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Summary 
The receptors for tumor necrosis factor (TNF) exist in cell-associated as well as soluble forms, 
both binding spedfically to TNF. Since the soluble forms of TNF receptors (sTNF-Rs) can compete 
with the cell-associated TNF receptors for TNF, it was suggested that they function as inhibitors 
of TNF activity; at high concentrations, the sTNF-Rs indeed inhibit TNF effects. However, 
we report here that in the presence of low concentrations of the sTNF-Rs, effects of TNF whose 
induction depend on prolonged treatment with this cytokine are augmented, reflecting an 
attenuation by the sTNF-Rs of spontaneous TNF activity decay. Evidence that this stabilization 
of TNF activity by the sTNF-Rs foUows from stabilization of TNF structure within the complexes 
that TNF forms with the sTNF-Rs is presented here, suggesting that the sTNF-Rs can affect 
TNF activity not only by interfering with its binding to cells but also by stabilizing its structure 
and preserving its activity, thus augmenting some of its effects. 

T NF, a polypeptide cytokine, produced primarily by mono- 
nuclear phagocytes, plays a key role in the initiation of 

the inflammatory response. It has a variety of effects, of dif- 
ferent, even contrasting nature (1, 2). Evidence that some 
of these effects can be detrimental to the host have attracted 
attention to the mechanisms that regulate TNF function. The 
intracellular signals for the response to TNF are provided by 
cell surface receptors, of two distinct molecular species, to 
which TNF binds at high affinity (3, 4). Both receptors for 
TNF exist also in soluble forms (5-8), apparently derived 
by proteolytic cleavage from the cell surface forms (9). These 
soluble TNF receptors (sTNF-Rs) 1 can compete for TNF 
with the cell surface receptors and thus block its activity (5-8). 
It was therefore suggested that they function as physiolog- 
ical attenuators of the activity of TNF, safeguarding against its 
potentially harmful effects. We report here that the sTNF-Rs 
affect TNF function also by stabilizing its activity, most likely 
by preventing dissociation of the homotrimeric TNF mole- 
cules (10-13) to inactive monomers. 

Materials and Methods 
TNF and Its Soluble Receptors. Recombinant human TNF-c~ 

(TNF; 6 x 107 U/mg of protein), produced by Genentech Co. 

1 Abbreviations used in this paper: B-CLL, B-chronic lymphocytic leukemia; 
sTNF-R, soluble tumor necrosis factor receptor. 

(San Francisco, CA), was kindly provided by Dr. G. Adolf, of the 
Boehringer Institute (Vienna, Austria). Radiolabeling of the TNF 
with mI was performed by the chloramine-T method, as previ- 
ously described (14). Native TNF was produced by stimulation of 
human peripheral mononuclear phagocytes with bacterial lipopoly- 
saccharide for 6 h, as described elsewhere (15), and used without 
further purification. The soluble forms of the type I (p55) and type 
II (p75) TNF receptors (sTNF-RI and sTNF-RII, previously called 
TBPI and TBPII [81) were isolated from normal urine by ligand 
(TNF) affinity purification followed by reversed-phase HPLC, as 
described before (8). 

Cells. Mononuclear leukocytes of B-chronic lymphocytic leu- 
kemia (B-CLL) patients were isolated from the peripheral blood 
by centrifugation on a Ficoll-Hypaque cushion (Pharmacia, Upp- 
sala, Sweden). To enrich the leukocyte fraction for leukemic cells, 
the mononuclear leukocytes were depleted of T cells by rosetting 
with sheep erythrocytes (16), and then depleted of the mononuclear 
phagocytes by adherence to plastic (17). The leukocytes were cul- 
tured in RPMI 1640, supplemented with 10% FCS. The same cul- 
ture medium was used for the growth of human foreskin fibro- 
blasts, strain FS11 (18), and murine A9 cells (19). 

