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What does transparency mean in a shared autonomy framework? Different ways of

understanding system transparency in human-robot interaction can be found in the state

of the art. In one of the most common interpretations of the term, transparency is the

observability and predictability of the system behavior, the understanding of what the

system is doing, why, and what it will do next. Since the main methods to improve

this kind of transparency are based on interface design and training, transparency is

usually considered a property of such interfaces, while natural language explanations

are a popular way to achieve transparent interfaces. Mechanical transparency is the

robot capacity to follow human movements without human-perceptible resistive forces.

Transparency improves system performance, helping reduce human errors, and builds

trust in the system. One of the principles of user-centered design is to keep the user aware

of the state of the system: a transparent design is a user-centered design. This article

presents a review of the definitions andmethods to improve transparency for applications

with different interaction requirements and autonomy degrees, in order to clarify the role

of transparency in shared autonomy, as well as to identify research gaps and potential

future developments.

Keywords: transparency, shared autonomy, human-robot interaction, communication, observability,

predictability, interface, user-centered design

1. INTRODUCTION

Shared autonomy adds to the fully autonomous behavior some level of human interaction,
combining the strengths of humans and automation (Hertkorn, 2015; Schilling et al., 2016; Ezeh
et al., 2017; Nikolaidis et al., 2017). In shared autonomy, humans and robots have to collaborate.
Transparency supports a flexible and efficient collaboration and plays a role of utmost importance
regarding the system overall performance.

In the next sections, current research about transparency in the shared autonomy framework
is reviewed. The goal is to provide, by analyzing the literature, a general view for a deeper
understanding of transparency which helps motivate and inspire future developments. The key
aspects and most relevant previous findings will be highlighted.

Different ways of understanding transparency in human-robot interaction in the shared
autonomy framework can be found in the state of the art. In one of the most common
interpretations of the term, transparency is the observability and predictability of the system
behavior, the understanding of what the system is doing, why, and what it will do next.
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In section 2 the effect of levels of autonomy on transparency
is analyzed. Then, the mini-review is organized according to the
different ways of understanding transparency in human-robot
interaction in the shared autonomy framework.

In section 3 transparency as observability and predictability
of the system behavior is studied. Since the main methods
to improve transparency are based on interface design and
training, transparency is usually considered a property of such
interfaces, and section 4 focuses on transparency as a property
of the interface. Since natural language explanations are a
popular way to achieve transparent interfaces, transparency as
explainability is studied in section 5. Section 6 is dedicated to
mechanical transparency, and ethically aligned design aspects of
transparency are reviewed in section 7.

Hence, the wider and most extended interpretations and
results are presented first, while more specific trends are left for
later sections. This way, the reader can naturally focus on the
general concepts before other implications are analyzed. A table
of selected references for each section can be found at the end of
the paper (Table 1).

2. TRANSPARENCY AND LEVELS OF
AUTONOMY

Traditionally, human-robot interaction in shared autonomy
has been characterized by levels of autonomy (Beer et al.,
2014). Sheridan and Verplank (1978) proposed an early
scale of levels of autonomy to provide a vocabulary for
the state of interaction during the National Aeronautics
and Space Administration (NASA) missions. In later work,
Endsley and Kaber (1999) and Parasuraman et al. (2000)
established other levels of autonomy taxonomies, considering
the distribution of tasks between the human and the system
regarding information acquisition, decision making, and actions
implementation.

Recently, Kaber (2017) reopened the discussion about whether
levels of autonomy are really useful. This paper has received
answers from Miller (2017) and Endsley (2018). Miller (2017)
considers that levels of autonomy are only an attempt to reduce
the dimension of the multidimensional space of human-robot
interaction. Other authors agree with this multidimensional
perspective (Bradshaw et al., 2013; Gransche et al., 2014; Schilling
et al., 2016) and with the need of focusing on human-robot
interaction (DoD, 2012). Endsley’s reply (Endsley, 2018) is a
review about the benefits of levels of autonomy.

For high levels of autonomy, when the system is operating
without significant human intervention, additional uncertainty
is expected. For high levels of autonomy, the user may have
a low level of observability of the system behavior, and low
predictability of the state of the system. The system might have
a low level of transparency.

For low levels of autonomy, when the human operators
are doing almost everything directly themselves, they know
how the tasks are being carried out, so the uncertainty and
unpredictability are typically low. Yet, the human operator’s
cognitive workload to be aware of everything increases to process

all the information. If the cognitive workload is too high, a
solution is delegation (Miller, 2014).Without trust, the user is not
going to delegate, no matter how capable the robot is, under-trust
may cause a poor use of the system (Parasuraman and Riley, 1997;
Lee and See, 2004). Transparency is needed for understanding
and trust, and trust is necessary for delegation (Kruijff et al., 2014;
Ososky et al., 2014; Yang et al., 2017).

The cognitive workload reduction not always means a task
performance improvement because of the automation-induced
complacency (Wright et al., 2017). Complacency means over-
trusting the system, and it is defined in Parasuraman et al. (1993)
as “the operator failing to detect a failure in the automated
control of system monitoring task.” For high levels of autonomy,
transparency of the robot intent and reasoning is especially
necessary to make the most of human-in-the-loop approaches,
reducing complacency (Wright et al., 2017). Transparency and
trust calibration can be improved by training (Nikolaidis et al.,
2015) and a good interface design (Lyons, 2013; Kruijff et al.,
2014). Some efforts to integrate trust into computational models
can be found in Desai (2012) and Chen et al. (2018).

