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Abstract

Sound principles of statistical inference dictate that uncertainty shapes learning. In this

work, we revisit the question of learning in volatile environments, in which both the first and

second-order statistics of observations dynamically evolve over time. We propose a new

model, the volatile Kalman filter (VKF), which is based on a tractable state-space model of

uncertainty and extends the Kalman filter algorithm to volatile environments. The proposed

model is algorithmically simple and encompasses the Kalman filter as a special case. Spe-

cifically, in addition to the error-correcting rule of Kalman filter for learning observations, the

VKF learns volatility according to a second error-correcting rule. These dual updates echo

and contextualize classical psychological models of learning, in particular hybrid accounts

of Pearce-Hall and Rescorla-Wagner. At the computational level, compared with existing

models, the VKF gives up some flexibility in the generative model to enable a more faithful

approximation to exact inference. When fit to empirical data, the VKF is better behaved than

alternatives and better captures human choice data in two independent datasets of probabi-

listic learning tasks. The proposed model provides a coherent account of learning in stable

or volatile environments and has implications for decision neuroscience research.

Author summary

Sound principles of statistical learning dictate that uncertainty influences behavior. How-

ever, despite the success of statistically founded algorithms for learning in stable environ-

ments, in which uncertainty behaves in simple and predictable ways, it is challenging to

develop a simple yet efficient algorithm for learning in volatile environments, in which

uncertainty dynamically changes over time. In this article, we develop a model for learn-

ing in volatile environments. The proposed model is consistent with key concepts of clas-

sical learning theories from behavioral psychology. Furthermore, our model is

algorithmically simpler, theoretically more accurate, and empirically more parsimonious

than the state-of-the-art models of learning in volatile environments. The proposed model

provides a coherent theory of learning under uncertainty.
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Introduction

Our decisions are guided by our ability to associate environmental cues with the outcomes of

our chosen actions. Accordingly, a central theoretical and empirical question in behavioral

psychology and neuroscience has long been how humans and other animals learn associations

between cues and outcomes. According to both psychological and normative models of learn-

ing [1–4], when animals observe pairings between cues and outcomes, they update their belief

about the value of the cues in proportion to prediction errors, the difference between the

expected and observed outcomes. Importantly, the degree of this updating depends on a step-

size or learning rate parameter. Although some accounts take this as a free parameter, analyses

based on statistical inference, such as the Kalman filter [5], instead demonstrate that the learn-

ing rate should in principle depend on the learner’s uncertainty. The dynamics of uncertainty–

and hence, of learning rates–then depend on the assumed or learned dynamics of the environ-

ment. For instance, the Kalman filter is derived assuming that the true associations fluctuate

randomly, but at a known, constant speed. In this case the asymptotic uncertainty, and learn-

ing rate, are determined by how quickly the associations fluctuate and how noisily they are

observed. However, in volatile environments, in which the speed by which true associations

change might itself be changing, uncertainty (and learning rates) should fluctuate up and

down according to how quickly the environment is changing [6,7]. This normative analysis

parallels classical psychological theories, such as the Pearce-Hall model [3], which posit that

surprising outcomes increase the learning rate while expected ones decrease it. Those models

measure surprise by the absolute value of the discrepancy between the actual outcome and the

expected value, i.e. the unsigned prediction error [3].

Behavioral studies have also shown that human learning in volatile environments is consis-

tent with the predictions of this class of models [6,8]: learning rates fluctuate with the volatility

of the environment. There is also evidence for a neural substrate for such dynamic learning

rates: for instance, neuroimaging studies have shown that activity in the dorsal anterior cingu-

late cortex covaries with the optimal learning rate [6] and recent work suggests a mechanistic

model of adaptive learning rate [9]. Theoretical and empirical work also suggests that neuro-

modulatory systems, particularly acetylcholine, norepinephrine and serotonin, might be

involved in encoding uncertainty signals necessary for computing learning rate in stable and

volatile environments, respectively [7,8,10–12]. Finally, various approximate learning algo-

rithms have been fruitful for studying individual differences in learning [13–16].

The theoretical studies establish the question of why the learning rate should be dynamically

adjusted, and the empirical studies provide evidence that it does so. However, a complete

understanding of a learning system requires understanding of how these theories could be real-

ized at the process or algorithmic level [17]. This is as yet much less clear: as discussed below,

statistically grounded theories of learning under volatility tend to be somewhat impractical

and opaque. Furthermore, while their general analogy with the more rough and ready psycho-

logical theories like Pearce-Hall seems clear, there is not a direct mapping comparable to the

way for example the Kalman filter encompasses and rationalizes the classical Rescorla-Wagner

theory.

A fully Bayesian account of learning turns on two different aspects. The first is a generative

model, that is a set of explicit probabilistic assumptions about how the environment evolves

and generates outcomes. Inverting the generative model with Bayes’ rule gives rise to an opti-

mal inference algorithm for estimating the latent environmental variables from observable

outcomes. In situations more complicated than the smooth world of the Kalman filter, how-

ever, exact inference is generally intractable and the second aspect comes into play: additional

approximations are required to achieve a practical, algorithmic- or process-level inference
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model. An influential model, proposed by Behrens and colleagues [6] addressed the first but

not the second of these points. It comprises a two-level generative model for learning, in which

a variable governing the observed associations fluctuates according to a Gaussian random

walk with a speed (i.e., diffusion variance) determined, at each timepoint by a second higher-

level, variable, itself fluctuating with analogous dynamics. Although this model has been con-

ceptually influential, it lacked any tractable or biologically-plausible inference model at the

algorithmic level: instead, its predictions were simulated by brute-force integration. Another

model, called the hierarchical Gaussian filter (HGF) [8,18] extended Behrens’ generative

model to a more general one consisting of multiple levels of hierarchy, in which the extent of

diffusion noise at each level is determined by the preceding level [19]. Importantly, it also

addressed the second issue by offering a tractable approximate inference rule for the process,

based on a variational approach. This filter provides a biologically-plausible model for hierar-

chical learning and is able to capture dynamics over an arbitrary number of cascading layers

with an algorithm that is easily generalizable.

Here we revisit the question of approximate inference in a two-level model of learning in

volatile environments. A key theoretical complication faced by the aforementioned models is

that the variables at each level of the hierarchy, above the first, represent variances for the cor-

responding random walks at the next level down. Since variances must be positive, if the hier-

archy is taken as a cascade of analogous unbounded Gaussian random walks, nonlinear

transformations must be introduced at each stage to ensure positivity. This, in turn, compli-

cates inference: in particular, even after employing a variational approximation (as the HGF

does) to decouple inference about each variable from the others, solving the resulting subprob-

lems still requires further approximation to accommodate the nonlinearity at each stage.

Informed by this reasoning, we propose a novel model for learning in volatile environments

that is conceptually derived from that of Behrens et al. [6] and the 2-level case of the HGF.

However, we introduce a distinct diffusion dynamics for the upper level, which ensures posi-

tivity and also an exact, conjugate solution to the variational maximization. The resulting

model thus gives up some of the elegant flexibility of the HGF (its ability recursively to chain

through an arbitrarily deep hierarchy) in return for a simpler inference rule requiring fewer

approximations for the most widely used, 2-level, case. We separately encounter, and take a

distinct approach to, a second issue of nonlinearity that arises in these models, which arises

when (as has almost always been the case in empirical studies of human learning in this area)

the observable outcomes like rewards are binary-valued instead of continuous. The resulting

algorithm, called VKF, is a generalization of Kalman filter algorithm to volatile environments

and resembles models that hybridize the error-driven learning from the Rescorla-Wagner

model and the Kalman filter with Pearce-Hall’s dynamic learning rate (as proposed by differ-

ent authors, for example by Li et al. and Le Pelley [20,21]). Notably, in volatile environments,

the learning rate for the latent variable fluctuates with larger and smaller than expected predic-

tion errors, as suggested by models such as Pearce-Hall.

