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Abstract

Most psychological questionnaires face issues of response bias in respondent-reported

scales, inadequacy for criterion-reference testing, or difficulty in estimating a large number

of latent traits. Situational tests together with the general nominal diagnosis model frame-

work provide a viable alternative to alleviate these concerns. Under this framework, there

are different ways to design situationally nominal items, which can offer more flexibility for

test development. Any response bias remaining with respondent-reported questionnaires

may be addressed with appropriate test designs. The saturated model subsumes different

reduced forms that can help inform whether the test is designed as expected. Two simula-

tion studies are presented to demonstrate the effectiveness of the models and designs.

Introduction

Most existing measures of behavioral or psychological constructs for typical performance (e.g.,

personality, emotion, temperament, and attitude) have some drawbacks. First, many are

respondent-reported in a rating or Likert scale, making them vulnerable to response biases

such as extreme or moderate responding, acquiescence bias, halo/horn effect, or social desir-

ability [1, 2]. Moreover, use of the measures relies on the assumption that the category labels

are interpreted similarly across respondents and traits, which is unrealistic [3]. Second, the

measures are norm-referenced on the basis of classical test theory or item response theory,

making them more appropriate for interindividual comparisons with a relative standing. In

practice, however, the measures are more often used to inform the absolute standing of the

respondents or to make a diagnosis. For instance, parents would rather learn if their children’s

temperament is calm, active, and focused than if it rates at the top 30% of their peers. In these

cases, the test scores have to be transformed with post hoc cutoff scores, raising validity con-

cerns. Third, it is not uncommon in practice to encounter constructs with a large number of

related traits or attributes. It can be challenging to estimate a large number of continuous

latent variables with categorical responses. Moreover, all items are assumed to be single-stimu-

lus or unidimensional, but some traits can be difficult to separate and measure individually.

For instance, there can be up to 15 traits in a child’s temperament [4], and some pairs of them

(e.g., activity level vs. impulsivity, attentional focusing vs. inhibitory control) are highly con-

nected and difficult to measure individually.
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Although there are different ways to address each concern separately, this research explores

the feasibility of addressing the issues jointly through the cognitive diagnosis model (CDM)

framework and situational formats such as the situational judgment test. Lievens, Peeters, and

Schollaert [5] and McDaniel and Whetzel [6] have described how situational judgment tests

have been used in industrial-organizational psychology applications, such as personnel selec-

tion. Situational formats have also been applied in areas such as child development [7–9]. By

presenting realistic, hypothetical scenarios with choices of nominal responses, situational for-

mats can be less vulnerable to the response biases that often occur on respondent-reported

questionnaires. Moreover, it is possible to create a large number of situation-specific items that

are substantively different (e.g., for computerized adaptive testing or longitudinal studies),

which is not straightforward to do in a respondent-reported format. In addition, situational

formats are multidimensional [6], a characteristic well suited to CDMs.

CDMs are psychometric models designed to assess the strengths and weaknesses of ex-

aminees across a set of attributes. CDM-based measurement can provide finer-grained and

domain-specific diagnostic information that can be used for different testing purposes. By dis-

cretizing the usually continuous latent space, CDMs can accommodate a large number of

latent dimensions in various forms, which would be challenging to do otherwise. In addition,

CDMs in saturated form are versatile and flexible to address the complexity of within-item

dimensionality, whether compensatory or conjunctive. More importantly, by incorporating

substantive knowledge through a Q-matrix [10], CDM-based measurement is criterion-refer-

enced, capable of providing the absolute standing of examinees. By combining CDMs with sit-

uational formats and nominal responses, it should be possible to theoretically address the

measurement concerns for typical performance.

Recently, considerable developments have appeared in the CDM literature. Among others,

these have included highly constrained models like the deterministic inputs, noisy "and" gate
(DINA) model [11] and the deterministic inputs, noisy "or" gate (DINO) model [12], as well as

saturated models like the log-linear CDM model (LCDM) [13] and the generalized DINA

(G-DINA) model [14]. Applied researchers are also equipped with models that can accommo-

date polytomous attributes [15, 16], higher-order structure [17], multiple strategies [18], par-

tial credit [19], nominal responses [20], and cognitively multiple-choice (MC) items [21].

Moreover, CDMs have been successfully applied to cognitive situational judgment tests with

dichotomous responses for competency [22] and personnel selection [23] to overcome some

reliability and validity issues. These developments make it more feasible to integrate CDMs

with situational formats and nominal responses for typical performance.

However, the CDM literature has largely focused on cognitive tests or items for maximal

performance. As a result, the modeling process of existing CDMs for nominal responses [20]

or MC items [21, 24] relies on a maximal assumption that some knowledge states (i.e., attribute

patterns) are superior to others and the keyed option corresponds to the highest state. In con-

trast, the construction of nominal items for typical performance should be based on an

assumption that all attribute patterns and response options are equally treated during the

modeling process. This means that neither the test designs nor the models for maximal perfor-

mance can be directly used for typical performance.

