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Within the infant-caregiver attachment system, the primary caregiver holds potent reward
value to the infant, exhibited by infants’ strong preference for approach responses and
proximity-seeking towards the mother. A less well-understood feature of the attachment
figure is the caregiver’s ability to reduce fear via social buffering, commonly associated
with the notion of a “safe haven” in the developmental literature. Evidence suggests this
infant system overlaps with the neural network supporting social buffering (attenuation)
of fear in the adults of many species, a network known to involve the prefrontal cortex
(PFC). Here, using odor-shock conditioning in young developing rats, we assessed when
the infant system transitions to the adult-like PFC-dependent social buffering of threat
system. Rat pups were odor-shock conditioned (0.55 mA–0.6 mA) at either postnatal day
(PN18; dependent on mother) or 28 (newly independent, weaned at PN23). Within each
age group, the mother was present or absent during conditioning, with PFC assessment
following acquisition using 14C 2-DG autoradiography and cue testing the following
day. Since the human literature suggests poor attachment attenuates the mother’s
ability to socially buffer the infants, half of the pups at each age were reared with an
abusive mother from PN8–12. The results showed that for typical control rearing, the
mother attenuated fear in both PN18 and PN28 pups, although the PFC [infralimbic
(IL) and ventral prelimbic (vPL) cortices] was only engaged at PN28. Abuse rearing
completely disrupted social buffering of pups by the mother at PN18. The results from
PN28 pups showed that while the mother modulated learning in both control and
abuse-reared pups, the behavioral and PFC effects were attenuated after maltreatment.
Our data suggest that pups transition to the adult-like PFC social support circuit
after independence from the mother (PN28), and this circuit remains functional after
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early-life trauma, although its effectiveness appears reduced. This is in sharp contrast to
the effects of early life trauma during infancy, where social buffering of the infant is more
robustly impacted. We suggest that the infant social buffering circuit is disengaged by
early-life trauma, while the adolescent PFC-dependent social buffering circuit may use a
safety signal with unreliable safety value.

Keywords: early-life trauma, social buffering, social support, threat, fear, prefrontal cortex, infralimbic, prelimbic

INTRODUCTION

For infants, the mother and other significant caregivers serve
as potent reward stimuli and induce robust proximity-seeking
in the infant, regardless of the quality of care received. This
infant attachment to the caregiver is learned during a sensitive
period and rodent work suggests there is a unique neural network
that robustly supports learning proximity-seeking (Moriceau
et al., 2010; Raineki et al., 2010; Bisaz and Sullivan, 2012; Perry
et al., 2016; Opendak et al., 2017). This open attachment system
permits the infant to attach to multiple caregivers, including
non-biological caregivers, within the context of diverse rearing
conditions. Strikingly, this proximity-seeking characteristic of
the attachment system is maintained even when the caregiver
is the source of the threat, as occurs in maltreatment in a wide
variety of species, including humans (Bowlby, 1982; Tottenham
and Sheridan, 2009; Sanchez et al., 2015; Drury et al., 2016;
Howell et al., 2017; Zajac et al., 2019).

A less well-known feature of the attachment figure is his or
her ability to suppress or block fear/threat responding during
early life, also referred to as social buffering (Hostinar et al., 2014;
Gunnar et al., 2015; Hostinar and Gunnar, 2015; Callaghan et al.,
2019). This fear reduction system was first characterized within
Bowlby’s Attachment Theory (Bowlby, 1969, 1978) and is critical
for the infant to approach the caregiver (safe base) for protection
when threatened, rather than showing adult-like threat response
behaviors (e.g., freezing, attacking or hiding; Coss, 2016). This
phenomenon of social buffering of threat by the parent was first
demonstrated in infant rats when the presence of the mother
reduced the young infants’ responses to shock and blocked
stress hormone release. This system is strongly phylogenetically
represented and has been shown in rodents (Stanton and Levine,
1985; Levine et al., 1988; Suchecki et al., 1993; Hennessy et al.,
2006, 2009, 2015; Gunnar et al., 2015; Sullivan and Perry, 2015;
Al Aïn et al., 2017; Opendak et al., 2019), nonhuman primates
and children (Coe et al., 1978;Wiener et al., 1987; Nachmias et al.,
1996; Hennessy et al., 2009; Tottenham et al., 2012, accepted; Gee
et al., 2013a; Sanchez et al., 2015; Howell et al., 2017). This social
buffering supports the role of the attachment figure as a regulator
of the immature infant (Bowlby, 1982; Hofer, 1994; Sroufe, 2005;
Blair and Raver, 2015; Chambers, 2017; Feldman, 2017; Perry
et al., 2017).