In the next section, we review the Kalman filter algorithm and present the generative model

underlying the VKF and the resulting learning algorithm. The full formal treatment is given in

the S1 Appendix. Next, we show that the proposed model outperforms existing models in pre-

dicting empirical data.

Results

Theoretical results

Kalman filter for tracking in environments with stable dynamics. The Kalman filter is

the cornerstone of statistical tracking theories, with widespread applications in many
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technological and scientific domains including psychology and neuroscience [4,7,22,23]. The

Kalman filter corresponds to optimal statistical inference for a particular class of linear state

space environments with Gaussian dynamics. In those environments, the hidden state of the

environment is gradually changing across time (according to Gaussian diffusion) and the

learner receives an outcome on each time depending on the current value of the state (plus

Gaussian noise). In these circumstances, the posterior distribution over the hidden state is

itself Gaussian, thus tracking it amounts to maintaining two summary statistics: a mean and a

variance.

Formally, consider the simplest case of prediction: that of tracking a noisy, fluctuating

reward (e.g. that associated with a particular cue or action), whose magnitude ot is observed on

each trial t. Assume a state space model in which, on trial t, the hidden state of the environ-

ment, xt (the true mean reward), is equal to its previous state xt−1 plus some process noise

xt ¼ xt� 1 þ et; Eq 1

where the process noise et~Normal(0,v) has a variance given by v. A critical assumption of the

Kalman filter is that the process uncertainty, v, is constant and known. The outcome then nois-

ily reflects the hidden state, ot~Normal(xt,σ2). Here the observation noise is again Gaussian

with known, fixed variance, σ2. The Kalman filtering theory indicates that the posterior state at

time t, given all previous observations, o1, . . ., ot, will itself be Gaussian. Its mean, mt, is

updated at each step according to the prediction error:

mt ¼ mt� 1 þ ktðot � mt� 1Þ; Eq 2

where kt is the learning rate (or Kalman gain)

kt ¼ ðwt� 1 þ vÞ=ðwt� 1 þ vþ s2Þ; Eq 3

which depends on the noise parameters and the posterior variance wt−1 on the previous trial.

Note that kt<1 in all trials and it is larger for larger values of v. On every trial, the posterior var-

iance also gets updated:

wt ¼ ð1 � ktÞðwt� 1 þ vÞ: Eq 4

Note that although it is not required for prediction (that is for updating mt), it is also possi-

ble to compute the autocovariance (given observations o1,. . ., ot), defined as the covariance

between consecutive states, wt−1,t = cov[xt−1,xt], which is given by

wt� 1;t ¼ ð1 � ktÞwt� 1: Eq 5

This equation indicates that when the Kalman gain is relatively small, the autocovariance is

large, which means that information transmitted by observing a new outcome is expected to

be quite small. We will see in the next section that this autocovariance plays an important role

in inference in volatile environments.

VKF: A novel algorithm for tracking in volatile environments. We next consider a vola-

tile environment in which the dynamics of the environment might themselves change. In the

language of the state space model presented above, the process noise dynamically changes.

Thus, the variance of the process noise (et in Eq 1) is a stochastic variable changing with time

(Fig 1A). To build a generative model, we need to make some assumptions about the dynamics

of this variable. Our approach here is essentially the same as that taken by Smith and Miller

[24] and by Gamerman et al. [25] (see also West et al. [26]). Consider a problem in which the

process variance dynamically changes. In the previous section, we saw that the state xt diffused

according to additive noise. Because variances are constrained to be positive, it makes sense to
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instead assume their diffusion noise is multiplicative to preserve this invariant. Therefore, we

assume that the current value of precision (inverse variance), zt, is given by its previous value

multiplied by some independent noise. Formally, the current state of zt is given by

zt ¼ zt� 1�t; Eq 6

where �t is an independent random variable on trial t, which is distributed according to a

rescaled beta distribution (as detailed in S1 Appendix), such that the mean of �t is 1 (that is,

conditional expectation of zt is equal to zt−1) but has spread controlled by a free parameter

0<λ<1. The value of noise, �t, is always positive and is smaller than (1−λ)−1. Therefore, while

“on average”, zt is equal to zt−1, zt can be smaller than zt−1, or larger by a factor up to (1−λ)−1.

Thus, the higher the parameter λ, the faster the diffusion.

To build up the full model, first consider a simplified case in which the latent state xt �
Normalðmt; z� 1

t Þ is directly observed at each step and, further, has some known mean μt.
Although this sub-problem greatly simplifies the main problem by isolating xt from xt−1, it pro-

vides the foundation for inference in the full model. This is because it is similar to the problem

that remains once a variational approximation is introduced. It can be formally shown (see S1

Appendix) that in the simplified case, estimating the process variance, i.e. the posterior over zt
at each step given all previous observations, is tractable. Specifically, the posterior distribution

over zt takes the form of a Gamma distribution, whose inverse mean, vt, is updated according

to the observed sample variance:

vt ¼ vt� 1 þ lððxt � mtÞ
2
� vt� 1Þ; Eq 7

Where vt = E[zt]−1. Note that this equation amounts to an error-correcting rule for updating

vt, in which the error is given by (xt−μt)2−vt−1: the difference between the observed and

expected squared prediction errors.

Now we are ready to build the full generative model in which both zt and xt dynamically

evolve over time (Fig 1). In this model, as before, the observation, ot~Normal(xt,σ2), follows a

Fig 1. The generative model of VKF. The generative model consists of two interconnected hidden temporal chains, xt and zt, governing

observed outcomes, ot. Arrows indicate the direction of influence. On each trial, t, outcome, ot, is generated based on a Gaussian distribution,

its mean is given by the hidden random variable xt, and its variance is given by the constant parameter ω. This variable is itself generated

according to another Gaussian distribution, which its mean is given by xt−1, and its variance is given by another hidden random variable, z� 1
t .

This variable is itself generated based on its value on the previous trial, zt−1, multiplied by some positive noise distributed according to a

scaled Beta distribution governed by the parameter λ. The inverse mean of this variable on the first trial is assumed to be given by another

constant parameter, v0. See Eqs 1 and 6 for further explanation.

https://doi.org/10.1371/journal.pcbi.1007963.g001

PLOS COMPUTATIONAL BIOLOGY A simple model for learning in volatile environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007963 July 1, 2020 5 / 26

https://doi.org/10.1371/journal.pcbi.1007963.g001
https://doi.org/10.1371/journal.pcbi.1007963


Gaussian distribution with the mean given by the hidden variable xt, which itself is given by

xt ¼ Normalðxt� 1; z� 1
t Þ: a diffusion whose precision (i.e. inverse variance) is given by another

dynamic random variable, zt. The value of zt in turn depends on its previous value multiplied

by some noise that finally depends on parameter λ according to Eq 6. Therefore, this genera-

tive model consists of two chains of random variables, which are hierarchically connected to

each other. Unlike each of those two chains separately, however, when they are conjoined in

this hierarchical model, inference is not tractable and therefore we need some approximation.

We use structured variational inference for approximate inference in this model [27,28]. This

technique assumes a factorized approximate posterior distribution and minimizes the mis-

match between this approximate posterior and the true posterior using the principle of varia-

tional inference.

The resulting learning algorithm is very similar to the Kalman filtering algorithm and

encompasses Kalman filter as a special case. Importantly, the new algorithm also tracks volatil-

ity on every trial, denoted by vt, which is defined as the inverse of expected value of zt. There-

fore, we call the new algorithm the “volatile Kalman filter”. In this algorithm, the update rule

for the posterior mean mt and variance wt over xt (Eqs 9–13 below) is exactly the same as the

Kalman filtering algorithm, but in which the constant process variance is replaced by the esti-

mated volatility on the previous trial, vt−1. The volatility also gets updated on every trial

according to expected value of (xt−xt−1)2

vt ¼ vt� 1 þ lðE½ðxt � xt� 1Þ
2
� � vt� 1Þ; Eq 8

where the expectation should be taken under the approximate posterior over xt−1 and xt.
Therefore, the volatility update rule takes a form of error correcting, in which the error is

given by E[(xt−xt−1)2]−vt−1 with the noise parameter, λ, as the step size. Thus, the higher the

noise parameter, the higher the speed of volatility update is. Therefore, we call λ the “volatility

update rate”. Also, note that the expectation in this equation depends on the autocovariance.