To better address typical performance, we propose the general nominal diagnosis model

(GNDM) framework, which can be used to facilitate the design and modeling of situationally

nominal items. The GNDM can be regarded as a modification and generalization of the

MC-DINA model [21], and accordingly, the two models share some similarities: 1) similar

conditional probabilities for option selections, rather than item or option effects, are modeled;

and 2) a similar marginal maximum likelihood method is used in estimation. However, the

two models are fundamentally different and should not be confused. First, the two models rely
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on different modeling assumptions, as mentioned above, which leads to differences in model-

ing the attribute patterns and response options. Moreover, the special Q-matrix used in

MC-DINA is not appropriate for the GNDM. Instead, for the GNDM, the Q-matrix is

extended to incorporate the option-attribute relationship. Second, aligned with the types of

performance, the test designs that each model can accommodate are dramatically different

and are generally not interchangeable. In fact, there are ways to design situational formats with

nominal responses for typical performance using the GNDM that are useless under the

MC-DINA model. Third, the MC-DINA model is constrained, whereas the GNDM is satu-

rated with different reduced forms. For instance, the MC-DINA model requires that the item

options allow attribute patterns to be classified into a unique latent group, and constrains that

the missing patterns not covered by any option are modeled under a latent group “0”. Under

the GNDM, the fist requirement disappears and the missing patterns can be individually mod-

eled or collectively covered under a special option by design. Nevertheless, the third difference

and even some of the second difference between the two models would disappear if the

MC-DINA model were to be extended by replacing the DINA part with the G-DINA model.

Theoretical framework

Design of situationally nominal items

There are different ways to design situationally nominal items for typical performance under

the GNDM framework by considering the relationships between the options and (reduced)

attribute patterns. First, all options of the item and the attribute patterns can be designed to

follow a one-to-one relationship (one choice one pattern, OCOP); second, some options can

be designed to correspond to multiple attribute patterns (one choice multiple patterns,

OCMP); third, some attribute patterns can correspond to multiple choices (multiple choices

one pattern, MCOP); and fourth, both the OCMP and MCOP forms can coexist in one item

(multiple choices multiple patterns, MCMP). However, it is generally less feasible for the same

option to be involved in both the MCOP and OCMP forms.

CDM-based measurement is an interdisciplinary collaboration, particularly under the

GNDM framework. In this research, we created sample items based on the construct of child

temperament [4] as an illustration, and the definitions of the related attributes are given in

Table 1. Table 1 also gives examples of traditional respondent-reported items in a rating scale

as comparisons.

Table 2 presents an example of the OCOP design, in which there are four options corre-

sponding to four attribute patterns. Although the OCOP design appears to be concise and ele-

gant, it is increasingly unrealistic with a larger number of required attributes. Moreover, it is

impossible to avoid attribute patterns that are socially desirable or undesirable. Instead, the

OCMP design is preferred, since it allows more attribute patterns than response options.

Table 3 shows three required attributes with eight patterns. Without the “none of the

above” (NOA) option, the four substantive options of the item display a literal OCMP design.

However, some patterns are not covered by the substantive options, and respondents with

those missing patterns can select any option randomly—making this an uncontrolled OCMP

design. In contrast, a NOA option is designed to address missing patterns not covered by any

substantive option in a controlled OCMP design. Since the option is designed and incorpo-

rated into the Q-matrix, its appropriateness can be evaluated as part of the Q-matrix validation

process, which could be a topic for future research. Since the NOA option excludes any other

options, there is no concern about possible overlap of pattern coverage. Note that since there is

no substantive content in the NOA option, it can be useful even in an OCOP design, such as

replacing an option that is socially desirable or undesirable. Instead of relying on the NOA
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option, one can also create options with substantive content to cover multiple patterns in a

controlled OCMP design, although such as approach would be challenging in practice.

If another option is added in item 1 to measure any pattern (e.g., an option like “s/he can

follow your guidance during the games, but s/he often interrupts the games for different rea-

sons such as going to the restroom or getting a drink or snack” for measuring pattern 10), it

would be a MCOP design. It can be useful if some patterns cover diverse situations and accord-

ingly require multiple options. Similarly, adding another option to item 2 to measure any of

the measured patterns (i.e., an option like "s/he is not that afraid of it. During the injection s/

he complains about the pain, but keeps trying not to cry anyway" for pattern 011) makes that a

MCMP design. Although the MCOP and MCMP designs can be less useful than OCOP and

OCMP designs, they offer more flexibility when designing items. Moreover, multiple designs

can be incorporated into one test.

Saturated form

Although there are different ways to design situationally nominal items, the modeling process

need not be substantially different. A situational test with J number of items and K dichoto-

mous attributes will have a J × K Q-matrix and L = 2K attribute patterns, with αl = (αl1,� � �,αlK)T

as the attribute vector where l = 1,. . .,L. The Q-matrix element qjk is specified as 1 if attribute k
is involved in item j, and as 0 otherwise. Denote the nominal responses for item j as Xj = c with

Cj response options or categories, where c = 1, . . ., Cj. By treating all nominal options equally,

Table 1. Attributes of child temperament for illustration.