We have some understanding of the neural network
supporting infant social buffering. This system involves caregiver
suppression of the paraventricular nucleus (PVN) of the
hypothalamus to block engagement of the stress axis (Shionoya
et al., 2007) and attenuation of the amygdala and ventral

tegmental response to threat (Hennessy et al., 2006, 2009;
Moriceau and Sullivan, 2006; Moriceau et al., 2006, 2009;
Opendak et al., 2019). This network analysis has, in part,
been replicated in children (Gee et al., 2014; Tottenham et al.,
accepted), and nonhuman primates (Gunnar et al., 2015; Sanchez
et al., 2015; Howell et al., 2017). Importantly, the literature
across these species suggests that social buffering by maternal
presence is disrupted in mother-infant dyads with poor quality
attachment (Nachmias et al., 1996; Gunnar and Quevedo, 2007;
Hostinar et al., 2014; Gunnar et al., 2015; Sanchez et al., 2015;
Gunnar and Sullivan, 2017; Opendak et al., 2019). Yet, the
neurobiology of this compromised social buffering system has
received little attention.

Social buffering wanes with maturation, although this effect
can still be seen in adults of many species. While there appears to
be some overlap in the neural mechanisms across development,
the late-developing prefrontal cortex (PFC) appears critical
in adult social buffering (Hennessy et al., 2006, 2015, 2018;
Kiyokawa et al., 2007, 2012; Taylor et al., 2008; Upton and
Sullivan, 2010; Inagaki and Eisenberger, 2012; Tottenham et al.,
2012; Hostinar et al., 2015; Hornstein et al., 2016; Harrison
et al., 2017; Hornstein and Eisenberger, 2017). Here, we
focus on the PFC and its evolving role in social buffering
of the threat response, targeting a developmental transition
from dependence on the mother (postnatal day [PN] 18) to
independence in preadolescent rats (PN28) weaned from the
mother. To further probe the dynamics of this developing circuit,
we perturbed the system by exposing half of the animals to
maternal maltreatment in early infancy. Overall, our results
suggest that the neurobehavioral substrates of maternal social
buffering and its perturbation are distinct during sensitive
periods in development.

MATERIALS AND METHODS

Subjects
A total of 322 Long Evans rats (178 PN18 ±1 day, 144 PN28
±1 day), with approximately equal males and females, were
bred and reared in our animal facility with ad libitum food
and water. Animals were reared with an abusive mother or
control mother from PN8-PN12–an age range documented
to induce neurobehavioral deficits. Animals were tested at
PN18 while still living with the mother or PN28 when pups
live independently of the mother (all animal only tested once).
Animals were always housed in an enclosure with solid floors,
with both breeding and rearing occurring in a private animal
room within the lab. Two weeks before giving birth, pregnant
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FIGURE 1 | Schematic of methodology and experimental timeline. In infancy, pups received either Scarcity-Adversity Model of Low Bedding (LB) rearing or control
rearing from the mother (ages PN8–12). LB rearing involved providing the mother with insufficient bedding for nest building, which produces maltreatment of pups
but growth indistinguishable from controls. Pups are odor-shock conditioned in the mother’s presence or absence at one of two ages, with the goal of better
understanding the neural mechanisms involved in social suppression of threat. A portion of the pups had the brain removed immediately after conditioning, while the
other half were tested the next day (Cue test involving odor only presentations). The younger subjects were PN18, an age when pups are still with the mother but
only for about 5 days before weaning. The other age tested was PN28, when pups have been independent for about 5 days.

females were moved from large breeding cages to standard cages
for birth and pup rearing (34 long × 29 wide × 17 high cm).
General health and births were checked twice daily with the
day of birth designated PN0. Litters were culled to 12 pups
(approximately equal males and females) at PN1. Cages were
cleaned twice a week except for the nest, which was saved and
placed back with the mother and pups. All procedures were
approved by the Institutional Animal Care and Use Committee
in accordance with guidelines from the National Institutes
of Health.

Scarcity-Adversity Model of Low Bedding
(LB; PN8–12)
Early-life trauma was modeled in rats using a well-established
Scarcity-Adversity Model previously utilized by our lab and
others (Sullivan et al., 2000; Raineki et al., 2010; Opendak and
Sullivan, 2016; Opendak et al., 2017; Walker et al., 2017; Yan
et al., 2017). As illustrated in Figure 1, the low bedding (LB)
rearing takes place from PN8–12 and included the following
manipulations: nest hutch removal, bedding material reduced
from 4,000 mL to 100 mL and solid floor cage cleaned daily
with bedding replaced to reduce odor and maintain a clean
cage environment. As illustrated in Table 1, this procedure
increases instances of maternal maltreatment of the pups
(e.g., reduced time with pups, rough handling pups) and
results in neurobehavioral dysfunction, including depressive-like
behavior, disrupted social behavior and dysregulation of fear
expression in pups, although major neurobehavioral effects show
significant emergence at weaning age (Perry and Sullivan, 2014;
Al Aïn et al., 2017; Opendak et al., 2017). Age-matched control
litters were reared concurrently but with abundant bedding and
nest-building materials. Pups were videotaped three times a
week and data analyzed using Ethovision (Noldus Information
Technologies Inc., Leesburg, VA, USA). Maternal behavior and
infant-mother interactions were hand-scored using BORIS (Life

TABLE 1 | The Scarcity-Adversity Model of Low Bedding (LB) is a validated
procedure of inducing abuse by providing the mother with insufficient nest
building material.