It is then possible to write E[(xt−xt−1)2] in terms of the variance and covariance of xt−1 and

xt to obtain Eq 13 below and complete the VKF learning algorithm:

kt ¼ ðwt� 1 þ vt� 1Þ=ðwt� 1 þ vt� 1 þ s
2Þ; Eq 9

mt ¼ mt� 1 þ ktðot � mt� 1Þ; Eq 10

wt ¼ ð1 � ktÞðwt� 1 þ vt� 1Þ; Eq 11

wt� 1;t ¼ ð1 � ktÞwt� 1; Eq 12

vt ¼ vt� 1 þ lððmt � mt� 1Þ
2
þ wt� 1 þ wt � 2wt� 1;t � vt� 1Þ; Eq 13

where σ is the constant variance of observation noise. In addition to the volatility update

parameter, λ, which is constrained in the unit range, this algorithm depends on another

parameter, v0>0, which is the initial value of volatility. Notably, the Kalman filter algorithm is

a special case of the VKF in which λ = 0 and the process variance is equal to v0 on all trials. In

the next section, we test this model with synthetic and empirical datasets.

Binary VKF. We have also developed a binary version of VKF for situations in which

observations are binary. The generative model of the binary VKF is the same as that of VKF

with the only difference that binary outcomes are generated according to Bernoulli distribu-

tion with the parameter given by s(xt) = 1/(1+exp(−xt)), where s(xt) is the sigmoid function,

which maps the normally distributed variable xt to the unit range. For this generative model,
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the inference is more difficult because the relationship between hidden states and observations

is nonlinear. Therefore, further approximation is required to perform inference here, because

observations are not normally distributed and Eq 1 does not hold. For the binary VKF, we

assumed a constant posterior variance, ω, and employed moment matching (which is some-

times called assumed density filtering [29,30]) to obtain the posterior mean. The resulting

algorithm is then very similar to the original VKF with the only difference that the update rule

for the mean (i.e. Eq 10) is slightly different:

kt ¼ ðwt� 1 þ vt� 1Þ=ðwt� 1 þ vt� 1 þ oÞ; Eq 14

at ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wt� 1 þ vt� 1

p
; Eq 15

mt ¼ mt� 1 þ atðot � sðmt� 1ÞÞ; Eq 16

wt ¼ ð1 � ktÞðwt� 1 þ vt� 1Þ; Eq 17

wt� 1;t ¼ ð1 � ktÞwt� 1; Eq 18

vt ¼ vt� 1 þ lððmt � mt� 1Þ
2
þ wt� 1 þ wt � 2wt� 1;t � vt� 1Þ: Eq 19

Note that the learning rate for the binary VKF is αt defined by Eq 15. Furthermore, we have

introduced a parameter, ω>0, specifically for inference (i.e. does not exist in the generative

model). We call this parameter the noise parameter, because its effects on volatility are similar

to the noise parameter, σ2 for linear observations (through kt, Eq 14). However, it is important

to note that unlike σ2, this parameter does not have an inverse relationship with the learning

rate, αt.

Simulation analyses

Comparing VKF with known ground truth. First, we study the performance of VKF on

simulated data with known ground truth. We applied the VKF to a typical volatility tracking

task (similar to [6,8]). In this task, observations are drawn from a normal distribution whose

mean is given by the hidden state of the environment. The hidden state is constant +1 or –1.

Critically, the hidden state was reversed occasionally. The frequency of such reversals itself

changes over time; therefore, the task consists of blocks of stable and volatile conditions. We

investigate performance of VKF in this task because its variants have been used for studying

volatility learning in humans [6,8]. Note that, as here, it is common to study these models’

learning performance when applied to situations that do not exactly correspond to the genera-

tive statistical model for which they were designed. In particular, it has been shown using this

type of task that humans’ learning rates are higher in the volatile condition [6,8]. Fig 2 shows

the performance of VKF in this task. As this figure shows, the VKF tracks the hidden state very

well and its learning rate is higher in the volatile condition. Furthermore, the volatility signal

increases when there is a dramatic change in the environment. Note that as for other models

previously fit to tasks of this sort, the switching dynamics at both levels of hidden state here are

not the same as the random walk generative dynamics assumed by our model. These substitu-

tions demonstrate that the principles relating volatility to learning are general, and so the

resulting models are robust to this sort of variation in the true generative dynamics.

In another simulation analysis, we studied the performance of the binary VKF in a similar

task, but now with binary observations, which were used in previous studies [6,8]. Here,
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Fig 2. Behavior of the VKF. A-C) A switching probabilistic learning task in which observations are randomly drawn from

a hidden state (with standard deviation 0.1) that switches several times. The relationship between the hidden state and

observations are either linear (A-C) or binary (D-F). The volatility signal with the VKF increases after a switch in the

underlying hidden state and the learning rate signal closely follows the volatility. The grey lines show the switching time.

Dots are actual observations. These parameters used for simulating VKF: λ = 0.1, v0 = 0.1, σ2 = 0.1, ω = 0.1.

https://doi.org/10.1371/journal.pcbi.1007963.g002

Fig 3. Behavior of the VKF in highly volatile condition for linear. (A-C) and binary (D-F) observations. The volatility

and learning rate signal are larger in volatile conditions in which the hidden state is frequently changing. The parameters

used were the same as Fig 2.

https://doi.org/10.1371/journal.pcbi.1007963.g003
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observations are drawn from a Bernoulli distribution whose mean is given by the hidden state

of the environment. The hidden state is a constant probability 0.8 or 0.2, except that it is

reversed occasionally. As Fig 2 shows, predictions of the binary VKF match with the hidden

state. Furthermore, the volatility signal increases when there is a dramatic change in the envi-

ronment, and the learning rate is higher in the volatile condition. Similar simulation analyses

with higher levels of volatility show the same behavior: the volatility signal and the learning

rate are generally larger in volatile blocks, in which the environment frequently switches (Fig

3).

The VKF is a relatively simple model that approximates exact solution to an intractable

inference problem. To further address the question how accurate is this approximation, next,

we compared the performance of the VKF to other approaches: first, one representing (as

close as was feasible) exact Bayesian inference, and, second, a different approach to approxi-

mate inference, the HGF.

Comparing VKF with the particle filter. We first compared the behavior of the VKF

with a computationally expensive but near-exact method as the benchmark. For sequential

data, the particle filter is a well-known Monte Carlo sequential sampling method, which

approximates the posterior at every timepoint with an ensemble of samples; it approaches opti-

mality in the limit of infinite samples. We used a Rao-Blackwellized particle filter (RBPF) [31]

for this analysis, which combines sampling of some variables with analytical marginalization

of others, conditional on these samples. In this way, it exploits the fact that inference on the

lower level variable (i.e. xt in Fig 1) is tractable using a Kalman filter, given samples from the

upper level variable (i.e. zt in Fig 1). Therefore, this approach essentially combines particle fil-

ter with Kalman filter. We used the same sequence generated in previous analyses (Fig 2) and

compared the RBPF algorithm with 10,000 samples as the benchmark, assuming the same

parameters for both algorithms. As shown in Fig 4, the behavior of VKF is very well matched

with that of this benchmark for Gaussian observations. In particular, predictions and volatility

estimates of the two algorithms were highly correlated, with correlation coefficients of 1.00

and 0.95, respectively, in this task. We also quantified the relative error, defined as the average

mismatch between predictions of VKF and ground truth lower-level states, xt, measured in

units of increased error relative to the benchmark error of RBPF (see Methods), as 22.9%.