3. TRANSPARENCY AS OBSERVABILITY
AND PREDICTABILITY OF THE SYSTEM
BEHAVIOR

One of the most common ways of understanding transparency
in human-robot interaction in shared autonomy framework is
as observability and predictability of the system behavior: the
understanding of what the system is doing, why, and what it will
do next (Endsley, 2017).

What kind of information should be communicated in order
to have a good level of transparency? The robot’s state and
capabilities must be communicated transparently to the human
operator: what the robot is doing and why, what it is going to
do next, when and why the robot fails when performing specific
actions, and how to correct errors are essential aspects to be
considered. In Kruijff et al. (2014) and Hellström and Bensch
(2018), the authors go even further: their research explores, based
on experimental data, not only what to communicate, but also
communication patterns—how to communicate—for improving
user understanding in a given situation.

Autonomy increases uncertainty and unpredictability about
the system’s state, and some authors understand transparency
in the sense of predictability: “Transparency is essentially the
opposite of unpredictability” (Miller, 2014) and “Transparency is
the possibility to anticipate imminent actions by the autonomous
system based on previous experience and current interaction”
(Iden, 2017).

Other definitions, found in the literature, in the sense of
observability are: “Transparency is the term used to describe
the extent to which the robot’s ability, intent, and situational
constraints are understood by users” (Wortham et al., 2017),
“Transparency is a mechanism to expose the decision-making
of a robot” (Theodorou et al., 2016, 2017), and “the ability for
the automation to be inspectable or viewable in the sense that its
mechanisms and rationale can be readily known” (Miller, 2018).
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TABLE 1 | Summary.

Transparency in shared autonomy

2. Transparency and levels of autonomy

High autonomy Low autonomy Miller, 2014, 2017

Situation awareness Low High Schilling et al., 2016; Ezeh et al., 2017

Transparency Low High Kaber, 2017; Wright et al., 2017

Cognitive engagement Low High Ososky et al., 2014; Yang et al., 2017

Risk of overtrust High Low Desai, 2012; Chen et al., 2018

3. Transparency as observability and predictability of system behavior

Transparency as observability of the system behavior. Endsley, 2012, 2017

User understanding of what the system is doing, why, and what it will do

next. User-centered design.

Kruijff et al., 2014; Hellström and Bensch, 2018; Villani et al., 2018

Transparency as the opposite of unpredictability Miller, 2014; Iden, 2017

The robot’s abilities, intent, and situational constraints are understood by

the users. Legibility, Readibility

Takayama et al., 2011; Dragan et al., 2013; Busch et al., 2017; Wortham et al.,

2017

Mechanism to expose decision making Theodorou et al., 2017

Methods to establish Shared Situational Awareness and Shared Intentions

(Interface Design and Training) Robot-to-Human and Robot-of-Human

Transparency

Lyons, 2013; Lyons and Havig, 2014; Tsiourti and Weiss, 2014; Lorenz, 2015;

Dragan, 2017; Wang et al., 2017; Doellinger et al., 2018; Javdani et al., 2018

4. Transparency as a property of the Interface

Situation Awareness Transparency (SAT) Model. Chen et al., 2014; Endsley, 2017

Levels 1,2,3: Perception, comprehension, and projection

Multimodal interfaces Perzanowski et al., 2001; Lakhmani et al., 2016; Oviatt et al., 2017

Transparency as explainability

Transparency is the robot offering explanations of its actions.

Route/planning/navigation verbalization

Kim and Hinds, 2006; Caminada et al., 2014; DARPA, 2016; Rosenthal et al.,

2016; Wortham and Rogers, 2017

5. Mechanical transparency

Wearable robots,exoskeletons,rehabilitation: Capacity to follow human

movements without human-perceptible resistive forces Training, Avoiding

over-trust

Robertson et al., 2007; Jarrasse et al., 2008; Jarrassé et al., 2009; van Dijk

et al., 2013; Zhang et al., 2016; Awad et al., 2017; Beckerle et al., 2017; Bai

et al., 2018; Borenstein et al., 2018; Fani et al., 2018

Telerobotics Realistic (transparent) perception of the remote environment. Raju et al., 1989; Lawrence, 1993; Yokokohji and Yoshikawa, 1994; Ferre et al.,

2007; Hirche and Buss, 2007; Slawinski et al., 2012; Goodrich et al., 2013;

Hertkorn, 2015; Muelling et al., 2017

6. Transparency and ethically aligned design

The ethical black-box Winfield and Jirotka, 2017

Transparency as traceability and verification Wortham et al., 2017

IEEE Global Initiative for Ethically Aligned Design Bryson and Winfield, 2017

P7001-Transparency in Autonomous Systems Grinbaum et al., 2017

Legible motion is “themotion that communicates its intents to

a human observer” (Dragan et al., 2013), also referred as readable

motion (Takayama et al., 2011), or anticipatory motion (Gielniak
and Thomaz, 2011). Algorithmic approaches for establishing

transparency in the sense of legibility can be found in Dragan
et al. (2013, 2015a,b); Nikolaidis et al. (2016), and in Busch
et al. (2017) based on optimization and learning techniques,
respectively.