Attribute Label Definitions Sample items

α1 Fear Negative affectivity, including unease, worry, or nervousness, which is related to

anticipated pain or distress and/or potentially threatening situations.

Is not afraid of large dogs and/or other

animals.

α2 Discomfort Negative affectivity related to sensory qualities of stimulation, including intensity,

rate or complexity of light, movement, sound, texture.

Is not very bothered by pain.

α3 Inhibitory

control

Capacity to plan and to suppress inappropriate approach responses under

instructions or in novel or uncertain situations.

Can lower his/her voice when asked to do

so.

α4 Attentional

focusing

Capacity to maintain attentional focus on task-related channels. When picking up toys or other jobs, usually

keeps at the task until it’s done.

Note. Adapted from Rothbart et al. (2001).

https://doi.org/10.1371/journal.pone.0180016.t001

Table 2. Sample item 1 for illustration.

Attributes

Content α3 α4

Stem In a new environment (such as on the train), you try to interact with your child by

playing games. Which of the following reflects his or her likely behavior?

Option 1 S/he focuses on playing games with you and is not easily distracted by anything

else.

1 1

2 Although trying to play games with you, s/he is easily distracted by other things

(e.g., the scenery outside the window).

0 1

3 Although not easily distracted by other things such as the scenery, s/he often

interrupts the games for different reasons, such as going to the restroom or

getting a drink or a snack.

1 0

4 S/he is easily distracted by other things such as the scenery outside the window

and often interrupts the games for different reasons such as going to the restroom

or getting a drink or a snack.

0 0

https://doi.org/10.1371/journal.pone.0180016.t002
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one will get a T × K extended Q-matrix, where T ¼
XJ

j¼1
Cj. The element of the extended Q-

matrix q�jck is specified as 1 if possession of attribute k is required to select option c of item j,
and as 0 otherwise. The q-vector of option c in item j q�jc ¼ fq

�
jck
g is a subset of the q-vector of

item j qj = {qjk}. Note that one usually needs to specify the extended Q-matrix since the original

Q-matrix can be successfully recovered in most cases, as illustrated later.

For item j, the required attributes can be represented by the reduced attribute vector

ηjh ¼ ðZjh1; � � � ; ZjhGjÞ
T
, where h ¼ 1; . . . ;Hj ¼ 2Gj and Gj ¼

XK

k¼1
qjk (for notational conve-

nience, let the first Gj attributes be required). Stated differently, the L attribute patterns of the

test are converted to Hj reduced attribute patterns of item j, or equivalently, αl is reduced to ηjh
with the q-vector qj. For item j, the probability that respondents with reduced attribute vector

ηjh will select option c is P(Xj = c|ηjh)� Pc(ηjh), with
XCj

c¼1
PcðηjhÞ ¼ 1 for specific reduced

attribute pattern h. As a result, there is CjHj number of Pc(ηjh) parameters for item j, (Cj−1)Hj

of which are free to vary or be independent. Accordingly, there are 12 and 32 independent

parameters for items 1 and 2, respectively.

The above formulation works for different designs. In the OCOP design, Cj = Hj. In designs

with the NOA option, the element of the q-vector of the option can be specified as -1 if attri-

bute k is involved in item j, and as 0 otherwise (cf. Table 2). Note that it represents all missing

patterns not covered by any other option.

Reduced forms

In the saturated forms, there are usually many item parameters, most of which would be less

useful in practice. There are different ways to reduce the number of parameters. Regarding

attribute patterns, there are no more than a few expected patterns for each item, and most

parameters involve unexpected patterns. For item 1, for instance, the parameters related to the

expected patterns are P1(00), P2(01), P3(10), and P4(11) for Option 1 to 4, respectively. If the

item is designed successfully, the probabilities of selection conditional on the expected patterns

should be large and those for the unexpected patterns should be small. Within each option,

it is usually of less interest how the probabilities differ across different unexpected patterns

(e.g., P1(01), P1(10), P1(11)). Accordingly, one useful reduced form is to retain two parameters

per option: one for the expected pattern ejc = Pc(ηjc) and the other for the average of the

Table 3. Sample item 2 for illustration.

Attributes

Content α1 α2 α3

Stem Your child has a fever and needs to have an intravenous line for the first time.

When s/he sees other children crying, s/he becomes worried about it. You comfort

your child constantly and tell him or her not to cry but to follow the nurse’s words.

What is her/his response?

Option 1 S/he is still afraid of it. During the injection s/he complains about the pain but

cooperates with the nurse anyway.

1 1 1

2 S/he is still afraid of it. During the injection s/he complains about the pain and cries

out, not willing to continue the injection.

1 1 0

3 S/he is not that afraid of it. During the injection s/he complains about the pain but

cooperates with the nurse anyway.

0 1 1

4 S/he is not that afraid of it. During the injection s/he does not complain about the

pain and cooperates with the nurse.

