and has a
high potency against solid tumors and pancreatic cancer
(Clark, 2006). The nitroso group (NO–) of Rubitecan formed
hydrogen bonds with His296 and Lys300 (Figure 6e, 8a).
Rubitecan also formed a p-cation bond with residue Lys342,
an alkyl interaction with Lys340 and a p-alkyl interaction
with Lys300. According to our molecular docking study,
Loprazolam was found to have a binding energy score of
�9.31 kcal/mol and an inhibition constant of 149 nM against
our homology modeling of TMPRSS2. Loprazolam is
described for treating insomnia, hypnotic and muscle spasm
(Clark et al., 1986). Loprazolam showed several interactions
including p-cation with Lys300, H-bonds with Lys390, His296
and Tyr337, p-alkyl interaction with His296 and an alkyl inter-
action with residue Lys300 (Figure 6f, 8b). Our molecular
docking study showed compound ZINC000000702323 form
ZINC15 with the highest binding affinity against TMPRSS2.
ZINC000000702323 was found to have a binding energy of
�12.18 kcal/mol and a Ki value of 1.18 nM.
ZINC000000702323 was found to have hydrogen bonds with
the residues Gly462, Cys437, Gln438 and Gly439, p-lone pair
interaction with Trp461, p–p interactions with residues
His296 and Trp461, amide-p interaction with Trp461 and
p-alkyl interactions with His296, Lys342 and Tyr474 and an
alkyl interaction with the Lys342 (Figure 6g and 8c).

ZINC000012481889 compound was the second hit in our
study with a binding energy of �12.14 kcal/mol and a Ki of
1.26 nM. ZINC000012481889 formed p–r interactions with
Lys300 and His296, a salt bridge with Asp345, a p-cation
with Lys300, halogen bonds with Gly464 and Ser436, mul-
tiple H-bonds with the residues Lys342, Ser460, Ser441,
Cys437, Gln438, Ser339, Lys340 and Tyr337, a p–p T-shaped
bond with His296, a p-alkyl interaction with Lys300 as well
as many van der Waals interactions (Figures 6h and 8d).

Electrostatic potential distribution

Electrostatic potential helps understanding the structural
aspects of the protein and the ligands and on those interac-
tions between them. Electrostatic charges were mapped on
our homology modeling, TMPRSS2, and the coronavirus pro-
tease Mpro for better understanding the surface nature of
both enzymes. Intensity of positive potential was found to
cover the binding pocket of the protease Mpro (Figure 9a,
b). The inner cavity of the binding pocket of the TMPRSS2
model was found to have a negative potential and the rest
of the active site is covered by positive charge (Figure 9c, d).

ADMET profile and drug-likeness

Lipinski’s rule of 5 was used to predict the drug-likeness of our
hits from the ZINC15 library. Lipinski’s rule of 5 states that for

Figure 9. Electrostatic surface potential of top-ranked ligands. The electrostatic potential was predicted onto the surface of the protein of (a) Mpro_Talampicillin,
(b) Mpro_ZINC000015988935 (c) TMPRSS2_Rubitecan and (d) TMPRSS2_ZINC000000702323. Positive and negative electrostatic charges are colored in blue and red,
respectively.

Table 4. Physicochemical properties of potential drug candidates.

ChEMBL ID MW <500 HA <10 HD <5 log P <5 TPSA �140 Caco-2 (cm/s) log S > �5

ZINC000000702323 470.54 5 1 3.9 105.67 0.6357 �3.594
ZINC000012481889 451.49 7 2 2.63 85.62 0.8268 �3.471
ZINC000015988935 455.42 6 0 1.29 116.65 0.6492 �3.664
ZINC000103558522 493.51 5 0 2.83 103.51 0.6635 �3.582
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Figure 10. 50ns-MD simulation RMSD plots of unbounded and bound enzymes. (a) Free Mpro in blue line, Mpro_Talampicillin in orange colored line and Mpro_
ZINC000015988935 complex in green line. (b) Free TMPRSS2 in pink line, TMPRSS2_Rubitecan complex in gray colored line and TMPRSS2_ ZINC000000702323 in yellow line.