3.1. Robot-to-Human Transparency and
Robot-of-Human Transparency
Transparency about the robot’s state information may be referred
to as robot-to-human transparency (Lyons, 2013). One of the
principles of user-centered design is to keep the user aware of
the state of the system (Endsley, 2012; Villani et al., 2018). Robot-
to-human transparency enables user-centered design. This mini-
review is focused on this type of transparency.
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There is also a robot-of-human transparency (Lyons,
2013), which focuses on the awareness and understanding of
information related to humans. This concept of monitoring
human performance is of growing interest to provide assistance,
e.g., in driving and aviation. The term robot-of-human
transparency is not widely used in literature. However, examples
of robot-of-human transparency, without using the term directly,
can be found in Lorenz et al. (2014); Lorenz (2015); Tsiourti and
Weiss (2014); Dragan (2017); Wang et al. (2017); Doellinger et al.
(2018); Goldhoorn et al. (2018); Gui et al. (2018), and Javdani
et al. (2018). In Casalino et al. (2018) and Chang et al. (2018)
a feedback of the intent recognition is communicated to the
operator.

In Lyons (2013) and Lyons and Havig (2014) transparency
is defined as a “method to establish shared intent and
shared awareness between a human and a machine.” Since
the main method to establish shared situation awareness and
shared intent is the interface design, the next section is
dedicated to the study of transparency as a property of the
interface.

4. TRANSPARENCY AS A PROPERTY OF
THE INTERFACE

The Human-Automation System Oversight (HASO) model
(Endsley, 2017) summarizes the main aspects, and its
relationships, of Human-Automation Interaction (HAI).
The place of transparency in this model is as a property of the
interface. This model uses the three level situation awareness
model (Endsley, 1995).

In Chen et al. (2014) Transparency is defined as an attribute of
the human-robot interface “the descriptive quality of an interface
about its abilities to afford an operator’s comprehension about
an intelligent agent’s intent, performance, plans, and reasoning
process.” The Situation Awareness Transparency (SAT) model
(Chen et al., 2014), is based on Endsley (1995), and proposes three
levels of Transparency:

• Level 1. Transparency to support perception of the current
state, goals, planning, and progress.

• Level 2. Transparency to support comprehension of the
reasoning behind the robot’s behavior and limitations.

• Level 3. Transparency to support projection, predictions
and probabilities of failure/success based on the history of
performance.

Errors in the perception because the information was not
clearly provided (lack of level 1 transparency) are the cause
of a great amount of the situation awareness problems, which
are the cause of failures due to human errors (Jones and
Endsley, 1996; Murphy, 2014). The design of more transparent
interfaces might improve situation awareness, reducing human
errors.

Information to support transparency can be exchanged
through different communication channels (Goodrich and
Schultz, 2007): visual interfaces (Baraka et al., 2016; Walker
et al., 2018), human-like explanation interfaces (the next sections

is dedicated to explanation interfaces), physical interaction
and haptics based interfaces (Okamura, 2018) (studied in
the mechanical transparency section), or a combination
in multimodal interfaces (Perzanowski et al., 2001; Oviatt
et al., 2017). Lakhmani et al. (2016) study the possibility
to add information about roles and responsibilities in the
division of tasks to the SAT model, using a multimodal
interface.

5. TRANSPARENCY AS EXPLAINABILITY

Transparency can be achieved by means of human-like natural
language explanations. In Kim and Hinds (2006) the definition
given for transparency is “Transparency is the robot offering
explanations of its actions.”Mueller sees explanation as one of the
main characteristics of transparency (Mueller, 2016; Wortham
et al., 2016).

According to the report about explainable artificial
intelligence by the Defense Advanced Research Projects
Agency (DARPA, 2016), the explanation interface should be able,
at least, to generate answers to the user’s questions:

• Why did the system do that and not something else?
• When does the system succeed? and
• When does the system fail?
• When can the user trust the system?
• How can the user correct an error?

Verbalization has been used to convert sensor data into natural
language, to describe a route (Perera et al., 2016; Rosenthal
et al., 2016) when the user requests information in a dialog,
to explain a policy (Hayes and Shah, 2017), or in Zhu
et al. (2017) to describe what a humanoid is doing in the
kitchen.

Trust in robots is essential for the acceptance and wide
utilization of robot systems (Kuipers, 2018; Lewis et al., 2018).
Explanations improve usability and let the users understand
what is happening, building the users’ trust and generating
calibrated expectations about the system’s capabilities (Westlund
and Breazeal, 2016). If systems can explain their reasoning,
they should be easily understood by their users, and humans
are more likely to trust systems that they understand (Sanders
et al., 2014; Sheh, 2017; Fischer et al., 2018; Lewis et al.,
2018).

6. MECHANICAL TRANSPARENCY

Wearable robots like exoskeletons are coupled to the user, and
the robot moves with the wearer cooperatively (Awad et al.,
2017; Anaya et al., 2018; Bai et al., 2018; Fani et al., 2018).
In this case, the design should be able to follow the human
movements minimizing resistive forces felt by the human, i.e.,
the design should be mechanically transparent. For example,
in rehabilitation, a robot applies a force to a patient, and
then the patient finishes the movement (Robertson et al.,
2007; Jarrassé et al., 2009; Zhang et al., 2016; Beckerle et al.,
2017).