0 0 1

5 None of the above -1 -1 -1

https://doi.org/10.1371/journal.pone.0180016.t003
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unexpected patterns ujc ¼ �PcðηjhÞjh6¼c, where ηjc represents the expected pattern for option c.
Note that the averages here and below should be weighted by the estimated sample size related

to the patterns. In the OCMP or MCMP designs, where there can be multiple expected pat-

terns for one option, ejc ¼ �PcðηjcÞ. As a result, there will be 2(Cj−1) independent parameters

per item and the difference between ejc and ujc of the same options should be large if item qual-

ity is good. This will be called the pattern-expected diagnosis model (PEDM).

Alternatively, one can choose to reduce the number of parameters by considering the differ-

ence between the expected and unexpected options for each attribute pattern. Usually, there is

only one expected option for each pattern. Similarly, we can define e�jh ¼ PhðηjhÞ as the proba-

bility of selecting the expected option conditional on the attribute pattern ηjh. In the MCOP or

MCMP design, where there can be multiple expected options for one pattern, e�jh ¼ �PhðηjhÞ.
Similar to the above, the averages should be weighted by the estimated sample size of the pat-

terns. Then the probability of selecting any unexpected option for the same pattern is just

u�jh ¼ 1 � e�jh. As a result, there will be Hj independent parameters per item and e�jh should be

large for all attribute patterns if the item quality is good. This will be called the option-expected

diagnosis model (OEDM).

The PEDM is more useful than the OEDM in general, since it can inform whether the item

options are designed as expected. However, the OEDM can be more useful in some cases, espe-

cially when one is concerned about the estimation of specific patterns. Moreover, the two

reduced models are not incompatible, and results of both models can be used to aid in test

development, instead of choosing between them.

Model estimation

As the number of attributes increases, a large number of structural parameters can be involved.

In future studies, it may be possible to simplify the joint distribution of the attributes with spe-

cific constraints on the structural relationships (e.g., a higher-order or hierarchical structure).

However, this research only considered the general or unconstrained structure. In general,

there are (L-1) independent structural parameters or p(αl), where p(αl) is the prior probability

of the attribute vector αl with
XL

l¼1
pðαlÞ ¼ 1. Let Xijc = 1 if Xij = c and zero otherwise. The

conditional likelihood of the response vector Xi of examinee i given αl is

LðXijαlÞ ¼
YJ

j¼1

YCj

c¼1
PcðηjhÞ

Xijc ; ð1Þ

where αl is reduced to ηjh for item j. The marginalized likelihood of the data is

LðXÞ ¼
YN

i¼1
LðXiÞ ¼

YN

i¼1

XL

l¼1
LðXijαlÞpðαlÞ; ð2Þ

where N is the sample size.

Denote p(αl|Xi) as the posterior probability of respondent i for attribute vector αl. p(αl|Xi)

can be further reduced to p(ηjh|Xi), the posterior probability of respondent i for ηjh with the q-

vector qj. The marginal maximum likelihood estimation of the item parameters P̂cðηjhÞ can be

derived after a few mathematical steps, or intuitively as:

P̂cðηjhÞ ¼ Rjhc=
XCj

c¼1
Rjhc; ð3Þ

where Rjhc ¼
XN

i¼1
pðηjhjXiÞXijc is the expected number of respondents with reduced attribute

pattern ηjh selecting c in item j. During the estimation process, the item estimates and posterior

probabilities can be iteratively updated using the empirical Bayes method [25]. Specifically, the
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posterior probability of respondent i for αl at the tth iterative estimation process is updated as:

pðαljXiÞt ¼
LðXijαlÞpðαljXiÞt� 1XL

l0¼1
LðXijαl0 Þpðαl0 jXiÞt� 1

; ð4Þ

where p(αl|Xi)t = 0 = p(αl). The item estimates can be updated accordingly until they converge

within a small range.

The standard error (SE) of the estimate, SE½P̂cðηjhÞ�, can be approximated from the infor-

mation matrix given by the second derivative of the log-marginalized likelihood with respect

to any two parameters in item j, Pc(ηjh) and Pc’(ηjh’), as:

�
XN

i¼1

pðηjhjXiÞXijc

PcðηjhÞ
�
pðηjhjXiÞXij1

P1ðηjhÞ

 !
pðηjh0 jXiÞXijc0

Pc0 ðηjh0 Þ
�
pðηjh0 jXiÞXij1

P1ðηjh0 Þ

 !

: ð5Þ

The above equation gives the elements of the Fisher information matrix I(Pj) = −E[@2l(X)/

@Pj
2], where Pj = {Pc(ηjh)}, including all (Cj−1)Hj independent parameters for item j (i.e.,

c> 0). Instead of computing the expectation, one can evaluate Eq 5 at P̂j ¼ fP̂cðηjhÞg with the

observed data to obtain an approximate information matrix IðP̂ jÞ. The square root of the

(cHj−Hj+h)th diagonal element of I� 1ðP̂ jÞ is SE½P̂cðηjhÞ� approximately. Note that the SEs for

the reduced forms (e.g., PEDM, OEDM) can be approximated via the multivariate method

[26].

