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Abstract

Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever
through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE,). His-
torically, phospholipases have been considered to be the primary generator of the arachi-
donic acid (AA) precursor pool for generating PGE, and other eicosanoids. However,
recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis
of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE,
synthesis in the mammalian brain under basal and neuroinflammatory states. We show
here that either genetic or pharmacological ablation of MAGL leads to significantly reduced
fever responses in both centrally or peripherally-administered lipopolysaccharide or inter-
leukin-1B-induced fever models in mice. We also show that a cannabinoid CB1 receptor
antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much
like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but
appear to do so through restricted control over prostaglandin production in the nervous
system.

Introduction

Fever is a physiological response to pathological conditions such as infection, malignancy, or
severe tissue damage. Fever typically occurs when cells of the immune system respond to exog-
enous or endogenous insults by producing and releasing specific cytokines that ultimately lead
to the production of the pyrogenic prostaglandin E2 (PGE,) in either the brain vasculature or
peripheral tissues [1,2]. PGE, elicits febrile responses largely through stimulating prostaglandin
E receptor 3 (EP3) on neurons of the medial and the median preoptic nuclei (MPO and MnO,
respectively) of the preoptic area (POA), leading to disinhibition of thermogenic neurons in
caudal brain regions and activation of thermoregulatory effectors to increase heat production
and reduce heat loss [3-16]. Indeed, PGE,-lowering cyclooxygenase (COX) inhibitors, such as
aspirin and ibuprofen, have been used for over a century as fever-lowering agents.
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PGE, is synthesized from arachidonic acid (AA) precursor pools, which have generally been
thought to derive from membrane phospholipids by the action of phospholipase A2 (PLA,)
enzymes [17,18], although alternative pathways have been considered in select biological sys-
tems [19,20]. We recently showed that brain prostaglandins principally originate from an AA
source provided by monoacylglycerol lipase (MAGL)-mediated hydrolysis of the endocannabi-
noid 2-arachidonoylglycerol [21]. Mice null for MAGL (Mgll”") or mice treated with the
MAGL inhibitor JZL184 show elevations in brain 2-AG, and reductions in brain AA and pros-
taglandins under basal conditions and in multiple inflammatory and neurodegenerative mouse
models, leading to cannabinoid receptor-independent attenuation of neuroinflammation and
neuroprotection [21-23]. Mice deficient in the 2-AG biosynthetic enzyme diacylglycerol
lipase-alpha (DAGLa,) also exhibit reductions in brain AA [24], and inhibitors of DAGLplower
AA and PGE, in peritoneal macrophages in a manner that is complementary to the ablation of
cytosolic phospholipase A2 (cPLA2 or PLA2G4A) [25].

Recent studies have suggested that MAGL inhibitors may be used to treat various patholo-
gies, through either enhancing endocannabinoids, lowering eicosanoids, or both, to alleviate
pain, inflammation, anxiety, and depression [26,27]. Here, we have investigated the potential
of MAGL blockade to attenuate both centrally and peripherally-induced fever responses in
mice.

Methods

Mice

All procedures were approved by Institutional Animal Care and Use Committee of the Scripps
Research Institute and were done in accordance to NIH Guide for the Care and Use of Labora-
tory Animals. Mgll” and Mgll*"* mice were previously described by us and were originally
obtained from Texas A&M Institute of Genomic Medicine and from Joseph Bonventre's labo-
ratory at Brigham and Women's Hospital. Null mice and wild type littermates were obtained

by crossing Mgll”*

heterozygous animals. All experiments were carried out on adult 3-5
month old male mice maintained at constant environmental conditions of 25 + 0.5°C and
37 + 2% humidity with water and food provided ad libitum unless specified, and subjected to a

12:12 hrs light:dark cycle with lights on at 7 AM.