Frontiers in Neurorobotics | www.frontiersin.org 4 November 2018 | Volume 12 | Article 83

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Alonso and de la Puente Transparency in Shared Autonomy

The system is transparent if the robot follows exactly the
human movement, without applying forces to the human.
Transparency might be improved by human motion prediction
(Jarrasse et al., 2008) and training (van Dijk et al., 2013).
Trust calibration is needed to avoid the risk of overtrust in the
capabilities of the exoskeletons (Borenstein et al., 2018).

Bilateral teleoperation, also named telerobotics, should enable
the user to interact with a remote environment as if they were
interacting directly. To interact with the remote environment a
slave robot is used. The slave is controlled by a human operator
using a human-machine interface or master, and the signals
from master to slave, and the feedback from slave to master, are
transmitted through a communication channel (Ferre et al., 2007;
Goodrich et al., 2013; Hertkorn, 2015; Fani et al., 2018; Okamura,
2018).

In a transparent system, the slave tracks exactly the master,
and the operator has a realistic (transparent) perception of the
remote environment: the technical system should not be felt
by the human (Hirche and Buss, 2007). Transparency can be
degraded if there are time delays in the communication channel
between the user and the remote environment (Lawrence,
1993; Hirche and Buss, 2007; Farooq et al., 2016). More
details about transparency modeling for telerobotics can be
found in Raju et al. (1989); Lawrence (1993); Yokokohji and
Yoshikawa (1994); Ferre et al. (2007), and Slawinski et al.
(2012).

When using brain computer interfaces (BCIs) (Bi et al., 2013;
Rupp et al., 2014; Arrichiello et al., 2017; Burget et al., 2017) as the
input device to teleoperate a robotic manipulator, the difficulty
in decoding neural activity introduces delays, noises, etc., and
specific techniques to improve transparency are required, such
as the ones proposed in Muelling et al. (2017).

7. TRANSPARENCY AND ETHICALLY
ALIGNED DESIGN

Another aspect of transparency is in the sense of traceability
and verification (Winfield and Jirotka, 2017; Wortham et al.,
2017). Winfield and Jirotka (2017) propose that robots should
be equipped with an ethical black box, the equivalent of the
black box used in aircrafts, to provide transparency about how
and why a certain accident may have happened, helping to
establish accountability. This transparency could help disruptive
technologies gain public trust (Sciutti et al., 2018).

Ethics and Standards are interconnected, and both fit into
the broader framework of Responsible Research and Innovation.
There is an IEEE Global Initiative for Ethically Aligned Design
for Artificial Intelligence and Autonomous Systems, with a work
group dedicated to Transparency (Bryson and Winfield, 2017;
Grinbaum et al., 2017). In this initiative, Transparency is defined
as “the property which makes possible to discover how and
why the system made a particular decision, or in the case of
a robot, acted the way it did.” The standard describes levels of
transparency for autonomous systems for different stakeholders:
users, certification agencies, accident investigators, lawyers, and
general public.

European Union’s new General Data Protection Regulation
and the Recommendations to the Commission on Civil Law
Rules on Robotics are examples of the increasing importance
of ethically aligned designs. The first one creates the right to
receive explanations (Goodman and Flaxman, 2016), and the
second one recommends maximum transparency, predictability,
and traceability (Boden et al., 2017; European Parlament,
2017).

8. DISCUSSION

Marvin Minsky used the term “suitcase word” (Minsky, 2006)
to refer to words with several meanings packed into them.
Transparency is a kind of suitcase-like word, so we propose
a categorization of the different meanings of transparency
in shared autonomy identified in the state of the art. This
categorization can be found in Table 1.

It can be observed that algorithmic approaches to establish
and improve transparency are well developed, mature, and
numerous in mechanical transparency and haptic interfaces.
On the other hand, algorithms to establish transparency in the
sense of observability, predictability, legibility, or explainability,
or for other types of interfaces like brain computer interfaces,
are not so numerous and have only been recently developed.
Table 2 clusters a relevant selection of these algorithmic
approaches.

Considering the challenges of transparency, several areas
might be promising for future developments. The challenges of
transparency in shared autonomy are different for high levels of
autonomy and for low levels of autonomy.

For low levels of autonomy, the operator is doing almost
everything directly, so the uncertainty and predictability are low,
and transparency may be high, but there is a problem because
the human cognitive workload to be aware of everything might
become too high. The solutions might be:

• The use of intermediate levels of autonomy, so that the user
might delegate some tasks (Miller, 2014). Trust is necessary
for delegation, without trust, the user is not going to delegate,
no matter how capable the robot is (Kruijff et al., 2014).
Transparency helps build trust (Ososky et al., 2014).

• Improve the interfaces design to allow users to manage the
information available, to obtain a high level of understanding
of what is going on.

• Learn from the experience. If a robot requests human support
in a difficult situation, the human actions could be stored and
executed the next time the robot faces the same situation.