We next compared the performance of the binary VKF with that of the particle filter bench-

mark. For the binary VKF, the inference is more difficult because the relation between the

state and the observation is also nonlinear. For the same reason, it is not possible to use RBPF

to marginalize part of the computation here because the submodel conditional on the variance

level is also not analytically tractable; instead we used a conventional particle filter sampling

across both levels. We ran the particle filter on this problem with 10,000 samples and the same

parameters as that of the binary VKF. As Fig 5 shows, the latent variables estimated by the

VKF and the benchmark particle filter are again quite well matched, although the particle filter

responds more sharply following contingency switches. Similar to the previous analysis, pre-

dictions and volatility estimates were well correlated with correlation coefficients given by 0.91

and 0.68, respectively. The relative error in state estimation for binary VKF was 5.4%.

Comparing VKF with HGF. We next compared VKF to another approximate approach

with more comparable computational complexity. In particular, we compared it to the HGF

(with two latent levels), as the latter is the most commonly used algorithm for learning in vola-

tile environments. Similar to our model, the generative model of the HGF assumes that there

are two chains of state variables, xt and zt, in which the distribution over xt is given by a normal

distribution with the mean and variance depending on xt−1 and zt, respectively. These two

algorithms differ in two ways, however. First, for the generative models, the form of the pro-

cess noise controlling the diffusion of zt is different. In our model, the noise is a positive
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variable with a beta distribution. The HGF, however, assumes that the process noise for zt is

additive and normally-distributed, and hence exponential transformation is needed to ensure

that the variance of xt is non-negative. These differences, in turn, give rise to differences in the

resulting approximate inference rules, particularly for inference over the volatility level, zt. Our

model has specific conjugacy properties, which make the inference for zt tractable if xt is iso-

lated from xt−1 (e.g. if xt−1 is fixed and under a variational approximation; see theoretical expla-

nation above and S1 Appendix for mathematical proofs). However, even in this case when xt is

isolated from xt−1, the inference over zt in the HGF is not tractable and therefore requires fur-

ther approximation. The approximate inference model of the HGF thus relies on a second-

order Taylor approximation to deal with this issue, in addition to the variational

Fig 4. Comparison of VKF with the benchmark sampling methods. RBPF was used as the benchmark (with 10000

particles). The behavior of the VKF (A-B) closely follows that of the benchmark (C-D). The parameters used were the same

as Fig 2.

https://doi.org/10.1371/journal.pcbi.1007963.g004

Fig 5. Comparison of binary VKF with the benchmark sampling methods. Particle filter was used as the benchmark

(with 10000 particles). Both the VKF (A-B) and the benchmark (C-D) show higher learning rate in the volatile condition

and estimated volatility signals by the two models are highly correlated. The parameters used were the same as Fig 2.

https://doi.org/10.1371/journal.pcbi.1007963.g005
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approximation used by both the VKF and the HGF. By eliminating this additional approxima-

tion, the VKF avoids one source of potential inaccuracy. Also, the VKF’s conjugacy ensures a

simple (one-parameter Gamma) distribution for the posterior estimate at the top (volatility)

level, which may also contribute to stability, vs. a two-parameter Gaussian approximation, in

which numerical problems (e.g., negative values for the approximated posterior uncertainty)

can arise.

However, directly comparing the effect of these two approaches to inference is difficult

because they are closely linked with two different sets of generative assumptions. To focus our

comparison on the approximations, we studied the ability of each algorithm to reproduce data

generated from its own, corresponding generative model, in roughly comparable parameter

regimes. Then to ensure any differences were related to the approximate inference itself, rather

than to the different generative statistics themselves (e.g., supposing one problem is just

harder), we scored each model in terms of error relative to optimal inference as proxied by the

particle filter. This represents the best achievable performance for each specific generative pro-

cess. We also performed a number of followup analyses to further pursue this question, in S1

Text.

Thus, we generated a sequence of observations using the generative model of the HGF (see

Methods). We then used the generated sequence as the input to the HGF inference algorithm,

using true generative parameters. We repeated this process 1000 times. In 82 of these simula-

tions, the HGF encountered numerical problems: its inferred trajectory encountered numeri-

cal problems, i.e. negative estimates of the posterior variance over the top (volatility) level.

This problem is due to the Taylor approximation used to extrapolate the variational posterior

in the approximate inference model of the HGF. Only for the remaining 918 simulations were

we able to quantify the error of HGF, defined as the mismatch between predicted and true

lower level states xt (see Methods). We also performed inference on the same generated data

using a RBPF (derived under the HGF generative assumptions) [31], as a proxy of exact infer-

ence. We compared these two results to obtain a measure of fractional relative error in the

HGF over and above the (unavoidable) error from the RBPF. Similarly, we quantified the error

of the VKF relative to the RBPF: data were simulated under the VKF generative model (see

Methods), which were then used as the input to the VKF inference model and its associated

RBPF. This analysis revealed that the relative error of the HGF and VKF is 21.4% (SE = 6.8%)

and 2.7% (SE = 0.3%), respectively, indicating that the VKF performance is closer to the parti-

cle filter than the HGF. We performed a number of control analyses confirming these results

with different sets of parameters, and using an alternative baseline independent of the RBPF

(S1 Text).

Effects of volatility on learning rate for binary outcomes

Following Behrens’ seminal study [6], the majority of previous work studying volatility estima-

tion used binary outcomes. This is also important from a psychological perspective, because

seminal models such as Pearce-Hall indicate that learning rate, or as it is called in that litera-

ture “associability”, reflects the extent that the cue has been surprising in the past. In fact, mod-

ern accounts of learning in decision neuroscience are partly built on this classic psychological

idea, and there is evidence that volatility-induced surprising events increase the learning rate

in probabilistic learning tasks in humans [6,32–34]. One subtlety arises in this setting, which is

that unlike classic psychological models, the statistical models (both HGF and VKF) learn

reward predictions, and modulate their learning rates, in a latent space, which is then nonli-

nearly transformed into outcome probability (bounded between zero and one). As for the

Gaussian case, the learning rate for this latent variable would (all else equal) be expected to
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increase or decrease in accord with the volatility estimate at the next level. But this top-down

effect is also affected (in practice) by the mapping from observations in outcome space back to

the level of the latent variables, and by different ways the models approximate learning steps

under this mapping. This gives rise to a difference, which we highlight here, between the

binary versions of the HGF and VKF regarding the relationship between volatility and the

learning rate for the latent variable.

We compared performance of HGF and VKF for binary observations, mimicking the sorts

of experiments typically used to study volatility learning in the lab [6]. In this case, the genera-

tive dynamics of the latent variables did not match either model, but instead used a discrete

change-point dynamics again derived from these empirical studies. The binary versions of the

HGF and VKF use different approximations to deal with the nonlinear mapping between hid-

den states and binary observations, on top of the ones discussed before. Whereas the HGF

employs another Taylor approximation to deal with binary observations, the binary VKF is

based on a moment-matching approximation. Importantly, these different treatments of

binary observations result in qualitative differences in the relationship between the learning

rate (at the level of the latent variable: that is, before the nonlinear transformation into the

binary space of outputs) and volatility. Accordingly, in the binary VKF, the learning rate

closely follows the volatility estimate, similar to the VKF for continuous-valued observations

and echoing the intuition from the psychological and decision neuroscience literatures. In the

binary version of HGF, however, the relationship between the learning rate for the latent vari-

able and volatility is more involved because the learning rate is also affected by the sigmoid

transformation of the estimated mean on the previous trial. Fig 6 illustrates these signals in an

example probabilistic switching task for both models. To demonstrate this point quantitatively,

we generated 500 time-series and fitted both models to these time-series. The correlation

between the learning rate and volatility estimates for these time-series were then calculated

using the fitted parameters of each model. As expected, the latent-space learning rate and vola-

tility signals of the binary VKF were positively correlated in all simulations (average correla-

tion coefficient about 1.00), whereas those of binary HGF were, unexpectedly, negatively

correlated in all simulations (average correlation coefficient = –0.74). Note that this qualitative

difference is a general behavior of these models and is not due to a particular setting of param-

eters. To show this experimentally, we simulated both models with randomly drawn parame-

ters (1000 simulations) using a single sequence of binary outcomes (those plotted in Fig 6).