Cytocidal and Growth Stimulatory Activities of TNE B-CLL cells 
and human foreskin fibroblasts were cultured in 96-well microtiter 
plates at densities of 2.5 x 105 ceUs/0.2 ml/well and 5 x 105 
cells/0.2 ml/well, respectively. The rate of cell growth after the 
indicated culture time was assessed by measuring the incorpora- 
tion of [3H]thymidine into the DNA of the cells. Labeled thymi- 
dine (25 Ci/mmol; Amersham Corp., Amersham, UK) was ap- 
plied to the cultures (1 #Ci/well) for the last 8 h of incubation 
and the amount of radioactivity incorporated into DNA was then 
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determined after harvesting the cells with the aid of a-PHD-cell 
harvester (Cambridge Technology Inc., Watertown, MA). The cells 
were lysed by washing with distilled water, and the label bound 
to the filter was measured by liquid scintillation counting. Detach- 
ment of the fibroblasts from the culture plates, before harvesting, 
was accomplished using trypsin. The increase in fibroblast number 
during incubation was assessed by determining cell neutral red dye 
uptake (20). 

The cytocidal activity of TNF was determined in A9 cells, as 
described before (20). The cells were plated in 96-well plates, 18 h 
before the assay, at a density of 3 x 104 cells/well. TNF was ap- 
plied to the cells, in serial dilutions, together with cycloheximide 
(25 #g/ml) and, after further incubation for 10 h, cell viability was 
assessed by measuring neutral red dye uptake. 1 U of cytocidal ac- 
tivity is defined as the activity that results in 50% cell death. 

Quantification of the sTNF-Rs by ELISA. The concentrations 
of the sTNF-Ks were determined by a two-site capture ELISA, 
using mouse mAbs and rabbit antisera against the sTNF-Ks, as 
described elsewhere (21). 

Results 
Enhancement of TNtZinduced Growth of Cells by the sTN1ZRs. 

In contrast to previously reported inhibitory effects of the 
sTNF-Ks on TNF function, we observed an increase in the 
enhancement of cell growth by TNF in the presence of these 
proteins. The TNF-induced growth of B-CLL cells (22, 23) 
was affected by the sTNF-Ks in a bimodal fashion. Up to 
certain concentrations, the sTNF-Ks enhanced cell growth; 
at higher concentrations they were inhibitory (Fig. 1). A 
similar degree of enhancement was observed with the soluble 
forms of both the type I (p55) and type II (p75) TNF receptors 
(sTNF-KI and sTNF-KII, respectively). However, the op- 
timal concentration of the sTNF-KII for enhancement of cell 

growth was higher than that of the sTNF-KI. In the ab- 
sence of TNF, the sTNF-Ks had no effect on the B-CLL cells 
(Fig. 1, dashed lines). 

The TNF-induced growth of normal fibroblasts (24) was 
also enhanced by the sTNF-Ks. Both the increase in fibro- 
blast number in response to TNF throughout the incuba- 
tion period (Fig. 2 A), and the extent of stimulation of cell 
growth on the last day of incubation (Fig. 2 B), were aug- 
mented in the presence of the soluble receptors up to certain 
concentrations of the sTNF-Ks; at higher concentrations they 
were inhibitory. No effect of the sTNF-Ks could be observed 
in the absence of TNF (Fig. 2, A and B, dashed lines). 

Decay and Stabilization TNF Bioactivity in Diluted Solu- 
tions. The stimulatory effects of TNF on B-CLL and fibro- 
blast cell growth are assessed after treatment of the cells with 
TNF for several days (22-24). A clue to the mechanism 
whereby the sTNF-Ks enhance these effects was found on 
examining the residual activity of TNF in the fibroblast media 
at the end of this long incubation period. This was deter- 
mined by applying samples of the fibroblast growth media 
to A9 cells, which are sensitive to the rapidly induced cyto- 
cidal effect of TNF (Fig. 2 C). Several features could be noted: 
(a) TNF activity in the growth media on day 9 (1-10 U/ml) 
was significantly lower than that of the TNF originally ap- 
plied to the cells (200 U/ml). (b) The decrease in TNF ac- 
tivity in cultures also containing the sTNF-Ks was lower than 
when TNF was applied alone. (c) The degree of preservation 
of TNF activity in the fibroblast growth media by the sTNF- 
Ks was dependent on their concentration. Optimal concen- 
trations were identical to those found for the effect of the 
sTNF-Ks on fibroblast growth (compare Fig. 2 C, to A 
and B). 