Telemetry

Telemetry was performed as previously described by us [28-31]. Briefly, mice were anesthe-
tized with isoflurane (induction 3-5%, maintenance 1-1.5%) and surgically implanted with
radiotelemetry devices (TA-F10, Data Sciences, St. Paul, MN) into the peritoneal cavity for
core body temperature (CBT) and activity. Following surgical implantation and appropriate
wound closure, the animals were allowed to recover for 2 weeks and then submitted to freely
moving telemetry recordings. Mice were individually housed in a plexiglas cage in a room
maintained at 25 + 0.5°C. The cages were positioned onto the receiver plates (RPC-1; Data Sci-
ences, St. Paul, MN) and radio signal from the implanted transmitter were recorded every 5
minutes with fully automated data acquisition system (Dataquest ART, Data Sciences, St. Paul,
MN).

Chemicals and Injections

Bacterial lipopolysaccharides (LPS) (0127:B8, Sigma, St. Louis, MO) were administered i.p.
using a volume of 100-200 pl per mouse at a dose of 100 pg/kg (~3 pg/mouse), a dose previ-
ously demonstrated by us and others to induce fever [28,32].
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Recombinant IL-1f (R&D Systems) was administered centrally in the preoptic area (POA
through a cannula previously implanted at the following stereotactic coordinates: (anterior-
posterior [AP] from bregma = 0.38 mm, lateral [Lat] = midline, ventral [V] = 3.8 mm, cannula
26 GA, 10 mm length). Following a 7 day recovery period, single caged animals received 0.5 pl
of vehicle (aCSF, artificial cerebrospinal fluid) or of 500 pg of recombinant IL-18 (R&D Sys-
tems Inc, Minneapolis, MN) in aCSF using an injector through the cannula connected to plas-
tic tubing and a microsyringe using an injector (33 GA, protruding 0.4 mm beyond the tip of
the cannula, total length 10.4 mm) as previously described by us [28,30].

JZ1.184 (Cayman Chemicals, Ann Arbor, MI) was dissolved in ethanol, followed by addition
of Emulphor-620 (Sanofi- Aventis, Bridgewater, NJ), and diluted with 0.9% saline to form a
vehicle mixture of ethanol-Emulphor-saline in a ratio of 1:1:18 and was administered i.p. at 40
mg/kg, a dose previously shown to exert full inhibition of MAGL [21]. We demonstrated that
the ethanol-Emulphor-aCSF (1:1:18) solution alone does not induce nor prevent fever (not
shown).

Rimonabant (SR141716) (Cayman Chemical Co, Ann Arbor, MI) was injected i.p. at a dose
of 1 mg/kg 30 min before inhibitors as previously described[33].

Statistics

Values are mean = standard error of the mean (SEM). Each data point, in each condition, rep-
resents the mean of data collected from at least 6 mice. Longitudinal data on temperature
acquired and compared using Repeated Measures ANOV A, followed by Newman-Keuls post-
test (P<0.05). Multiple regression analysis was performed for all the longitudinal data. Post-
hoc analyses (Tukey LSD p<0.05) between vehicle and inflammagen treated groups was deter-
mined. For these analyses, P-value was set at p<<0.05 to determine the levels of statistical
significance.

Results and Discussion

MAGL-deficient mice show no differences in normal core body
temperature profile

Before investigating the possible role of MAGL in fever, we compared the profile of core body
temperature (CBT) of Mgll” and Mgll*"* mice. No difference in CBT was observed across
genotypes over a 24 hour period of recording (Fig 1). Both groups of animals showed similar
and normal CBT profiles in the dark (active part of the day, 12 to 24 hrs), in the light (resting
part of the day, 0 to 12 hrs) and during the transitions between phases. This indicates that
MAGL is not required for the maintenance of the basal CBT and temperature homeostasis and
identify Mgll”" mice as a suitable model to investigate the role of MAGL in fever.