The volatility and latent-level learning rate signals were positively correlated for binary VKF in

all simulations, whereas those were negatively correlated in 94% of simulations for binary

HGF.

Here we have visualized the learning rate in the latent space, which (for both binary VKF

and HGF) is where the learning update actually takes place and where top-down volatility esti-

mates exert their influence. It is also possible, however, to impute an implied learning rate in

observation space (by comparing the size of error to the size of update in observation units).

Unlike the latent space learning rate defined above, this quantity does increase following

switches in this task, for both the HGF and VKF. However, this behavior does not actually

reflect the expected effect of larger inferred volatility increasing learning rate; in fact, it is pres-

ent regardless of volatility (S2 Appendix) and even when the model’s volatility estimate was

kept fixed (S1 Fig).

Testing VKF using empirical data

We then tested the explanatory power of the VKF to account for human data using two experi-

mental datasets. In both experiments, human subjects performed a decision-making task,
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repeatedly choosing between two options, where only one of them was correct. Participants

received binary feedback on every trial indicating which option was the correct one on that

trial.

Such a test requires fitting the binary VKF to choice data by estimating its free parameters.

The binary VKF relies on three free parameters: volatility learning rate, λ, the initial volatility

value, v0, and the noise parameter for binary outcomes, ω. Fig 7 shows the behavior of the

binary VKF as a function of these parameters. As Fig 7 shows, the volatility learning rate

parameter determines the degree by which the volatility signal is updated and its effects are

Fig 6. Behavior of the binary VKF and HGF. Volatility, learning rate and predictions are plotted for the VKF (A-C) and

HGF (D-F). Predictions of the two models about the relationship between volatility and learning rate for the latent variable

are different. Fitted parameters for each model were used for obtaining volatility, learning rate and state prediction signals

here.

https://doi.org/10.1371/journal.pcbi.1007963.g006

Fig 7. Effects of parameters on the VKF. A) The volatility and state prediction signals within the binary VKF are shown for

a baseline scenario. B-D) The impact of changing parameters with respect to the baseline scenario is shown for (B) the

volatility learning rate, λ, (C) the initial volatility v0, and (D) the noise parameter, ω.

https://doi.org/10.1371/journal.pcbi.1007963.g007
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particularly salient following a contingency change. The effects of initial volatility are more

prominent in earlier trials. The noise parameter indicates the scale of volatility throughout the

task. Note that the noise parameter also has a net positive relationship with the learning rate in

the binary VKF.

To model choice data, the predictions of the binary VKF were fed to a softmax function,

which has a decision noise parameter, β. We first verified that these parameters can be reliably

recovered using simulation analyses with synthetic datasets, in which observations and choices

of 50 artificial subjects were generated based on the binary VKF and the softmax (see Methods

for details of this analysis). We then fitted the parameters of the VKF to each dataset using

hierarchical Bayesian inference (HBI) procedure [35], an empirical Bayes approach with the

advantage that fits to individual subjects are constrained according to the group-level statistics.

We repeated this simulation analysis 500 times. As reported in Table 1, this analysis revealed

that the model parameters were fairly well recoverable, although estimation of the volatility

learning rate and initial volatility were more prone to error.

In the first experiment (Fig 8), 44 participants carried out a probabilistic learning task (orig-

inally published in [36]), in which they were presented with facial cues and were asked to

make either a go- or a no-go- response (i.e., press a button, or withhold a press, respectively)

for each of four facial cues in order to obtain monetary reward or avoid monetary punishment.

The cues were four combinations of the emotional content of the face image (happy or angry)

and its background color (grey or yellow) representing valence of the outcome. Participants

were instructed that the correct response is contingent on these cues. The response-outcome

contingencies for the cues were probabilistic and manipulated independently, and reversed

after a number of trials, varying between 5 and 15 trials, so that the experiment consisted of a

number of blocks with varying trial length (Fig 4B). Within each block, the probability of a

win was fixed. The task was performed in the scanner, but here we only focus on behavioral

data. 120 trials were presented for each cue (480 trials in total). Participants learned the task

effectively: performance, quantified as the number of correct decisions given the true underly-

ing probability, was significantly higher than chance across the group (t(43) = 14.68, P<0.001;

mean: 0.68, standard error: 0.01). The focus of the original studies using this dataset was on

socio-emotional modulation of learning and choice [34,36]. Here, however, we use this dataset

because the task is a probabilistic learning tasks in which the contingencies change throughout

the experiment. We considered a model space including the binary VKF, binary HGF, a Kal-

man filter (KL) that quantifies uncertainty but not volatility, and also a Rescorla-Wagner

(RW) model that does not take into account uncertainty or vary its learning rate. For all these

learning models, we used a softmax rule as the response model to generate probability of

choice data according to action values derived for each model as well as value-independent

biases in making a go response for all these models. Note that the response model also con-

tained value-independent biases in making or avoiding a go response due to the emotional or

reinforcing content of the cues (see Methods).

This model space was then fit to choice data using HBI [35]. Importantly, the HBI combines

advantages of hierarchical model for parameter estimation [37] with those of approaches that

treat the model identity as a random effect [38], because it assumes that different subjects

might express different models and estimates both the mixture of models and their parameters,

in a single analysis. Thus, the HBI performs random effects model comparison by quantifying

model evidence across the group (goodness of fit penalized by the complexity of the model

[39]). This analysis revealed that, across participants, VKF was the superior model in 37 out of

44 participants (Fig 9). Furthermore, the protected exceedance probability in favor of VKF (i.e.

the probability that a model is more commonly expressed than any other model in the model

space [38,40] taking into account the null possibility that differences in model evidence might
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be due to chance [40]) was indistinguishable from 1. In a supplementary analysis, we also con-

sidered the particle filter model. Since that model is a Monte Carlo sampling method and com-

putationally too intensive to embed within a further hierarchical estimation over subjects and

other models, we fitted the model separately to each subject and compared it with the other

models (see S1 Text for details). This analysis revealed that the VKF is the most parsimonious

even compared to the particle filter model.

To examine the detailed behavior of the model, we also analyzed learning rate signals esti-

mated by the VKF at the time of changes in action-outcome contingencies. For this analysis,

we fitted each subject’s choice data individually to the binary VKF model to generate learning

rate signals independently. Fig 9C shows variations in the learning rate signal time-locked to

the change points. Across 44 participants, 40 (i.e. 91%) showed a positive change in learning

rate following change points. There was a significant difference between learning rate before

(obtained by averaging over 5 trials prior to change) and after change points (obtained by aver-

aging over 5 trials) (mean increase = 0.10, P<0.001), similar to previous studies with change-

point dynamics [41].

In the second experiment, 174 participants performed a learning task (originally published

in [42]), in which they chose to accept or reject an opportunity to gamble on the basis of their

estimation of potential reward. Thus, subjects were asked to estimate the probability of reward

based on binary feedback given on every trial. The reward probability was contingent on the

category of the image presented during each trial and its time-course has been manipulated

throughout the experiment. During each trial, participants were also presented with the value

of a successful gamble. In the original study [42], Jang et al. used this learning task, in combi-

nation with a follow-up recognition memory test, to study the influences of computational

Table 1. Recovery analysis for parameters of the VKF. A dataset including 50 artificial subjects were generated based on the binary VKF and a softmax choice model.