For high levels of autonomy, human is delegating almost
everything, so the uncertainty and predictability are high, and
the transparency may be low. The operator cognitive engagement
and attention might become low (Endsley, 2012; Hancock, 2017),
and it might cause problems detecting failures (complacency
effect) (Parasuraman et al., 1993), and recovering manual control
from automation failure (Lumberjack effect)(Onnasch et al.,
2014; Endsley, 2017). The solutions might be:

• The use of intermediate levels of autonomy.
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TABLE 2 | Main algorithmic approaches.

Transparency in shared autonomy

3. Transparency as observability and predictability of system behavior

Dragan et al., 2013, 2015a,b; Nikolaidis et al., 2016 Generating legible motion optimizing trajectories space

Busch et al., 2017; Buehler and Weisswange, 2018 Legibility using model-free methods

Takayama et al., 2011 Readibility based on handcoded animations

Cha et al., 2017; Kim and Fong, 2017; Ganesan et al., 2018 Visual cues and light signaling

Robot-of-Human Transparency

Bethel and Murphy, 2008; Dragan, 2017; Roncone et al., 2017; Chen et al., 2018; Gui et al.,

2018

Intent recognition

Gielniak and Thomaz, 2011; Lorenz et al., 2014; Bai et al., 2015; Matthews et al., 2017;

Nikolaidis et al., 2017; Wang et al., 2017; Doellinger et al., 2018; Goldhoorn et al., 2018

Mutual adaptation

Breazeal et al., 2005; Li and Zhang, 2017; Li et al., 2017; Cha et al., 2018; Gildert et al., 2018;

Haji Fathaliyan et al., 2018; Lakomkin et al., 2018

Implicit communication

5. Transparency as explainability

Caminada et al., 2014; Rosenthal et al., 2016; Wortham and Rogers, 2017; Kuhner et al.,

2018; Nikolaidis et al., 2018

Route/planning/navigation verbalization

MacMahon et al., 2006; Kollar et al., 2010; Matuszek et al., 2010; Duvallet et al., 2013, 2016;

Oßwald et al., 2014; Hemachandra et al., 2015; Daniele et al., 2017; Suddrey et al., 2017;

Nikolaidis et al., 2018; Sinha et al., 2018

Natural language grounding

6. Mechanical transparency

Wearables, Exoskeletons

Robertson et al., 2007; Jarrasse et al., 2008; Jarrassé et al., 2009; van Dijk et al., 2013; Kim

and Rosen, 2015; Boaventura and Buchli, 2016; Zhang et al., 2016; Awad et al., 2017;

Beckerle et al., 2017; Boaventura et al., 2017; Chen et al., 2017; Fong et al., 2017; Bai et al.,

2018; Fani et al., 2018

Force feedback control with feedforward loop fed with predictive

information, impedance and admittance controllers,

electromyography methods

Telerobotics

Raju et al., 1989; Lawrence, 1993; Yokokohji and Yoshikawa, 1994; Baier and Schmidt, 2004;

Lee and Li, 2005; Hokayem and Spong, 2006; Monfaredi et al., 2006; Ferre et al., 2007;

Goethals et al., 2007; Hirche and Buss, 2007; Polushin et al., 2007; Kim et al., 2010, 2013;

Yalcin and Ohnishi, 2010; Baser and Konukseven, 2012; Franken et al., 2012; Na and Vu,

2012; Slawinski et al., 2012; Aracil et al., 2013; Baser et al., 2013; Goodrich et al., 2013; Meli

et al., 2014; Pacchierotti et al., 2014; Hertkorn, 2015; Farooq et al., 2016; Park et al., 2016;

Sun et al., 2016; Xu et al., 2016; Gopinath et al., 2017; Lu et al., 2017

Realistic perception of the remote environment through:adaptive

impedance force control, stiffness observers, position-force

controllers, four channel control, impedance reflection algorithms,

coupled impedance controllers, cutaneous tactile force feedback

Burget et al., 2017; Muelling et al., 2017; Zhao et al., 2017 BCI, AR

• Increase of transparency of the system’s intent and reasoning,
including information beyond the three levels SAT model.

• Increase robot-of-human transparency to recognize human
attention reduction.

• Training to avoid the out-of-the-loop performance problem,
and calibrate the trust in the system.

9. CONCLUSIONS

The current research about transparency in the shared autonomy
framework has been reviewed, to provide a general and complete
overview. The next ways of understanding transparency in

human-robot interaction in the shared autonomy framework
have been identified in the state of the art:

• Transparency as the observability of the system behavior, and
as the opposite of unpredictability of the state of the system.
The human understanding of what the system is doing, why,
and what it will do next.

• Transparency as a method to achieve shared situation
awareness and shared intent between the human and the
system. The main methods to improve shared situation
awareness are interface design and training.

• Robot-to-human transparency (understanding of system
behavior) vs. robot-of-human transparency (understanding
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of human behavior). This work has focused on the
first one.

• Transparency as a property of the human-robot interface
and the transparency situation awareness model. Transparent
interfaces can be achieved through natural language
explanations.

• Mechanical transparency used in haptics, bilateral
teleoperation, and wearable robots like exoskeletons.

• Transparency as traceability and verification.

The benefits of transparency are multiple: transparency improves
system performance andmight reduce human errors, builds trust
in the system, and transparent design principles are aligned with
user-centered design, and ethically aligned design.
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(2017). “Modlight: designing a modular light signaling tool for human-robot

interaction,” in 2017 IEEE International Conference on Robotics and Automation

(ICRA) (Singapore), 1654–1661. doi: 10.1109/ICRA.2017.7989195

Chang, M. L., Gutierrez, R. A., Khante, P., Short, E. S., and Thomaz, A. L. (2018).