Spontaneous decay of TNF activity has been reported (11, 
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Figure 1. The sTNF-Ks enhance 
TNF-induced growth of B-CLL 
cells. Growth of leukemic B lym- 
phocytes isolated from the periph- 
eral blood of a B-CLL patient in the 
presence or absence of TNF (10 
ng/ml; solid and dashed lines, respec- 
tively) and either sTNF-KI (.4) or 
sTNF-RII (B), at the indicated con- 
centrations, was quantified on day 
7 of incubation by determining the 
incorporation of [3H]thymidine 
into the cellular DNA. Data were 
confirmed by tests on lymphocytes 
of three other patients. 
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25). This decay, assessed by determining the cytotoxic ac- 
tivity of TNF after various periods ofpreincubation, was found 
to depend upon T NF  concentration; negligible at high TNF  
concentrations, it was significant at those concentrations of 
TNF  usually used in bioassays (Fig. 3). 

Examining the kinetics of this decay in the presence of 
the sTNF-Rs revealed a rather complex modulation of T N F  
activity by these proteins. Initially, the sTNF-Rs were found, 
as reported before, to inhibit the cytocidal activity of TNF  
(Fig. 4, B and E, and at time 0 in Fig. 4, A and D). Yet, 
after TNF incubation, an additional effect of these proteins 
was observed. While in the absence of the sTNF-Rs the ac- 
tivity of T NF  gradually decreased, in the presence of these 
proteins TNF  activity remained quite stable (Fig. 4, A and 
D). The over-all pattern of the effect of the sTNF-Rs on the 
cytocidal activity of TNF, after 7 d of incubation, displayed 
the same "bell-shaped" concentration dependence curve as 
found for the effects of TNF  on the growth of B-CLL cells 
and fibroblasts (compare Fig. 4, C and F to Figs. 1 and 2). 

These findings suggest that decay in TNF  activity can be 
a limiting factor for its long-term effects. Attenuation of this 
decay by the soluble receptors accounts for their ability to 
augment these effects. 

Spontaneous decay of  T N F  activity occurred irrespective 

Figure 2. The sTNF-Ks enhance the TNF-induced growth of normal 
fibroblasts. Effects of sTNF-RI (left) and sTNF-KII (right) on the growth 
of human foreskin fibroblasts (strain FSll) in the presence or absence of 
TNF (10 ng/ml; solid and dashed lines, respectively), were assessed after 
9 d of incubation, in the following two ways: (A and A') by measuring 
cell density, based on determining the uptake of neutral red dye by the 
cells; and (B and B') by measuring the rate of cell growth as shown by 
incorporation of [3H]thymidine into DNA. The residual bio-activity of 
TNF in the growth media of the cells, on day 9 of incubation (C and 
C') was determined by measuring the cytocidal effect of samples of the 
growth media on A9 cells. See Materials and Methods for additional details. 
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Figure 3. Decay of TNF activity 
in dilute solution. (.4.) Decay of the 
activity of pure recombinant TNF, 
at the indicated concentrations, 
upon incubation at 37~ (B) Decay 
of the activity of crude, monocyte- 
produced TNF, with an initial bio- 
activity corresponding to a concen- 
tration of 14 ng/ml, at the indicated 
temperatures. Both TNF prepara- 
tions were kept for the indicated 
times in ILPMI 1640, supplemented 
with 10% FCS. The residual bio- 
activity at various times was deter- 
mined by measuring the cytocidal 
effect of the TNF samples on A9 
cells, as described in Materials and 
Methods. 
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Figure 4. Effect of the sTNF-Rs on decay of TNF activity. TNF (5 
ng/ml) was incubated at 37~ either alone or in the presence of the indi- 
cated concentrations of sTNF-RI (A-C) or of sTNF-ILII (D -F). At var- 
ious times, the residual cytocidal activity was determined, as described 
in Fig. 3. The activity of TNF in the presence of different concentrations 
of sTNF-RI and sTNF-RII is presented as a function of the duration of 
incubation (.4 and D) and as a function of the concentrations of the sTNF-ILs 
on day 0 (B and E) and day 7 (C and F). 

of whether TNF was incubated alone (see legend to Fig. 5), 
or in solutions supplemented with calf serum proteins (Figs. 
3 and 4). It was observed in preparations of pure, Escberichia 
coil-produced, recombinant TNF as well as in crude prepara- 
tions of TNF obtained from human PBMC (Fig. 3, A and 
B). SDS-PAGE analysis of these preparations showed that the 
loss of the TNF activity was unaccompanied by any change 
in its subunit molecular size (not shown). These findings as 
well as other data (11, 25) appear to rule out an involvement 
of proteolytic degradation of TNF in this process. 