The same procedure used in analysis of empirical data (HBI) was used then to estimate the parameters. We have reported the mean of parameters across all 50 artificial

subjects. This procedure was repeated 500 times.

Parameters True parameters Estimated parameters

25% quantile Median 75% quantile

λ 0.2 0.20 0.23 0.27

v0 5.0 4.80 5.24 5.64

ω 1.0 0.96 1.06 1.15

β 1.0 1.12 1.14 1.17

https://doi.org/10.1371/journal.pcbi.1007963.t001

Fig 8. The probabilistic learning task in Experiment 1 used for testing the VKF. A) Participants had to respond (either go

or no-go) after a face cue was presented. A probabilistic outcome was presented following a delay. B) An example of the

probability sequence of outcome (of a go response) for one of the four trial-types and predictions of the (binary) VKF

model. The response-outcome contingencies for the cues were probabilistic and manipulated independently. The dots show

actual outcomes seen by the model.

https://doi.org/10.1371/journal.pcbi.1007963.g008
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factors governing reinforcement learning on episodic memory. Here, however, we only ana-

lyze the learning part of this dataset because the task is a probabilistic learning task with

switching contingencies. For every image category, the reward probability has switched at least

twice during the task. Most participants learned the task effectively, as their gambling decisions

varied in accordance with the probability of reward. In particular, they accepted to gamble

more often in trials with high reward probability than those with low reward probability (t
(173) = 18.5, P<0.001; mean: 0.25, standard error: 0.01). Thirteen subjects were excluded from

the analysis because a logistic regression (with intercept and two regressors: reward probability

and trial value) showed a negative correlation between reward probability and their decisions

to gamble, suggesting that they had not understood the task instructions. We analyzed data of

the remaining 161 subjects.

We fitted the same model space used above, in which the learning models were combined

with the softmax as the response model to generate probability of choices. This model space

was then fit to choice data using the HBI (Fig 10). This analysis revealed that the binary VKF

outperformed other models in 102 out of 161 participants (with 0.62 model frequency). Across

all participants, the protected exceedance probability in favor of the VKF was indistinguishable

from 1. Note that the second-best model was the Kalman filter model with model frequency of

0.3, suggesting that about 30% of subjects reduced their learning rate over time but were not

sensitive to volatility. This may be because there are overall fewer switches in this task

Fig 9. Bayesian analysis of VKF in the first experiment. A) Bayesian model comparison results comparing VKF with HGF,

Rescorla-Wagner (RW) and Kalman filter (KF). Protected exceedance probabilities (PXPs) and model frequencies are

reported. The PXP of the VKF is indistinguishable from 1 (and from 0 for other models) indicating that VKF is the most

likely model at the group level. The model frequency metric indicates the ratio of subjects explained by each model. B)

Estimated parameters of the VKF at the group-level. C) Learning rate signals, time-locked to the change points, estimated by

the VKF for all participants (gray) and the mean across participants (red). The x-axis indicates trials relative to change points.

The error-bars in B are obtained by applying the corresponding transformation function on the group-level error-bars

obtained by the HBI [35] and, therefore, are not necessarily symmetric.

https://doi.org/10.1371/journal.pcbi.1007963.g009

Fig 10. Bayesian analysis of VKF in the second experiment. A) Bayesian model comparison results comparing VKF with

HGF, Rescorla-Wagner (RW) and Kalman filter (KF). Similar to the previous dataset, the PXP of the VKF is

indistinguishable from 1 (and from 0 for other models) indicating that VKF is the most likely model at the group level. B)

Estimated parameters of the VKF at the group-level. C) Learning rate signals, time-locked to the change points, estimated by

the VKF for all participants (gray) and the mean across participants (red). The x-axis indicates trials relative to change points.

The error-bars in B are obtained by applying the corresponding transformation function on the group-level error-bars

obtained by the HBI [35] and, therefore, are not necessarily symmetric.

https://doi.org/10.1371/journal.pcbi.1007963.g010
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compared to the previous one. Nevertheless, across all subjects, analysis of learning rate signals

time-locked to the change point shows a significant increase in learning rate (median

increase = 0.03, Wilcoxon sign rank test because samples were not normally distributed,

P<0.001). This effect was positive for 64% of participants.

Discussion

In this work, we have introduced a novel model for learning in volatile environments. The pro-

posed model has theoretical advantages over existing models of learning in volatile environ-

ments, because it is based on a novel generative model of volatility that makes it possible to

have a simple approximate inference model, which is also very loyal to the exact inference.

Using empirical choice data in a probabilistic learning task, we showed that this model cap-

tures human behavior better than the state-of-the-art HGF.

The Kalman filter is the cornerstone of tracking theories, with widespread applications in

many technological and scientific domains including psychology and neuroscience [4,7,22,23].

For example, in movement neuroscience, the Kalman filter has been used as a model of how

the brain tracks sensory consequences caused by a motor command. In learning theories, the

Kalman filter provides a normative foundation for selective attention among multiple condi-

tioned stimuli predicting a target stimulus, such as food. Nevertheless, the Kalman filter is lim-

ited to environments in which the structure of process noise is constant and known. Like other

models such as the HGF, the VKF fills this gap by extending the Kalman filter to inferring the

process variance in volatile environments in which the variance is itself dynamically changing.

In particular, VKF contains two free parameters, a volatility update rate (i.e. λ) indicating the

extent of noise in process variance dynamics and the initial value of volatility (v0). The Kalman

filter is a special case of VKF, in which the volatility update rate is zero and the constant pro-

cess noise is equal to v0.

A complete understanding of a learning system requires understanding of how computa-

tional theories should be realized at the algorithmic level [17]. Previous works have shown that

at this level, the normative perspective might shed light on or even encompass related psycho-

logical models, as for example temporal difference models of reinforcement learning encom-

pass the classical Rescorla-Wagner theory. The proposed model builds a normative foundation

for the intuitive hybrid models combining critical features of Rescorla-Wagner and Pearce-

Hall theories for conditioning [20,21,34]. Specifically, the learning process of VKF depends on

two components. The first component is the classical prediction error signal, which is defined

as the difference between the observed and expected outcome, similar to Rescorla-Wagner

error signal. The second component is the learning rate modulated by the volatility estimate,

which is itself a function of surprise (i.e. the squared prediction error) according to Eq 13.

Therefore, although the detailed algebraic computation of the surprise term slightly differs, the

structure of the model is consistent with the classical Pearce-Hall model, and like it the rate of

learning in VKF depends on surprise. This construction clarifies the relationship between the

Pearce-Hall associability, its update, and volatility inference in hierarchical learning models

such as the HGF and that of Behrens et al. [6].

The generative model of VKF is based on a novel state-space model of variance dynamics

for Gaussian-distributed observations with known mean, in which the inference (for the vola-

tility level considered in isolation) is tractable. This particular generative model leads to exact

inference without resorting to any approximation. To build a fully generative model for vola-

tile environments, we then combined this state-space model with the state-space model of the

Kalman filter. Therefore, the full generative model of VKF contains two temporal chains (Fig

1), one for generating the mean and the other one for generating the variance. Although the

PLOS COMPUTATIONAL BIOLOGY A simple model for learning in volatile environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007963 July 1, 2020 17 / 26

https://doi.org/10.1371/journal.pcbi.1007963


inference is tractable within each chain, the combination of both chains makes the exact infer-

ence intractable. Therefore, we used structured variational techniques for making approximate

inference, which isolates the tractable submodel as part of the variational maximization.