Model assessment and adjustment

Model assessment and adjustment under the dichotomous context can be extended to nominal

responses. The simulation- and residual-based method with the log-odds ratio (LOR) of item

pairs [27] can be extended for such a purpose. Specifically, after obtaining the Pc(ηjh) and p(αl|
X) estimates, one can simulate a larger number of predicted item responses by sampling from

the multinomial distribution with the conditional probabilities and joint distribution of the

attributes. Let Xjc and ~X jc denote the observed and predicted response vector for option c of

item j, respectively, where c = 2, . . ., Cj. The residual between the observed and predicted LOR

of item pairs (referred to as l) is

ljcj0c0 ¼ jlogðN11N00=N01=N10Þ � logð~N 11
~N 00=

~N 01=
~N 10Þj; ð6Þ

where Ñ is the predicted sample size, jc 6¼ j'c0, and Nyy’ and ~Nyy0 are the number of observed

and predicted respondents, respectively, who scored y on option c of item j and y0 on option c'
of item j0. The approximate SEs of l can be computed as:

SEðljcj0c0 Þ ¼ ½ ~Nð1= ~N 11 þ 1= ~N 00 þ 1= ~N 01 þ 1= ~N 10Þ=N�
1=2
: ð7Þ

With the SE, the z-score of l is available for further usage. Note that with a large sample size,

the predicted response patterns can be simulated stably, although randomness is inevitable

due to simulation.

At the test level, one can examine the significance of the maximum z-score for model misfit,

with the Bonferroni correction to keep the Type I error normal [27]. Note that for a test with

(T − J) independent item option, there are (T − J − 1) and (T − J)(T − J − 1)/2 pairs of z-scores

to be evaluated at the item option and test levels, respectively. In case of misfit, the root mean

square of the z-scores at the item category or item level can signal possibly misspecified items,
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as

sljc ¼
X

j0c0 6¼jc

ðljcj0c0=SEðljcj0c0 ÞÞ
2
.
ðT � J � 1Þ

" #1=2

ð8Þ

or

slj ¼
XCj

c¼2
sljc=ðCj � 1Þ: ð9Þ

The item option or item with the maximum values is most likely problematic and should be

considered for adjustment. The test-level root mean square of the z-scores is

sl ¼ 2
XT� J

jc¼1

Xjc� 1

j0c0¼1
ðljcj0c0=SEðljcj0c0 ÞÞ

2
=ðT � JÞðT � J � 1Þ

h i1=2

: ð10Þ

sl is less sensitive to simulation randomness due to the accumulation of all z-scores of residuals,

and its change (e.g., reduction) can aid in item adjustment. Findings in the dichotomous con-

text [28] can be applied to nominal responses. Specifically, the misspecified items or item

options can be detected with the maximum values and adjusted sequentially when Q-matrix

misspecification occurs at the item level or at random. Adjustment can be based on the maxi-

mum reduction of the sl statistics. When adjustment of individual items tends to be useless,

attribute-level misspecification is of concern.

In addition to model assessment in an absolute sense, one can also adopt similar likelihood

ratio test (LRT) procedures proposed by de la Torre and Chen [29] to compare the reduced

models with the saturated form. The item-level LRT is based on a two-step estimation proce-

dure in which the saturated and reduced models are estimated in the first and second steps.

For test-level LRT between the saturated and reduced CDMs, the differences of conventional

test-level likelihoods and degrees of freedom between the two models can be evaluated based

on χ2 distribution. Alternatively, the Wald test proposed by de la Torre (2011) can be used for

model comparisons at the item level.

Simulation studies

In this section, we describe two simple simulation studies to demonstrate the performance of

the GNDM framework across different situations. In the first study, we investigated how well

the saturated GNDM would perform with the controlled OCMP or uncontrolled OCMP

design—namely, with or without the NOA option when there are more attribute patterns than

response options. In the second study, we compared the saturated GNDM with one reduced

form, the PEDM, and investigated the accuracy of item parameter recovery under the reduced

model. The sample size was fixed at N = 1000 for both studies.

Design

Simulation 1: The controlled vs. uncontrolled OCMP design. To investigate the perfor-

mance of the GNDM under both designs, we simulated three-attribute items with four sub-

stantive options (similar to example item 2). As mentioned, we assumed that respondents of

the patterns without the expected options selected the options randomly. For the controlled

OCMP design, the NOA option was added to cover those respondents. In both cases, the satu-

rated GNDM was fitted. The number of attributes K was fixed to five. The extended Q-matrix

for every item option can be found in Table 4, and the fifth option represented the NOA

option, which was not used in the uncontrolled OCMP design. Note that the original Q-matrix

can be recovered when we count any attribute specified by at least one option of the item as
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the required attribute of the item. The true CDM was the PEDM, and two sets of item parame-

ters were used to generate data, as shown in Table 5, representing the cases of relatively low vs.