Gel Filtration Chromatography Studies of the Molecular Size 
Of TNF, before and after Decay oS Its Activity, and of the Com- 
plexes It Forms with the sTNF-Rs. Gel filtration chromatog- 
raphy of preparations of TNF having decayed activity sug- 
gested, as also indicated in prior studies (11, 25), that this 
decay is a reflection of a change in the quaternary structure 
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Figure 5. Size exclusion chromatography of TNF and of its complex 
with sTNF-RI, l~l-labeled TNF (5 rig, 1.5 x 106 cpm) was applied, ei- 
ther alone (A and B) or together with sTNF-RI (50 ng; C, D, and E), 
to a Superose 12 column (Pharmacia), in 0.15 M NaC1/10 mM sodium 
phosphate buffer (PBS), either without preincubation (filled circles) or after 
a 3-d preincubation period at 37~ in the same buffer (open circles). Frac- 
tions of 0.24 ml were collected, at a flow rate of 0.8 ml/min. All fractions 
were assayed for cytocidal activity (A and C) and their radioactivity deter- 
mined in a gamma counter (B and D). The amounts of sTNF-RI in each 
fraction (E) were determined by ELISA (21). The elution patterns are shown 
in comparison to the elution volume of molecular mass markers (BSA, 
66 kD, OVA, 45 kD, and lysozyme 14.3 kD). The elution pattern of sTNF- 
RI, after its preincubation with TNF (E), was identical to that observed 
when these two proteins were subjected to chromatographic analysis without 
preincubation (not shown). The input and recovery of cytocidal activity, 
in the TNF only samples, were 125 and 95 U, respectively, for samples 
without preincubation, and 14 and 10 U, respectively, for samples sub- 
jeered to chromatography after a 3-d preincubation period (.4). Corre- 
sponding values for TNF + sTNF-RI samples (C') were 15 and 38 U, 
respectively, without preincubation, and 14 and 34 U, respectively, for 
the sample tested after 3 d of preincubation. 2 Similar patterns of elution 
and similar recoveries of activities were observed when repeating the study 
presented in this figure with nonlabeled TNF or with sTNF-RII (not 
shown). 
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of TNE The elution pattern normally displayed by TNF is 
consistent with a molecular mass of '~35 kD (Fig. 5, A and 
B, thick lines). Yet, after a decay time of 3 d, most of the 
protein has a retention time corresponding to a much larger 
mass. A small portion of the protein displayed a smaller mass, 
~17 kD (Fig. 5 B, thin line; see also references 11 and 25). 
It thus appears that the decay of TNF activity is a conse- 
quence of a two-step process: the TNF molecules, which nor- 
mally exist as oligomers, with a subunit molecular mass of 
17 kD, dissociate to inactive monomers, which may subse- 
quently form high molecular mass aggregates (25). 

In gel-filtration chromatography of preparations also con- 
taining the sTNF-Rs, TNF and the sTNF-Rs eluted as a com- 
plex, of an apparent molecular mass larger than that of TNF 
(Compare Fig. 5, C, D, and E to A and B). The same mass 
of complex was observed, irrespective of whether or not the 
TNF and the sTNF-Rs were preincubated together even for 
extended periods. Furthermore, the proportion of TNF mol- 
ecules converted to large molecular mass aggregates in this 
preincubation period was significantly smaller in the pres- 
ence of the sTNF-Rs (32%) than in their absence (65%) (com- 
pare thick and thin lines in Fig. 5 D to those in Fig. 5 B). 

Notably, those column fractions corresponding to the com- 
plex between TNF and the sTNF-Rs were cytotoxic (Fig. 
5 C), implying that upon dissociation this complex yields 
bio-active TNF. 2 

The effect of the sTNF-RII on the pattern of elution of 
TNF from the column was almost identical to that of sTNF- 
R.I, except for a slightly lower retention time of the complex 
formed (not shown). 

These findings suggest that prolongation of TNF activity 
by the sTNF-Rs reflects their ability to associate reversibly 
with TNF in a complex in which the structure of TNF is 
stabilized. 