The state-of-the-art algorithm for learning in volatile environments is HGF [8,18], which is

a flexible filter which can be extended iteratively to hierarchies of arbitrary depth. The VKF

has the same conditional dependencies as the HGF with two latent levels. There are, however,

two critical differences between the VKF and the HGF. First, the generative process underlying

the variance is different between the two models. The HGF assumes additive Gaussian diffu-

sion at each level, transformed by an exponential to allow it to serve as a variance for the next

level down. In contrast, the generative model of process variance in the VKF uses a form of

multiplicative diffusion, which guarantees non-negativity. Secondly, these generative differ-

ences lead to algorithmic ones. Although both models conduct inference under a variational

approximation, due to the nonlinearity in the HGF, it is not possible to analytically maximize

the variational family, and additional approximations are required. As mentioned, the genera-

tive process of the VKF is tailored to permit exact maximization of the variational distribution.

Thus altogether, the VKF trades away the more general generative structure that underlies the

HGF, to achieve a simpler and more accurate approximation to a more specific (two latent

chains) case. We compared the performance of VKF and HGF in predicting human choice

data in a probabilistic learning task, similar to those tasks that have been modeled with HGF in

the recent past [8]. Bayesian model comparison showed that the VKF predicts choice data bet-

ter in the majority of participants.

For binary outcomes, there is an additional difference between these models in the way

they approximate learning given the nonlinear mapping between the observation space and

latent variable (where learning updates actually occur, and where the top-down modulation

due to inferred volatility is directly expressed). This results in a qualitative difference between

the HGF and VKF in the relationship between the volatility signal and learning rate for the

latent variable (Fig 6). Paralleling classical Pearce-Hall models, surprising events increase the

(latent) learning rate in our model, a quality that we had also expected based on theoretical

considerations [6] and empirical observations [6,32–34]. As we have shown using simulation

analyses, volatility and learning rate (at the level of the latent variable) are negatively correlated

for binary HGF, which is an unexpected consequence of binary data in this task. We employed

a different approximation strategy to account for binary outcomes, called moment matching,

which produces a positive relationship between volatility and learning rate.

Recent work highlight the importance of uncertainty processing and its effects on learning

rate for understanding a number of psychiatric disorders [33,34,43–45]. For example, Brow-

ning et al. [33] found that anxiety reduces people’s ability to adjust their learning rate accord-

ing to volatility. In a recent study [34], we also found that in threatening contexts evoked by

angry face images, socially anxious individuals show disruptions in benefiting from stability in

the action-outcome contingency. Their dorsal anterior cingulate cortex, a region previously

shown to reflect volatility estimates [6,32], also failed to reflect volatility in those contexts. This

is because anxious individuals updated their expectations too rapidly in the stable conditions,

possibly because they perceive any uncertainty as a signal of contingency change (i.e. volatil-

ity). Process-level models, such as VKF, can play important role in this line of research and we

hope that this work be useful for quantifying critical computations underlying learning in the

future.

In the last decade, scholars in the field of computational psychiatry have started to map def-

icits in decision making to parameters of computational models. In fact, these parameters

could serve as computationally-interpretable summary statistics of decision making and learn-

ing processes. Parameters of the VKF are also particularly useful for such a mapping. There are
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three parameters that influence different aspects of learning dynamics in the VKF. The volatil-

ity update parameter captures the degree that the individual updates its estimate of volatility.

Given the generative model of the VKF, this parameter also determines the subjective feeling

of noise at the volatility level. Another parameter of the VKF is the initial volatility, which

influences the learning process on early trials. These two parameters have similar effects for

linear and binary observations. For the binary VKF, there is another parameter that is only rel-

evant to the inference model (not the generative process), ω, which we called it the noise

parameter. As shown in Fig 8, this parameter governs the scale of volatility and learning rate

throughout the learning process. Notably, our simulation analyses showed that these parame-

ters are fairly identifiable from choice data.

In this study, we assumed that the observation noise in the generative process of the VKF is

a free parameter, σ; the HGF and traditional Kalman filters also have analogous parameters. In

many situations, however, humans and other animals might have to learn the value of this

noise. In particular, in addition to volatility, trial-by-trial estimation of this noise is relevant for

optimal learning in situations in which observation noise might dynamically change. Deriving

an efficient inference model for simultaneous tracking of both signals is substantially more dif-

ficult due to dependencies arising between variables. Our generative model of the variance and

the corresponding tractable inference can be helpful for that purpose, which should be further

explored in future studies.

The goal of the current study was to further process-level models of volatility by proposing

a model that closely match optimal statistical inference, building on a number of studies that

have been proposed in the past 15 years. Since exact inference is not possible, these studies

have relied on different approximate inference approaches, such as sampling, Taylor approxi-

mation, variational inference or message-passing algorithms. Our approach for treatment of

binary observations using moment matching is similar to the message-passing approach taken

recently for studying dynamical systems [46,47]. We chose this approach rather than the Tay-

lor approximation used previously [18] because it has been shown that methods based on

moment matching perform better than derivative-based methods in approximating exact

inference for binary Gaussian process models [48].

An important concern about Bayesian process-level models is whether their computations

are biologically plausible. Similar to any other model that extends the Kalman filter, normaliza-

tion is required for computing the Kalman gain in the VKF. Furthermore, our model requires

the squared prediction error for updating volatility. Although performing these computations

might not be straightforward with current neural network models, they are not biologically

implausible. Another crucial question is how these approximate Bayesian models could be

realized at the mechanistic level [49]. Recently, metaplasticity has been proposed as a mecha-

nistic principle for learning under uncertainty [9,12,50]. Metaplasticity allows synaptic states

to change without substantial changes in synaptic efficacy [51] and therefore provides a mech-

anism for reinforcement learning under volatility [9].

Bayesian models have recently been used for online inference of sudden changes in the

environment [41,52]. Although those situations can be modeled with generative processes

with discrete change-point detection, Behrens et al. [6] showed that models with volatility esti-

mate might be as good as or even better than models with specific discrete change-points. Our

simulations also showed that VKF can be successfully applied to those situations. In such situa-

tions, the volatility signal plays the role of a continuous change-point estimator, which sub-

stantially increases after a major change. This is because those sudden changes in the

environments cause a large “unexpected uncertainty” signal [7,11], which substantially

increases the volatility.
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In this article, we introduced a novel model for learning under uncertainty. The VKF is

more accurate than existing models and explains human choice data better than alternatives.

This work provides new opportunities to characterize neural processes underlying decision

making in uncertain environments in healthy and psychiatric conditions.

Methods

Ethics statement

All human subjects data used here are reanalyses of anonymized data from previously pub-

lished studies. Data from human subjects in experiment 1 are from a study [36] that was

approved by the local ethical committee (“Comissie Mensgebonden Onderzoek” Arnhem-Nij-

megen, Netherlands). Data from human subjects in experiment 2 are reported by Jang et al.

[42] and the study was approved by the Brown University Institutional Review Board.

Simulation analysis for comparing VKF with benchmark

We implemented particle filter models using MATLAB Control Systems Toolbox. The particle

filter is a sequential Monte Carlo method, which draws samples (i.e. particles) from the genera-

tive process and sequentially updates them. We implemented this model separately for the lin-

ear and binary observations, with 10000 particles and generative parameters. Note that for

linear outcomes, inference on the lower level chain is analytically tractable given samples from

the upper level chain. Therefore, we used RBPF [31] for the linear problem, which combines

Monte Carlo sampling with analytical marginalization. We used Spearman rank correlation

because signals were not normally distributed.

Simulation analysis for comparing accuracy of VKF and HGF

The generative model of the HGF with 2 levels is based on a probabilistic model with the same

dependencies as those in our generative model (Fig 1). Under this generative model, 3 chains

of random variables are hierarchically organized to generate observation, ot:

xðtÞ3 � Normalðxðt� 1Þ

3 ; nÞ;

xðtÞ2 � Normalðxðt� 1Þ

2 ; expðkxðtÞ3 þ oÞÞ;

xðtÞ1 � Normalðxðt� 1Þ

2 ; s2Þ;

ot ¼ xðtÞ1

where ν>0 is the variance at the third level, κ>0 determines the extent to which the third level

affects the second level, ω indicates the tonic level variance at the second level, and σ is the

observation noise.