Genetic and pharmacological ablation of MAGL attenuates peripherally
induced fever response

We next tested whether a peripherally induced fever response could be mitigated upon ablation
of MAGL. We induced a fever response in mice by i.p. injection of the exogenous pyrogen lipo-
polysaccharide (LPS) (100 ug/kg), leading to prolonged and elevated CBT. Mgll” mice showed
significantly attenuated fever responses compared to LPS-treated Mgll*’* mice (Fig 2A). We
next used the MAGL inhibitor JZL184 [34] to test whether pharmacological blockade of
MAGL also affected fever responses. We treated mice with a dose JZL184 (40 mg/kg. i.p., 1 hr
before LPS injection) that we have previously shown to produce complete inhibition of MAGL
in vivo, leading to profound elevations in brain 2-AG and suppression of brain AA and
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Fig 1. Mgll’- and Mgll*’* mice have similar core body temperature profiles. CBT profile of Mg/~ and
Mg+ male mice over 24 hrs. No statistically significant differences were observed across genotypes. Data
are shown as mean = sem, n = 6 mice per group, p>0.05.

doi:10.1371/journal.pone.0134437.g001

prostaglandins [21]. We found that JZL184 significantly reduced CBT and fever response elic-
ited by LPS, compared to vehicle-treated LPS-administered controls (Fig 2B).

Genetic and pharmacological ablation of MAGL attenuated centrally-
mediated fever response

To examine whether the observed fever-reducing effects were due to modulation of central
pyrogens, we next examined whether genetic or pharmacological ablation of MAGL was capa-
ble of attenuating centrally-induced fever in mice through POA administration of the endoge-
nous pyrogen interleukin-1p (IL-1B) (500 pg/0.5 ul). We show that either Mgll”~(Fig 3A) mice
or mice treated with JZL184 (40 mg/kg, i.p., 1 hr before IL-1Badministration) (Fig 3B) display
significantly reduced IL-1B-mediated CBT compared to vehicle-treated or Mgll*"* control
mice.

The anti-pyrogenic effects of MAGL inhibitors are independent of CB1
cannabinoid receptor activity

Since endocannabinoids have been shown to participate to hypothermic responses via activa-
tion of CB1 receptors [35], we next tested whether the anti-pyrogenic effects of MAGL inhibi-
tors were dependent on the central CB1 cannabinoid receptor. Pre-treatment of mice with a
cannabinoid receptor type 1 (CB1) antagonist rimonabant (RIM) (1 mg/kg, i.p.) did not alter
the anti-pyrogenic effects of JZL184 in LPS-treated mice (Fig 4). These data indicate that the
anti-pyrogenic effects of MAGL inhibitors are likely due to reductions in brain PGE,.

Conclusion

Fever is an increase of core body temperature that is regulated centrally and occurs when PGE,
binds to the EP3 receptor on hypothalamic neurons that control temperature homeostasis.
PGE,, like other eicosanoids, is synthesized by cyclooxygenase (COX)-mediated metabolism of
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Fig 2. Genetic or pharmacological ablation of MAGL reduces fever response in peripheral LPS-

induced fever mod

el. (A) CBT profile following i.p. injection of LPS (100 ug/kg) or vehicle (Saline) of Mgl*"*

mice treated i.p. with JZL184 (40 mg/kg). *p<0.05, Mgill**+ Veh vs. Mgll** + LPS; #p<0.05, Mgll*"*+ LPS vs.
Mglr’~ + LPS; %p<0.05, Mgil*’* + Veh vs. Mgll”~ + LPS. (B) CBT profile of Mg~ and Mgl*’* mice followingi.
p. injection of LPS (100 pg/kg) or vehicle (Saline) as indicated. Injection was performed at time 0. Data are
shown as mean + sem, n = 6 mice per group, *p<0.05, Mgll**+ Veh + Veh vs. Mgil*’* + Veh + LPS; # p<0.05,
Mgll**+ Veh+ LPS vs. Mgll**+ JZL184 + LPS.

doi:10.1371/journal.pone.0134437.9002
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Fig 3. Genetic or pharmacological ablation of MAGL reduces fever response in central IL-1B-induced
fever model. (A) CBT profile following icv injection into POA of IL-18 (500 pg/0.5 pl) or aCSF of Mgll*’* mice
treated i.p. with JZL184 (40 mg/kg). *p<0.05, Mgll*’* + Veh vs. Mgl*’* + IL-1B; ¥p<0.05 Mgll*’ + IL-1B vs.
Mgl + IL-1B. (B) CBT profile of Mgil”~ and Mgl*’* mice following icv injection into POA of IL-18 (500 pg/
0.5 pl) or aCSF as indicated. Injection was performed at time 0. Data are shown as mean + sem, n = 6 mice
per group. *p<0.05, Mgll*"*+ Veh + Veh vs. Mgll**+ Veh + IL-1B; #p<0.05 Mgll*’*+ Veh+ IL-1B vs. Mgl
*+JZL184 + IL-1B.