“Effects of integrated intent recognition and communication on human-robot

collaboration,” in 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (Madrid), 3381–3386.

Chen, J., Procci, K., Boyce, M., Wright, J., Garcia, A., and Barnes, M. (2014).

Situation Awareness–Based Agent Transparency. Technical Report ARL-TR-

6905, ARM US Army Research Laboratory.

Chen, M., Nikolaidis, S., Soh, H., Hsu, D., and Srinivasa, S. (2018). “Planning with

trust for human-robot collaboration,” in Proceedings of the 2018 ACM/IEEE

International Conference on Human-Robot Interaction (New York, NY: ACM),

307–315.

Chen, X., Zeng, Y., and Yin, Y. (2017). Improving the transparency of an

exoskeleton knee joint based on the understanding ofmotor intent using energy

kernel method of EMG. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 577–588.

doi: 10.1109/TNSRE.2016.2582321

Daniele, A. F., Bansal, M., and Walter, M. R. (2017). “Navigational instruction

generation as inverse reinforcement learning with neural machine translation,”

in Proceedings of the 2017 ACM/IEEE International Conference on Human-

Robot Interaction, HRI ’17, (New York, NY: ACM), 109–118.

DARPA (2016). Explainable Artificial Intelligence (xai). Technical Report Defense

Advanced Research Projects Agency, DARPA-BAA-16-53.

Desai, M. (2012). Modeling Trust to Improve Human-robot Interaction. Ph.D.

thesis. University of Massachusetts Lowell, Lowell, MA.

DoD (2012). The Role of Autonomy in DoD Systems. Technical report, Department

of Defense (DoD).

Doellinger, J., Spies, M., and Burgard, W. (2018). Predicting occupancy

distributions of walking humans with convolutional neural networks. IEEE

Robot. Automat. Lett. 3, 1522–1528. doi: 10.1109/LRA.2018.2800780

Dragan, A. D. (2017). “Robot planning with mathematical models of human state

and action,” in 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Workshop in User Centered Design (Madrid). Available online at:

http://arxiv.org/abs/1705.04226

Dragan, A. D., Bauman, S., Forlizzi, J., and Srinivasa, S. S. (2015a). “Effects of robot

motion on human-robot collaboration,” in Proceedings of the Tenth Annual

ACM/IEEE International Conference on Human-Robot Interaction (New York,

NY: ACM), 51–58.

Dragan, A. D., Lee, K. C., and Srinivasa, S. S. (2013). “Legibility and predictability

of robot motion,” in Proceedings of the 8th ACM/IEEE International Conference

on Human-robot Interaction, HRI ’13 (Piscataway, NJ: IEEE Press), 301–308.

Dragan, A. D., Muelling, K., Bagnell, J. A., and Srinivasa, S. S. (2015b).

“Movement primitives via optimization,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA) (Seattle, WA), 2339–2346.

doi: 10.1109/ICRA.2015.7139510

Duvallet, F., Kollar, T., and Stentz, A. (2013). “Imitation learning for natural

language direction following through unknown environments,” in 2013

IEEE International Conference on Robotics and Automation (Karlsruhe),

1047–1053. doi: 10.1109/ICRA.2013.6630702

Duvallet, F., Walter, M. R., Howard, T., Hemachandra, S., Oh, J., Teller, S., et al.

(2016). Inferring Maps and Behaviors from Natural Language Instructions.

Cham: Springer International Publishing.

Endsley, M. (2012). Designing for Situation Awareness: An Approach to User-

Centered Design, 2nd Edition. Boca Raton, FL: CRC Press.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.

Human Factors 37, 32–64.

Endsley, M. R. (2017). From here to autonomy: lessons learned from human-

automation research.Human Factors 59, 5–27. doi: 10.1177/0018720816681350

Endsley, M. R. (2018). Level of automation forms a key aspect of autonomy design.

J. Cogn. Eng. Decis. Making 12, 29–34. doi: 10.1177/1555343417723432

Endsley, M. R., and Kaber, D. B. (1999). Level of automation effects on

performance, situation awareness and workload in a dynamic control task.

Ergonomics 42, 462–492.

European Parlament (2017). Report With Recommendations to the Commission on

Civil Law Rules on Robotics. Technical Report 2015/2103(INL), Committee on

Legal Affairs.

Ezeh, C., Trautman, P., Devigne, L., Bureau, V., Babel, M., and Carlson, T. (2017).

“Probabilistic vs linear blending approaches to shared control for wheelchair

driving,” in 2017 International Conference on Rehabilitation Robotics (ICORR)

(London), 835–840. doi: 10.1109/ICORR.2017.8009352

Fani, S., Ciotti, S., Catalano,M. G., Grioli, G., Tognetti, A., Valenza, G., et al. (2018).

Simplifying telerobotics: wearability and teleimpedance improves human-

robot interactions in teleoperation. IEEE Robot. Automat. Mag. 25, 77–88.

doi: 10.1109/MRA.2017.2741579

Farooq, U., Gu, J., El-Hawary, M., Asad, M. U., and Rafiq, F. (2016).