Discuss ion 

In their cell surface forms, cytokine receptors function as 
transducing elements, providing molecular signals for the 
cytokine effects within the cell. The soluble forms of these 
receptors, although deficient in intracellular domains, are still 
capable of binding their agonists, and thus affect their func- 
tion. The occurrence of such soluble forms extends the spec- 
trum of effects of the receptors also to activities mediated 
far away from the cells that express them. The present and 
several prior studies provide examples of two different ways 
in which the soluble receptors for TNF may affect TNF ac- 
tivity. These proteins, previously demonstrated to compete 

for TNF with the cell surface receptors (5-8), are now shown 
also to have the ability to stabilize TNF. 

The sTNF-Rs are present constitutively in serum at con- 
centrations that increase significantly in both inflammatory 
and noninflammatory disease states (21, and unpublished data). 
The effect of these proteins may differ, however, depending 
on their concentration at the site of TNF action, the relation 
of their concentration to the local concentration of TNF, and 
the rates at which the sTNF-Rs and TNF are cleared from 
the site of TNF action in relation to the rate of decay of TNF 
activity. Thus, the sTNF-Rs may in some situations inhibit 
the effects of TNF, in others, serve as carriers for TNF, and 
in some cases they may even augment the effects of TNF 
by prolonging its function. In the circulation, for example, 
from which the clearance of TNF is rapid (tl/2 "~6') (26), 
far exceeding the rate of decay of TNF activity, the ability 
of the sTNF-Rs to stabilize TNF is unlikely to be of any 
significant consequence, unless it turns out that, once bound 
to the sTNF-Rs, TNF is cleared at a much slower rate. How- 
ever, in compartments from which the clearance of TNF is 
slow, for example, in the synovial spaces (27, 28), the middle 
ear cavity (29), cerebrospinal fluid (30, 31), the alveolar (32) 
and peritoneal (33) spaces, or in inflamed tissues where there 
is lymphatic blockage, the sTNF-Rs may function exactly 
like in the "closed compartment" formed in a tissue culture 
well. They would be expected then to function a s buffering 
agents more than as inhibitors. They may mitigate the im- 
pact of over-production of TNF, yet, once the formation of 
TNF ceases, they may also slow down the decrease in its ac- 
tivity, serving as a "slow release reservoir" ofbio-active TNE 

The spontaneous decay of TNF activity can be a limiting 
factor for the function of TNF (31). It seems to reflect denatu- 
ration of this protein, resulting in its dissociation to monomers 
that in turn form multimeric aggregates. Binding of TNF 
to its soluble receptors slows clown this dissociation by 
stabilizing its trimeric structure. 

The mechanism for the spontaneous denaturation of TNF 
is not known, nor is the way it is inhibited by the sTNF-Rs 
understood. The stabilization of TNF by its soluble receptors 
is reminiscent of the stabilization of enzymes by their sub- 
strates. In both interactions, stabilization of the protein may 
be due to an induced conformational change. There is ample 
evidence for the occurrence of conformational changes in 
receptors upon binding to their ligand. Such changes occur 
also in the extracellular, ligand-binding, domains of the 
receptors (e.g., compare with references 34 and 35) and may, 
in turn, cause alteration also in the conformation of the bound 
ligand and thus stabilize it. 

2 Actually, because of some dissociation of the sTNF-Rs from the TNF 
during chromatography (compare the patterns of elution of TNF and sTNF- 
RI in Fig. 5, C and D, respectively), the TNF activity recovered from 
the column was higher than that applied (see legend to Fig. 5). 

327 Aderka et al. 



We thank Professor Jan Vilcek for his valuable contribution and encouragement. We also thank Ms. Ida 
Oren for her expert assistance in the chromatography of TNF, Dr. Vitto Palombella for his advice on 
the analysis of the TNF-induced fibroblast growth, and Drs. Helmut Holtmann, Geri Alpert, and Yonat 
Shemer-Avni for their comments on the manuscript. 

This work was supported by a grant from Inter-Lab Ltd., Nes-Ziona, Israel, as well as by a grant from 
the National Council for Research and Development, Israel, and the German Cancer Research Center. 

Address correspondence to David Wallach, Department of Molecular Genetics and Virology, The Weiz- 
mann Institute, Rehovot 76100, Israel 

Received for publication 12 August 1991 and in revised form 15 October 1991. 

R~fel~llCeS 

1. Beutler, B., and A. Cerami. 1988. Tumor necrosis, cachexia, 
shock and inflammation: a common mediator. Annu. Rev. Bio- 
chem. 57:505. 