high item quality. Note that the generating item parameters (i.e., conditional probabilities) of

the controlled design would be slightly lower than those of the uncontrolled design due to the

introduction of the NOA option, but we strived to keep the difference between the expected

and unexpected patterns (i.e., ejc—ujc) unchanged. The multivariate normal threshold method

[30] was adopted to simulate the joint distribution of the attributes. A multivariate normal dis-

tribution, MVN(μ, S), of K continuous latent variables was assumed underlying the discrete

patterns of the K attribute. The μ vector was set such that the attribute prevalence was 0.7, 0.6,

0.5, 0.4, and 0.3 from Attribute 1 to 5, respectively. The variances and covariance in S were set

to 1.0 and R, respectively. R is the correlation of the latent variables and was set at 0.5. Each

simulation cell was replicated 200 times, and the estimation code was written in Ox [31]. To

compare the performance of the two designs, we evaluated the classification accuracy for the

individual attribute (CA(αk)) and for the attribute vector (CA(αl)).

Table 4. The extended Q-matrix for J = 10 in simulation 1.

Attribute Attribute Attribute

I O α1 α2 α3 α4 α5 I O α1 α2 α3 α4 α5 I O α1 α2 α3 α4 α5

1 1 1 0 0 0 0 5 1 0 0 1 0 0 8 1 1 0 0 0 0

2 0 1 0 0 0 2 0 0 0 1 0 2 0 0 0 1 0

3 0 0 1 0 0 3 0 0 0 0 1 3 0 0 0 0 1

4 1 1 1 0 0 4 0 0 1 1 1 4 1 0 0 1 1

5 -1 -1 -1 0 0 5 0 0 -1 -1 -1 5 -1 0 0 -1 -1

2 1 1 0 0 0 0 6 1 1 0 0 0 0 9 1 0 1 0 0 0

2 0 1 0 0 0 2 0 0 1 0 0 2 0 0 1 0 0

3 0 0 0 0 1 3 0 0 0 1 0 3 0 0 0 0 1

4 1 1 0 0 1 4 1 0 1 1 0 4 0 1 1 0 1

5 -1 -1 0 0 -1 5 -1 0 -1 -1 0 5 0 -1 -1 0 -1

3 1 1 0 0 0 0 7 1 1 0 0 0 0 10 1 0 1 0 0 0

2 0 0 0 1 0 2 0 0 1 0 0 2 0 0 0 1 0

3 0 0 0 0 1 3 0 0 0 0 1 3 0 0 0 0 1

4 1 0 0 1 1 4 1 0 1 0 1 4 0 1 0 1 1

5 -1 0 0 -1 -1 5 -1 0 -1 0 -1 5 0 -1 0 -1 -1

4 1 0 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0

4 0 1 1 1 0

5 0 -1 -1 -1 0

Note. I indicates item; O, option. The Q-matrix for J = 20 was double.

https://doi.org/10.1371/journal.pone.0180016.t004

Table 5. Generating item parameters in simulation 1.

Item Controlled Uncontrolled

quality ejc ujc ejc ujc ejc-ujc

Low 0.600 0.100 0.625 0.125 0.500

High 0.760 0.060 0.775 0.075 0.700

Note. For the controlled and uncontrolled one choice multiple pattern design.

https://doi.org/10.1371/journal.pone.0180016.t005
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Simulation 2: GNDM vs. PEDM. Here, we simulated a situation with mixed designs: half

of the items had two attributes with four options (i.e., the OCOP design), whereas the other

half of the items had three attributes with five options, including the NOA option (i.e., the con-

trolled OCMP design). The extended Q-matrix for every item option can be found in Table 6.

While the PEDM was used to generate the data, both the saturated GNDM and the PEDM

were fitted. Note that the item parameters were slightly different for the two-attribute items,

with ujc = 0.13 and 0.08 for the cases of low and high quality, respectively (ejc remained the

same). In addition to evaluating the CA(αk) and CA(αl), we also investigated the accuracy of

item parameter recovery under the PEDM. The parameter estimates and their SEs were ob-

tained for each replication, and the mean estimates, their root mean squared errors (RMSEs),

and mean SE (root mean squared SE) across replications were computed. All other simulation

conditions were similar to those described in Simulation 1.

Results

Simulation 1. Table 7 gives the mean estimates and related standard deviations (SDs) of

the classification accuracy for individual attributes (CA(αk)) and for the attribute vector (CA

Table 6. The extended Q-matrix for J = 10 in simulation 2.