“Transparent fuzzy bilateral control of a nonlinear teleoperation

system through state convergence,” in 2016 International Conference on

Emerging Technologies (ICET) (Islamabad), 1–6. doi: 10.1109/ICET.2016.78

13242

Ferre, M., Buss, M., Aracil, R., Melchiorri, C., and Balaguer, C. (2007). Advances

in Telerobotics. Springer Berlin; Heidelberg: Springer Tracts in Advanced

Robotics.

Fischer, K., Weigelin, H. M., and Bodenhagen, L. (2018). Increasing trust in

human-robot medical interactions: effects of transparency and adaptability.

Paladyn 9, 95–109. doi: 10.1515/pjbr-2018-0007

Fong, J., Crocher, V., Tan, Y., Oetomo, D., and Mareels, I. (2017). “EMU:

A transparent 3D robotic manipulandum for upper-limb rehabilitation,” in

2017 International Conference on Rehabilitation Robotics (ICORR) (London),

771–776. doi: 10.1109/ICORR.2017.8009341

Franken, M., Misra, S., and Stramigioli, S. (2012). Improved transparency

in energy-based bilateral telemanipulation. Mechatronics 22, 45–54.

doi: 10.1016/j.mechatronics.2011.11.004

Ganesan, R. K., Rathore, Y. K., Ross, H. M., and Amor, H. B. (2018). Better

teaming through visual cues: how projecting imagery in a workspace can

improve human-robot collaboration. IEEE Robot. Automat. Mag. 25, 59–71.

doi: 10.1109/MRA.2018.2815655

Gielniak, M. J., and Thomaz, A. L. (2011). “Generating anticipation in

robot motion,” in 2011 RO-MAN (Atlanta, GA), 449–454.

doi: 10.1109/ROMAN.2011.6005255

Gildert, N., Millard, A. G., Pomfret, A., and Timmis, J. (2018). The need for

combining implicit and explicit communication in cooperative robotic systems.

Front. Robot. 5:65. doi: 10.3389/frobt.2018.00065

Goethals, P., Gersem, G. D., Sette, M., and Reynaerts, D. (2007). “Accurate haptic

teleoperation on soft tissues through slave friction compensation by impedance

reflection,” in Second Joint EuroHaptics Conference and Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07)

(Tsukaba), 458–463. doi: 10.1109/WHC.2007.17

Goldhoorn, A., Garrell, A., Renéand A., and Sanfeliu, A. (2018). Searching and

tracking people with cooperative mobile robots. Auton. Robots 42, 739–759.

doi: 10.1007/s10514-017-9681-6

Goodman, B., and Flaxman, S. (2016). European Union Regulations on

algorithmic decision-making and a “Right to Explanation”. AI Magazine 38,

50–57. doi: 10.1609/aimag.v38i3.2741

Goodrich, M., W. Crandall, J., and Barakova, E. (2013). Teleoperation and

beyond for assistive humanoid robots. Rev. Hum. Factors Ergon. 9, 175–226.

doi: 10.1177/1557234X13502463

Goodrich, M. A., and Schultz, A. C. (2007). Human-robot interaction: a survey.

Found. Trends Hum. Comput. Interact. 1, 203–275. doi: 10.1561/1100000005

Gopinath, D., Jain, S., and Argall, B. D. (2017). Human-in-the-loop optimization of

shared autonomy in assistive robotics. IEEE Robot. Automat. Lett. 2, 247–254.

doi: 10.1109/LRA.2016.2593928

Gransche, B., Shala, E., Hubig, C., Alpsancar, S., and Harrach, S.,

(2014). Wande von Autonomie und Kontrole durch neue Mensch-

Technik-Interaktionen:Grundsatzfragen autonomieorienter. Stuttgart:

Mensch-Technik-Verhältnisse.

Grinbaum, A., Chatila, R., Devillers, L., Ganascia, J. G., Tessier, C., and Dauchet,

M. (2017). Ethics in robotics research: Cerna mission and context. IEEE Robot.

Automat. Mag. 24, 139–145. doi: 10.1109/MRA.2016.2611586

Gui, L.-Y., Zhang, K., Wang, Y.-X., Liang, X., Moura, J. M. F., and Veloso,

M. (2018). “Teaching robots to predict human motion,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Madrid),

562–567.

Haji Fathaliyan, A., Wang, X., and Santos, V. J. (2018). Exploiting three-

dimensional gaze tracking for action recognition during bimanual

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2018 | Volume 12 | Article 83

https://doi.org/10.1109/ICRA.2017.7989195
https://doi.org/10.1109/TNSRE.2016.2582321
https://doi.org/10.1109/LRA.2018.2800780
http://arxiv.org/abs/1705.04226
https://doi.org/10.1109/ICRA.2015.7139510
https://doi.org/10.1109/ICRA.2013.6630702
https://doi.org/10.1177/0018720816681350
https://doi.org/10.1177/1555343417723432
https://doi.org/10.1109/ICORR.2017.8009352
https://doi.org/10.1109/MRA.2017.2741579
https://doi.org/10.1109/ICET.2016.7813242
https://doi.org/10.1515/pjbr-2018-0007
https://doi.org/10.1109/ICORR.2017.8009341
https://doi.org/10.1016/j.mechatronics.2011.11.004
https://doi.org/10.1109/MRA.2018.2815655
https://doi.org/10.1109/ROMAN.2011.6005255
https://doi.org/10.3389/frobt.2018.00065
https://doi.org/10.1109/WHC.2007.17
https://doi.org/10.1007/s10514-017-9681-6
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1177/1557234X13502463
https://doi.org/10.1561/1100000005
https://doi.org/10.1109/LRA.2016.2593928
https://doi.org/10.1109/MRA.2016.2611586
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Alonso and de la Puente Transparency in Shared Autonomy

manipulation to enhance humanRobot collaboration. Front. Robot. AI

5:25. doi: 10.3389/frobt.2018.00025

Hancock, P. A. (2017). On the nature of vigilance. Hum. Factors 59, 35–43.