Figure 11. RMSF profiles of free enzymes and complexes. (a) Free Mpro in blue line, Mpro_Talampicillin in orange colored line and Mpro_ZINC000015988935 com-
plex in green line. (b) Free TMPRSS2 in pink line, TMPRSS2_Rubitecan complex in gray colored line and TMPRSS2_ ZINC000000702323 in yellow line.

10 A. D. ELMEZAYEN ET AL.



any ligand to be considered as a drug-like, a molecule should
obey these criteria: molecular weight <500 Dalton, number of
H-bond donors <5, number of H-bond acceptors <10 and LogP
<5 (Lipinski, 2004). Accordingly, all of our hits obeyed this rule
and thus considered as drug-like compounds. Furthermore, our
compounds were found to be within the reference range con-
sidering their water solubility (LogS), Caco-2 permeability and
topological polar surface area (TPSA) (Table 4).

Molecular dynamic simulation analysis

In present study, to evaluate the stability of the homology
model and the drug candidates, these structures were sub-
jected to MD simulation. Root mean square deviation (RMSD)
was calculated considering the proteins backbone with respect
to the initial conformations. As depicted in Figure 10a, RMSD of
free Mpro enzyme remained stable between 5ns and 34ns
timescale at 2.4 Å, then slightly increased and persisted at 3.6 Å
from 35ns till the end of the run. The RMSD of
Mpro_ZINC000015988935 reached its steady state at 3.1 Å at
10ns. The RMSD of Mpro_Talampicillin showed that the system
was balanced after 5 ns and slightly fluctuated between 2.3 and
3Å and displayed the greatest effect on Mpro’s stability. As illus-
trated in Figure 10b, The RMSD curves of the free TMPRSS2 had
reached the equilibrium state after 3 ns. The RMSD of com-
pounds TMPRSS2_Rubitecan and TMPRSS2_ZINC000000702323
revealed that the two complexes had shown almost the same
behavior during the MD simulation and achieved structural sta-
bility the last 15ns. A thorough study of the root mean square
fluctuation (RMSF) curves of the free Mpro and its complexes
showed all amino acids located in the active site of the enzyme
had RMSF fluctuations between 0.8Å and 1.7 Å, which indicate
that the studied compounds kept close contact with their bind-
ing pockets during the MD simulations. However,
Mpro_ZINC000015988935 showed higher fluctuations for resi-
dues 43–45 and 187–190 and this observation is consistent with
the RMSD profiles of Mpro_ZINC000015988935 (Figure 11a).
The higher fluctuations depicted in the RMSF profiles of
TMPRSS2 and its complexes are located within the loop regions
of the protein, and this is expected considering the high flexibil-
ity nature of loops (Figure 11b).

Binding free energy calculation

The binding free energy (MM-PBSA) was computed after the
MD simulation the last 10 ns for all the complexes and the
results are given in Table 5. Compound ZINC000015988935
depicted the lowest binding free energy with Mpro enzyme,
while Talampicillin exhibited relatively higher binding energy.

On the other hand, Rubitecan showed the lowest binding
free energy with the homology modeling TMPRSS2 enzyme
in comparison to compound ZINC000000702323.

Conclusion

Mpro and TMPRSS2 are shown to be important and highly potent
targets for the inhibition of COVID-19 infection. In this study, the
structure-based virtual screening identified four commercially
available drugs (Talampicillin, Lurasidone, Rubitecan and
Loprazolam) with a potential inhibition of Mpro and TMPRSS2
enzymes. These drugs might be repurposed against COVID-19. In
addition, four novel compounds were identified from ZINC15
library showed promising high affinities against Mpro and
TMPRSS2 enzymes. These hits were described as drug-like com-
pounds and showed harmless ADMET properties and may aid in
developing and optimizing more efficient and potent COVID-19
inhibitors. Trajectories analysis showed that the studied com-
plexes have displayed structural stability during the MD runs.
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