Attribute Attribute Attribute

I O α1 α2 α3 α4 α5 I O α1 α2 α3 α4 α5 I O α1 α2 α3 α4 α5

1 1 1 0 0 0 0 5 1 0 0 0 1 0 8 1 1 0 0 0 0

2 0 1 0 0 0 2 0 0 0 0 1 2 0 0 0 1 0

3 1 1 0 0 0 3 0 0 0 1 1 3 0 0 0 0 1

4 0 0 0 0 0 4 0 0 0 0 0 4 1 0 0 1 1

2 1 1 0 0 0 0 6 1 1 0 0 0 0 5 -1 0 0 -1 -1

2 0 0 0 0 1 2 0 0 1 0 0 9 1 0 1 0 0 0

3 1 0 0 0 1 3 0 0 0 1 0 2 0 0 1 0 0

4 0 0 0 0 0 4 1 0 1 1 0 3 0 0 0 0 1

3 1 0 1 0 0 0 5 -1 0 -1 -1 0 4 0 1 1 0 1

2 0 0 1 0 0 7 1 1 0 0 0 0 5 0 -1 -1 0 -1

3 0 1 1 0 0 2 0 0 1 0 0 10 1 0 1 0 0 0

4 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 1 0

4 1 0 0 1 0 0 4 1 0 1 0 1 3 0 0 0 0 1

2 0 0 0 1 0 5 -1 0 -1 0 -1 4 0 1 0 1 1

3 0 0 1 1 0 5 0 -1 0 -1 -1

4 0 0 0 0 0

Note. I indicates item; O, option. The Q-matrix for J = 20 was double.

https://doi.org/10.1371/journal.pone.0180016.t006

Table 7. Classification accuracy and related standard deviation for simulation 1.

J = 10 20 10 20

Qty. D CA(αl) CA(αk) CA(αl) CA(αk)

Low C 0.71 (0.02) 0.86 (0.01) 0.92 (0.01) 0.96 (0.01)

U 0.26 (0.03) 0.69 (0.03) 0.48 (0.03) 0.79 (0.02)

High C 0.93 (0.01) 0.97 (0.01) 0.99 (0.00) 1.00 (0.00)

U 0.53 (0.03) 0.82 (0.02) 0.79 (0.02) 0.91 (0.01)

Note. D indicates design; C, controlled one choice multiple patterns; U, uncontrolled one choice multiple patterns; SD in parentheses. For αk, the values

were averaged across all individual attributes. The saturated GNDM was fitted.

https://doi.org/10.1371/journal.pone.0180016.t007
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(αl)) across the controlled and uncontrolled OCMP designs. For individual attributes, the val-

ues were averaged due to the similarity of the results. For both individual attributes and the

attribute vector, the accuracy improved and the classifications were also more stable (i.e.,

smaller SD) with a larger number of items or better item quality for both designs. In compari-

son, the controlled design performed better than the uncontrolled design in all cases. The

improvements were more substantial for the attribute vector, or when the test length was short

or the item quality was low. This implies the significance to include the NOA option for those

patterns not corresponding to any substantive option. When the test got longer and the item

quality got better, the difference between the two designs became smaller. In contrast, the SDs

for the two designs were close and the differences were trivial, which implied that the stability

of classifications was similar for both designs.

Simulation 2. Table 8 gives the mean estimates and related SDs of the CA(αk) and CA(αl)
across the GNDM and PEDM. For individual attributes, the values were averaged due to the

similarity of the results. Similar to Simulation 1, the accuracy of both models improved and

the classifications were also more stable with a larger number of items or better item quality.

Note that a mix of the OCOP and controlled OCMP design was adopted here, and its perfor-

mance was similar to a pure controlled OCMP design using the same GNDM (cf. Table 7).

This reflected the similarity between the two designs. As shown in Table 8, the differences

between the GNDM and PEDM were trivial, which was not unexpected, as PEDM was the

true model. The saturated model GNDM tended to be slightly better than the true model

PEDM, especially when the item quality was low. However, Ma, Iaconangelo, and de la Torre

[32] showed the opposite under the G-DINA modeling context (i.e., the true reduced model

tended to provide slightly better classification accuracy than the saturated model). The slight

difference might come from the different degree of overparameterization in the two studies,

but more research is needed to fully understand the discrepancy.

Table 9 presents the recovery of item parameters when the PEDM was fitted. As shown,

the ejc estimates were relatively less biased, whereas the ujc estimates were more stable. In

Table 8. Classification accuracy and related standard deviation for simulation 2.

J = 10 20 10 20

Qty. M CA(αl) CA(αk) CA(αl) CA(αk)

Low G 0.71 (0.02) 0.87 (0.01) 0.89 (0.01) 0.96 (0.01)

P 0.26 (0.02) 0.86 (0.01) 0.88 (0.01) 0.96 (0.01)

High G 0.93 (0.01) 0.97 (0.01) 0.99 (0.00) 1.00 (0.00)

P 0.53 (0.01) 0.97 (0.01) 0.99 (0.00) 1.00 (0.00)

Note. M indicates model; G, general nominal diagnosis model; P, pattern-expected diagnosis model. For αk, the values were averaged across all individual

attributes; SD in parentheses. A mix of the one choice one pattern design and controlled one choice multiple patterns design was used to generate all data.

https://doi.org/10.1371/journal.pone.0180016.t008

Table 9. Recovery of item parameters with the pattern-expected diagnosis model for simulation 2.