doi: 10.1177/0018720816655240

Hayes, B., and Shah, J. A. (2017). “Improving robot controller transparency

through autonomous policy explanation,” in Proceedings of the 2017 ACM/IEEE

International Conference on Human-Robot Interaction (New York, NY: ACM),

303–312.

Hellström, T., and Bensch, S. (2018). Understandable robots. Paladyn J. Behav.

Robot. 9, 110–123. doi: 10.1515/pjbr-2018-0009

Hemachandra, S., Duvallet, F., Howard, T. M., Roy, N., Stentz, A., and

Walter, M. R. (2015). “Learning models for following natural language

directions in unknown environments,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA) (Seattle, WA), 5608–5615.

doi: 10.1109/ICRA.2015.7139984

Hertkorn, K. (2015). Shared Grasping: a Combination of Telepresence and Grasp

Planning. Ph.D. thesis, Karlsruher Institute für Technologie (KIT).

Hirche, S., and Buss, M. (2007). “Human perceived transparency with time

delay,” in Advances in Telerobotics, eds M. Ferre, M. Buss, R. Aracil,

C. Melchiorri, and C. Balaguer (Berlin; Heidelberg: Springer), 191–209.

doi: 10.1007/978-3-540-71364-7_13

Hokayem, P. F., and Spong, M. W. (2006). Bilateral teleoperation: An historical

survey. Automatica 42, 2035–2057. doi: 10.1016/j.automatica.2006.06.027

Iden, J. (2017). “Belief, judgment, transparency, trust: reasoning about potential

pitfalls in interacting with artificial autonomous entities,” in Robotics: Science

and Systems XIII, RSS 2017, eds N. Amato, S. Srinivasa, and N. Ayanian

(Cambridge, MA).

Jarrasse, N., Paik, J., Pasqui, V., and Morel, G. (2008). “How can human

motion prediction increase transparency?” in 2008 IEEE International

Conference on Robotics and Automation (Pasadena, CA), 2134–2139.

doi: 10.1109/ROBOT.2008.4543522

Jarrassé, N., Paik, J., Pasqui, V., and Morel, G. (2009). Experimental Evaluation

of Several Strategies for Human Motion Based Transparency Control, pages

557–565. Berlin; Heidelberg: Springer Berlin Heidelberg.

Javdani, S., Admoni, H., Pellegrinelli, S., Srinivasa, S. S., and Bagnell, J. A. (2018).

Shared autonomy via hindsight optimization for teleoperation and teaming.

Int. J. Robot. Res. 37, 717–742. doi: 10.1177/0278364918776060

Jones, D. G., and Endsley, M. R. (1996). Sources of situation awareness errors in

aviation. Aviat. Space Environ. Med. 67, 507–512.

Kaber, D. B. (2017). Issues in human-automation interaction modeling:

presumptive aspects of frameworks of types and levels of automation. J. Cogn.

Eng. Decis. Mak. 12:155534341773720. doi: 10.1177/1555343417737203

Kim, H., and Rosen, J. (2015). Predicting redundancy of a 7 dof upper limb

exoskeleton toward improved transparency between human and robot. J. Intell.

Robot. Syst. 80, 99–119. doi: 10.1007/s10846-015-0212-4

Kim, J., Chang, P. H., and Park, H. (2013). Two-channel transparency-optimized

control architectures in bilateral teleoperation with time delay. IEEE Trans.

Control Syst. Technol. 21, 40–51. doi: 10.1109/TCST.2011.2172945

Kim, J., Park, H.-S., and Chang, P. H. (2010). Simple and robust attainment

of transparency based on two-channel control architectures using time-delay

control. J. Intell. Robot. Syst. 58, 309–337. doi: 10.1007/s10846-009-9376-0

Kim, T., and Hinds, P. (2006). “Who should i blame? Effects of autonomy and

transparency on attributions in human-robot interaction,” in ROMAN 2006

- The 15th IEEE International Symposium on Robot and Human Interactive

Communication (Hatfield), 80–85. doi: 10.1109/ROMAN.2006.314398

Kim, Y., and Fong, T. (2017). “Signaling robot state with light attributes,” in

Proceedings of the Companion of the 2017 ACM/IEEE International Conference

on Human-Robot Interaction (New York, NY: ACM), 163–164.

Kollar, T., Tellex, S., Roy, D., and Roy, N. (2010). “Toward understanding

natural language directions,” in Proceedings of the 5th ACM/IEEE International

Conference on Human-robot Interaction (Piscataway, NJ: IEEE Press),

259–266.
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