For the simulation analysis of the accuracy VKF and HGF, we generated data according to

the HGF generative model (with normal observations) according to these parameters: ν = 0.5,

κ = 1, ω = −3, and σ = 1. The initial mean at the second and third levels were 0 and 1, respec-

tively. We generated 1000 time-series (100 trials) using these parameters. These parameters

were also then used for inference based on the HGF algorithm. However, in 82 simulations,

the HGF encountered numerical problems (negative posterior variance), because its inferred

trajectory conflicted with the assumptions of the inference model. For the remaining time-

series, we also performed inference using an RBPF under the generative model of the HGF
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and the true parameters (10000 particles). The RBPF exploits the fact that inference on the

lower level chain (i.e. x2) is tractable given samples from the upper level. Specifically, this

approach samples x3 and marginalizes out x2 using the Kalman filter. The relative error of the

HGF with respect to RBPF was defined as EHGF/ERBPF−HGF−1, in which EHGF and ERBPF−HGF

are the median of absolute differences between the ground truth generated latent variable, x2,

and the predictions of the HGF and the particle filter, respectively. A similar analysis was per-

formed by generating 1000 time-series (100 trials) using the generative model of the VKF with

parameters λ = 0.15, v0 = 1, and σ = 1. We also performed inference using the RBPF based on

VKF generative assumptions and the true parameters and computed the relative error for

VKF, EVKF/ERBPF−VKF−1. For both algorithms, we computed correlation coefficient between

their estimated signals at both levels and those from the corresponding RBPF. To compute cor-

relation coefficient across simulations, correlation coefficients were Fisher-transformed, aver-

aged, and transformed back to correlation space by inverse Fisher transform [53,54].

For comparing accuracy of the VKF and HGF for binary observations, we generated 500

time-series in the probabilistic switching task with binary outcomes (Fig 2). Parameters of the

HGF and VKF were fitted to these time-series using a maximum-a-posteriori procedure, in

which the variance over all parameters was assumed to be 15.23. The prior mean for all param-

eters (except ω in HGF) was assumed to be 0. We followed the suggestions made by Mathys

et al. [55] and assumed an upper bound of 1 for both ν and κ. We particularly chose –1 as the

initial prior mean for ω to ensure that the HGF is well defined at the prior mean. We have plot-

ted the learning rate for updating mean of the filter in Fig 6, which for the HGF is given by

Equation 23 of Mathys et al. [18].

Recovery analysis of parameters

For this analysis, data were generated based on the binary VKF (Eqs 14–19). In particular, the

observation on trial t, ot, was randomly drawn based on the sigmoid-transformation of mt−1.

The choice data were also generated randomly by applying the softmax as the response model

with parameter β. Similar to experiment 1, for each artificial subject, we assumed 4 sequences

of observations and actions (i.e. 4 cues) with 120 trials. These values were used as the group

parameters: λ = 0.2, v0 = 5, ω = 1, and β = 1. For generating synthetic datasets for simulations,

the parameters of the group of subjects (50 subjects) assigned to each model were drawn from

a normal distribution with the standard deviation of 0.5.

Implementation of models for analysis of choice data

We considered a 3-level (binary) HGF [18] for analysis of choice data, with parameters,

0<ν<1, 0<κ<1, and ω. We also considered a constant parameter for ω at –4, as Iglesias et al.

[8]. However, since the original HGF with a free ω outperformed this model (using maxi-

mum-a-posteriori estimation and random effects model comparison [38,40]), we included the

original HGF in the model comparison with binary VKF. Similar to the HGF toolbox, we

assumed that the initial mean at the second and third levels are 0 and 1, respectively, and the

initial variance of the second and third levels are 0.1 and 1, respectively. For implementing the

binary VKF, we assumed an upper bound of 10 for the initial volatility parameter, v0.

Experiment 1

Each of the learning models was combined with a choice model to generate probabilistic pre-

dictions of choice data. Expected values were used to calculate the probability of actions, a1 (go
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response) and a2 (no-go response), according to a sigmoid (softmax) function:

pt a1ð Þ ¼
1

1þ e� b �mtðst ;a1Þ� bðstÞ

ptða2Þ ¼ 1 � ptða1Þ

where �mt was equal to mt for the VKF, and it was equal to 2sðm̂t
1
Þ � 1 for the HGF (as imple-

mented in the HGF toolbox). Moreover, β is the decision noise parameter encoding the extent

to which learned contingencies affect choice (constrained to be positive) and b(st) is the bias

towards a1 due to the stimulus presented independent from learned values. The bias is defined

based on three free parameters, representing bias due to the emotional content (happy or

angry), be, bias due to the anticipated outcome valence (reward or punishment) cued by the

stimulus, bv, and bias due to the interaction of emotional content and outcome, bi. No con-

straint was assumed for the three bias parameters. For example, a positive value of be repre-

sents tendencies towards a go response for happy stimuli and for avoiding a go response for

angry stimuli (regardless of the expected values). Similarly, a positive value of bv represents a

tendency towards a go-response for rewarding stimuli regardless of the expected value of the

go response. Critically, we also considered the possibility of an interaction effect in bias

encoded by bi. Therefore, the bias, b(st), for the happy and rewarding stimulus is be+bv+bi, the

bias for the angry and punishing stimulus is −be−bv+bi, the bias for the happy and punishing

stimulus is be−bv−bi and the bias for the angry and rewarding stimulus is −be+bv+bi.

Experiment 2

This experiment was conducted by Jang et al. [42] to test the effects of computational signals

governing reinforcement learning on episodic memory. The learning task consisted of 160 tri-

als. On each trial, the trial value was first presented, followed by the image (from one of the

animate or inanimate categories), response (play or pass) and the feedback. The feedback was

contingent on the response made by the participant and given the probability of reward given

the image category. Thus, if the participant chose play and the trial was rewarding, they were

rewarded the amount shown as the trial value. If they chose to play and the trial was not

rewarding, they lost 10 points. If the choice was pass, the participant did not earn any reward

(i.e. 0 point), but was shown the hypothetical reward of choosing play. Data were collected

using Amazon Mechanical Turk.

For modeling choice data, the softmax function with parameter β was used as the response

model, in which the expected value of play was calculated based on the probability of reward

estimated by the learning models and the value of trial shown at the beginning of each trial.

The expected values were divided by 100 (the maximum trial value in the task) before being

fed to the softmax to avoid numerical problems.

Model fitting and comparison

We used a hierarchical and Bayesian inference method, HBI [35], to fit models to choice data.

The HBI performs concurrent model fitting and model comparison with the advantage that

fits to individual subjects are constrained according to hierarchical priors based on the group-

level statistics (i.e. empirical priors). Furthermore, the HBI takes a random effects approach to

both parameter estimation and model comparison and calculates both the group-level statistics

and model evidence of a model based on responsibility parameters (i.e. the posterior probabil-

ity that the model explains each subject’s choice data). The HBI quantifies the protected

exceedance probability and model frequency of each model, as well as the group-level mean
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parameters and corresponding hierarchical errors. This method fits parameters in the infinite

real-space and transformed them to obtain actual parameters fed to the models. Appropriate

transform functions were used for this purpose: the sigmoid function to transform parameters

bounded in the unit range or with an upper bound and the exponential function to transform

parameters bounded to positive value. To ensure that the HGF is well defined at the initial

prior mean of fitted parameters (i.e. zero), we assumed ω = ωf−1, where ωf is the fitted

parameter.

The initial parameters of all models were obtained using maximum-a-posteriori procedure,

in which the initial prior mean and variance for all parameters were assumed to be 0 and 6.25,

respectively. This initial variance is chosen to ensure that the parameters could vary in a wide

range with no substantial effect of prior. These parameters were then used to initialize the

HBI. The HBI algorithm is available online at https://github.com/payampiray/cbm.
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