Two-attribute items Three-attribute items

Item Mean bias RMSE Mean SE Mean bias RMSE Mean SE

J quality ejc ujc ejc ujc ejc ujc ejc ujc ejc ujc ejc ujc

10 Low 0.00 0.00 0.07 0.02 0.04 0.02 -0.01 0.00 0.11 0.02 0.06 0.02

High 0.00 0.00 0.04 0.01 0.02 0.02 0.00 0.00 0.06 0.01 0.03 0.02

20 Low 0.00 -0.02 0.06 0.03 0.05 0.02 0.00 0.01 0.06 0.02 0.05 0.02

High 0.00 -0.01 0.05 0.02 0.03 0.02 0.00 0.01 0.05 0.02 0.03 0.02

Note. All values are averaged across items and options; the two-attribute items are for the one choice one pattern design, whereas the three-attribute items

are for the one choice multiple patterns design.

https://doi.org/10.1371/journal.pone.0180016.t009

Test design modeling GNDM

PLOS ONE | https://doi.org/10.1371/journal.pone.0180016 June 23, 2017 11 / 14

https://doi.org/10.1371/journal.pone.0180016.t008
https://doi.org/10.1371/journal.pone.0180016.t009
https://doi.org/10.1371/journal.pone.0180016


comparison, the estimates for the two-attribute items tended to be better than those for the

three-attribute items. The likely reason is that there were more attribute patterns for the latter

case, resulting in a smaller sample size per pattern and accordingly less stable estimates. Since

the PEDM parameters were transformed from the GNDM ones, the biases and reliabilities of

the estimates for the saturated model can be inferred through Table 9 as well.

Discussion

The situational tests together with the GNDM framework provide a valuable alternative to the

current respondent-reported Likert or rating scales under the classical test theory or item

response theory approach. At least to some extent, this new approach can help alleviate con-

cerns of response bias, the need for criterion-reference testing, and the difficulty in estimating

a large number of latent traits with complex within-item dimensionality. Moreover, one can

create a large number of items that are substantively different in content if needed. Under the

GNDM, there are different ways to design situational tests for nominal responses, which can

offer more flexibility for test development. Any response bias lingering on self-reported ques-

tionnaires, such as extreme or moderate responding, acquiescence bias, and social desirability,

may be addressed with appropriate test designs.

In the GNDM, all options are treated equally under the assumption for typical perfor-

mance, and the Q-matrix is extended to accommodate all options. Moreover, the saturated

model subsumes different reduced forms that can help to inform whether the test is designed

as expected. Note that although situational tests were the focus of this research, the GNDM

can be used for any test format with nominal responses. Item parameters can be estimated

with the marginal maximum likelihood estimation, while model assessment and adjustment

can proceed with the simulation- and residual-based method using the LOR of item pairs, or

with the LRT for model comparisons. Two simulation studies were presented to demonstrate

the effectiveness of the models and designs. The differences of classification accuracy of the

attribute vector were dramatic between the uncontrolled and controlled OCMP designs. In

contrast, the saturated and reduced models performed similarly, and item parameters could be

recovered well in the latter case.

Future studies can address additional issues to make the situational tests and GNDM frame-

work more comprehensive and versatile. First, the designs and different reduced models

should be studied in greater depth or under more conditions (e.g., potential violations of the

designs or related assumptions). To some extent, the utility of the framework relies on the flex-

ibility the various designs provide and the potential of the reduced models to inform test

design. Moreover, reduced models have fewer parameters and hence require smaller sample

sizes for accurate estimation. Second, both the generating and fitted models in the simulation

were saturated in terms of the attribute distribution. In practice, however, attributes with dif-

ferent constrained structures (e.g., a higher-order, hierarchical structure) can be encountered.

The requirement of constrained structures will be more prominent with a large number of

attributes. For instance, over 1,000 patterns need to be estimated with 10 dichotomous attri-

butes under the saturated structure, most of which cannot be accurately estimated without an

extremely large sample size. Thus, it would be useful to investigate how the proposed model

can be adapted to incorporate varying attribute structures. Third, it would be valuable to assess

whether Q-matrix validation methods or procedures under the dichotomous context can be

extended to our cases, as the Q-matrix plays a critical role in CDM-based measurement. It

would also be helpful if an efficient and exhaustive search algorithm similar to the general

method based on the discrimination index [33] could be extended to nominal responses.
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The biggest demand up to this point, however, is to apply the framework in practice and

obtain real data. An understanding of the effectiveness of the designs and models will remain

elusive without real-life applications. Practical applications are particularly needed to compare

this new framework with the traditional classical test theory–or item response theory–based

approach to see the full list of pros and cons. Once the theoretical effectiveness is empirically

established, the framework can be used to reconstruct most, if not all, respondent-reported

questionnaires for better reliability and validity. Development of new full scales or other inno-

vative applications is also possible. In CDM-based measurement, nonpsychometric compo-

nents such as attribute construction, item design, and score interpretation are of paramount

importance in addition to the psychometric modeling, which is especially true in our case.

Accordingly, collaborative effort across disciplines is always crucial to develop situational tests

under the framework. Without such endeavors, it is doubtful if the GNDM, and more broadly

the CDM, can contribute extensively to educational and psychological measurement.
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