2. Old, L.J. 1989. Tumor necrosis factor. Sci. Am. 258:41. 
3. Hohmann, H.P., R. Remy, M. Brockhaus, and A.P.G.M. van 

Loon. 1989. Two different cell types have different major 
receptors for human tumor necrosis factor (TNF alpha).J. Biol. 
Chem. 265:14497. 

4. Engelmann, H., H. Holtmann, C. Brakebusch, Y. Shemer- 
Avni, I. Sarov, Y. Nophar, E. Hadas, O. Leitner, and D. Wal- 
lach. 1990. Antibodies to a soluble form of a tumor necrosis 
factor (TNF) receptor have TNF-like activity. J. Biol. Chem. 
265:14497. 

5. Olsson, I., M. Lantz, E. Nilsson, C. Peetre, H. Thysell, and 
A. Grubb. 1989. Isolation and characterization of a tumor 
necrosis factor binding protein from urine. Eur. J. Haematol. 
42:270. 

6. Seckinger, P., S. Isaaz, andJ.-M. Dayer. 1989. Purification and 
Biologic characterization of a specific tumor necrosis factor c~ 
inhibitor. J. Biol. Chem. 264:11966. 

7. Engelmann, H., D. Aderka, M. Rubinstein, D. Rotman, and 
D. Wallach. 1989. A tumor necrosis factor-binding protein 
purified to homogeneity from human urine protects cells from 
tumor necrosis factor toxity. J. Biol. Chem. 264:11974. 

8. Engelmann, H., D. Novick, and D. Wallach. 1990. Two tumor- 
necrosis factor-binding proteins purified from human urine. 
Evidence for immunological cross-reactivity with cell surface 
tumor necrosis factor receptors. J. Biol. Chem. 265:1531. 

9. Nophar, Y., O. Kemper, C. Brakebusch, H. Engelmann, g .  
Zwang, D. Aderka, H. Holtmann, and D. Wallach. 1990. 
Soluble forms of tumor necrosis factors (TNF-Rs). The cDNA 
for the type I TNF-R, cloned using amino acid sequence data 
of its soluble form, encodes both the cell surface and a soluble 
form of the receptor. EMBO (Eur. Mol. Biol. Organ.)J. 9:3269. 

10. Smith, R.A., and C. Baglioni. 1987. The active form of tumor 
necrosis factor is a trimer. J. Biol. Chem. 262:6951. 

11. Narhi, L.O., and T. Arakawa. 1987. Dissociation of recom- 
binant tumor necrosis factor-c, studied by gel permeation chro- 
matography. Biochem. Biophys. Res. Commun. 147:740. 

12. Jones, E.Y., D.I. Stuart, and N.P.C. Walker. 1989. Structure 
of tumor necrosis factor. Nature (Lond.). 338:225. 

13. Eck, M.Y., and S.R. Sprang. 1989. The structure of tumor 
necrosis factor-cr at 2.6/~ resolution. Implications for recep- 
tor binding. J. Biol. Chem. 264:17595. 

14. Israel, S., T. Hahn, H. Holtmann, and D. Wallach. 1986. 

Binding of human TNF-a to high-aff'mity cell surface receptors: 
effect of interferon. Immunol. Lett. 12:217. 

15. Aderka, D., J. Le, and J.T. Vilcek. 1989. IL-6 inhibits 
lipopolysaccharide-induced tumor necrosis factor production 
in cultured human monocytes, U937 cells and in mice. J. lm- 
munol. 143:3517. 

16. Madsen, M., H.E. Johnsen, P. Wendelboe-Hanser, and S.E. 
Christiansen. 1980. Isolation of human B and T lymphocytes 
by E rosette gradient centrifugation. J. Immunol. Methods. 
33:323. 

17. Fischer, D.G., W.J. Hubbard, and H.S. Koren. 1981. Tumor 
cell killing by freshly isolated peripheral blood monocytes. Cell. 
Immunol. 58:426. 

18. Weissenbach, J., M. Zeevi, T. Landau, and M. Revel. 1979. 
Identification of the translation products of human fibroblast 
interferon mRNA in reticulocyte lysates. Eur.J. Biochem. 98:1. 

19. Littlefield, J.W. 1964. Three degrees of guanylic acid-inosinic 
acid pyrophosphorylase deficiency in mouse fibroblasts. Nature 
(Lond.). 203:1142. 

20. Wallach, D. 1984. Preparations of lymphotoxin induce resis- 
tance to their own cytotoxic effect. J. Immunol. 132:2464. 