doi:10.1371/journal.pone.0134437.g003
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Fig 4. Anti-pyrogenic effects of MAGL inhibitors are independent of CB1 cannabinoid receptor
activity. CBT profile following i.p. injection of LPS (100 pg/kg) of Mgil*’+ mice receiving i.p. injection of
rimonabant (1 mg/kg) and/ or JZL184 (40 mg/kg). Rimonabant did not affect the hypothermic effects of
JZL.184. Data are shown as mean + sem, n = 6 mice per group, *p<0.05, Mgl */*+ Veh + Veh + Veh vs. Mg/l*’
*+Veh + Veh + LPS; #p<0.05, Mgll**+ Veh + Veh + LPS vs. Mgll*"*+ JZL184 + Veh + LPS; p<0.05, Mgl
*+ Veh + Rim + LPS vs. Mgll*"*+ Veh + Rim + Veh; $p<0.05, Mgll*’*+ Veh + Rim + LPS vs. Mgll*"*+ JZL184
+Rim + LPS. p>0.05 (NS) Mgl*’*+ Veh + Veh + Veh vs Mgll**+ Veh + Rim + Veh, Mgll*’*+ JZL184 + Rim
+LPS vs Mgl + JZL184 + Veh + LPS, Mgll**+ Veh + Veh + LPS vs Mgll**+ Veh + Rim + LPS.

doi:10.1371/journal.pone.0134437.9g004

arachidonic acid (AA). Indeed, COX inhibitors are widely utilized and effective anti-pyretic
drugs (e.g. [36]). Although phospholipases such as cPLA2 have been thought to be the domi-
nant driver of AA for prostaglandin production, cPLA2-deficient mice showed unaltered pros-
taglandin content in the brain under basal conditions [37], pointing to the existence of
alternative pathways that produce AA for eicosanoid synthesis in the nervous system. Recent
studies have identified MAGL as a primary regulator of AA and prostaglandin production in
mouse brain, and MAGL blockade leads to reduced pro-inflammatory eicosanoids in various
neuroinflammatory and neurodegenerative disease models [21-23]. Here, we extend these
findings to show that pharmacological or genetic ablation of MAGL reduces fever responses in
both peripherally and centrally mediated mouse fever models.

While we show here that MAGL inhibition leads to substantial suppression of the fever
response in both the peripheral LPS and central IL-1f fever models, we note that MAGL inhib-
itors do not completely suppress fever in these models, which contrasts with the full suppres-
sion observed with COX inhibitors [38,39], suggesting the existence of other pools of AA that
may contribute to PGE, production. Indeed, we previously showed that cPLA2-deficient mice
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also exhibit a modest reduction in brain prostaglandin levels under LPS challenge and that
MAGL inhibition in LPS-stimulated cPLA2-deficient mice additively reduced brain PGE, lev-
els beyond MAGL or cPLA2 ablation alone [21]. Thus, it will be of future interest to determine
whether MAGL and ¢PLA2 dual blockade fully suppresses fever responses in the models
described here. Another unanswered question is whether there may be enzymatic diversifica-
tion in enzymes such as MAGL, cPLA2, or other activities that drive AA release for PGE, syn-
thesis in a cell type or brain region-specific manner. The generation of neuron-specific or
microglial-specific Mgll”~ mice may be able to address these questions. It would also be impor-
tant to examine fever responses following dual blockade of MAGL and FAAH, which has been
shown, for certain behavioral processes, to produce greater effects than disruption of either sin-
gle enzyme alone [40-42]. Finally, it is possible that other bioactive lipids, such as PGE2-gly-
cerol ester [43], are altered in the CNS of MAGL-disrupted animals and make additional
contributions to fever regulation.

In summary, our data show that MAGL is a major regulator of fever in mice and put forth
MAGL inhibitors as a potential class of antipyretic drugs.
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