21. Aderka, D., H. Engelmann, V. Hornik, Y. Skornick, Y. Levo, 
D. Wallach, and G. Kustai. 1991. Increased serum levels of 
soluble receptors for tumor necrosis factor in cancer patients. 
Cancer Res. 51:5602. 

22. Cordingley, FT., A.V. Hoftbrand, H.E. Heslop, M. Turner, 
A. Bianchi, J.E. Reittie, A. Vyakarnam, A. Meager, and A. 
Brenner. 1988. Tumor necrosis factor as an autocrine tumour 
growth factor for chronic B-cell malignancies. Lancet. i:969. 

23. Digel, W., M. Stefanic, W. Sch6niger, C. Buck, A. Rag- 
havachar, N. Frickhofen, H. Heimpel, and F. Porzsolt. 1988. 
Tumor necrosis factor induces proliferation of neoplastic B cells 
from chronic lymphocytic leukemia. Blood. 73:1242. 

24. Vilcek, T.J., V.J. Palombella, D. Henricksen-DeStefano, C. 
Swenson, R.. Feinman, M. Hirai, and M. Tsujimoto. 1986. 
Fibroblast growth enhancing activity of tumor necrosis factor 
and its relationship to other polypeptide growth factors.J. Exp. 
Med. 163:632. 

25. Munk Petersen, C., A. Nykjoer, B.S. Christiansen, L. Heick- 
enporff, S.C. Morgensen, and B. Moiler. 1989. Bioactive human 
recombinant tumor necrosis factor-a: An unstable dimer? Eur. 
J. Immunol. 19:1887. 

26. Beutler, B., I.W. Milsark, and A. Cerami. 1985. Cachectin/ 
tumor necrosis factor: production, distribution, and metabolic 
fate in vivo. J. Immunol. 135:3972. 

328 Tumor Necrosis Factor Receptors Stabilize Its Bioactivity 



27. Hopkins, S.J., and A. Meager. 1988. Cytokines in synovial 
fluid: II. The presence of tumor necrosis factor and interferon. 
Clin. Ext~ Immunol. 73:88. 

28. DiGiovine, F., G. Nuki, and G.W. Duff. 1988. Tumor necrosis 
factor in synovial exudates. Ann. Rheum. Dis. 47:768. 

29. Ophir, D., T. Hahn, A. Schattner, D. Wallach, and A. Aviel. 
1988. Tumor necrosis factor in middle ear effusions. Arch. 
Otolaryngol. 114:1256. 

30. Waage, A., A. Halstensen, R. Shalaby, P. Brandtzaeg, P. 
Kieruff, and T. Espevik. 1989. Local production of tumor 
necrosis factor a, interleukin 1, and interleukin 6 in menin- 
gococcal meningitis. J. Extx Med. 170:1859. 

31. Moller, B., S.C. Mogensen, P. Wendelboe, K. Bendtzen, and 
C.M. Petersen. 1991. Bioactive and inactive forms of tumor 
necrosis factor-c~ in spinal fluid from patients with meningitis. 

J. Infect. Dis. 163:886. 
32. Nelson, S., G.J. Bagby, B.G. Bainton, L.A. Wilson, J.J. 

33. 

34. 

35. 

Thompson, and W.R. Summer. 1989. Compartmentalization 
of intraalveolar and systemic lipopolysaccharide-induced tumor 
necrosis factor and the pulmonary inflammatory response, j .  
Infect. Dis. 159:189. 
Bagby, G.J., K.J. Plessala, L.A. Wilson, J.J. Thompson, and 
S. Nelson. 1991. Divergent efficiency of antibody to tumor 
necrosis factor-c~ in intravascular and peritonitis models of sepsis. 

J. Infect. Dis. 163:83. 
Johnson, J.D., M.L. Wong, and W.J. Rutter. 1989. Properties 
of the insulin receptor ectodomain. Proc Natl. Acad. Sci. USA. 
85:7516. 
Greenfield, C., I. Hiles, M.D. Waterfield, M. Federwisch, A. 
Wollmer, T.L. Blundell, and N. McDonald. 1989. Epidermal 
growth factor binding induces a conformational change in the 
external domain of its receptor. EMBO(Eur. Mol. Biol. Organ.) 
J. 8:4115. 

329 Aderl~ et al. 