Maternal Behavior Control %
observations ± SEM

LB %
observations ± SEM

Nursing 62.5 ± 23.8 76.7 ± 7.9
In nest 87.5 ± 10.2 91.1 ± 4.8
Step on pups 8.3 ± 8.3 50.0 ± 23.6
Drag pups 0 ± 0 27.8 ± 11.8
Pups vocalize 16.7 ± 9.6 64.4 ± 6.5

Convergent with previous studies (Roth and Sullivan, 2005; Walker et al., 2017; Santiago
et al., 2018) we observed increased rough handling of pups and increased pup
vocalizations during a greater percentage of observations in the LB groups.

Sciences and Systems Biology) behavioral coding software to
validate abusive and non-abusive care.

Odor-Shock Conditioning (Dependent on
Mother PN18 or Independent PN28)
Conditioning took place in standard mouse fear conditioning
(Coulbourn Instruments) apparatus within a sound attenuation
chamber (Med Associates) with Coulbourn FreezeFrame
software controlling stimuli delivery and video recording.
Animals received a 20 min habituation session in the
conditioning chambers a day prior to conditioning. On
conditioning day, animals were given a 10 min adaptation period
to the conditioning chamber before the start of conditioning.
The conditioned stimulus (CS) was a 30 s peppermint odor
(McCormick Pure Peppermint; 2 L/min; 1:10 peppermint vapor
to air) controlled with a solenoid valve that minimized pressure
changes by diverting airflow from the clean air to the peppermint
air stream. To ventilate the chamber and ensure removal of odor
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CS, a standard attenuating chamber fan provided a constant
stream of deodorized air flow through the chambers (2 L/min).
The unconditioned stimulus (US) was a 1 s 0.6 mA foot shock
delivered through a grid floor. The Paired experimental animals
received a total of seven CS-US presentations administered at
a 4 min inter-trial interval (ITI) and co-terminated with the
1 s footshock during the last second of the odor. Unpaired
(behavioral control) animals received the same number of odor
and shock presentations, however, the stimuli were separated by
a 2 min inter-stimulus interval (ISI). Animals in the Odor-only
condition also received the seven odor presentations but no
shocks. Half of the experimental animals were conditioned in the
presence of a urethane-anesthetized dam placed directly adjacent
to the conditioning chamber where her odor was perceptible but
she was not visible. Following conditioning, animals were either
sacrificed and brains assessed for regional activity or retained for
behavioral cue testing the next day to assess learning. PN18 and
PN28 animals were only used at one age. These procedures
were done according to published laboratory protocols
(Boulanger Bertolus et al., 2014; Debiec and Sullivan, 2014;
Tallot et al., 2016).

Neural Assessment
Animals used for neural assessment were injected with
14C-labeled 2-deoxyglucose (2-DG; 20 µCi/100 g, i.p.) just prior
to being placed in the conditioning chamber and brains removed
after conditioning (45 min after injection). Brains were stored in
a −80◦C freezer before being sectioned in a cryostat (20 µm)
at −20◦C. Through the region of interest (ROI), every third
slice was collected onto a coverslip and slices along with 14C
standards (10 × 0.02 mCi, American Radiolabeled Chemicals
Inc., St. Louis, MO, USA) were exposed to X-ray film (Kodak)
for 5 days. The autoradiograph was then digitally scanned and
prepared for analysis. All procedures occurred according to
published lab protocols (Perry et al., 2016; Opendak et al., 2019).

PFC Analysis
Autoradiographs were analyzed using ImageJ software (National
Institutes of Health) for quantitative optical densitometry with
an increase in autoradiographic density indicating increased
2-DG metabolism. Using Paxinos and Watson (2013) as a guide,
two medial prefrontal regions were identified and analyzed
for regional activity: Prelimbic (PL) and Infralimbic (IL), each
of which was subdivided into additional subregions. At least
three sections from the rostro-caudal extent were analyzed for
each brain area.

Regional engagement levels were expressed as 2-DG uptake
relative to that observed in white matter tracts (e.g., the anterior
commissure or forceps minor) to control for differences in
exposure levels or section thickness (Sullivan et al., 2000).
Autoradiographic density was measured in both hemispheres
of the brain for each region of interest and then averaged
across both hemispheres, as no statistical difference was found
between hemispheres.

Cue Test
Twenty-four hours following conditioning, learning was assessed
using a cue test in a new context: novel room, placed in a

5,000 mL glass beaker inside a sound attenuating chamber
(Coulbourn) with the fan placed outside the attenuating box.
Context was further changed by cleaning the attenuating
chamber with Windex (SC Johnson) 5 min before animals were
placed within the beaker. For cue testing, animals were placed
in the beaker and given a 5 min acclimation period prior to
the first odor onset. Five 30 s presentations of the peppermint
odor were presented using a 4-min ITI, as described for
conditioning. Learning was measured by total time (in seconds)
freezing during the odor with freezing defined as the cessation
of all body movements with the exception of that minimally
required for breathing. Freezing was scored automatically by
FreezeFrame, although all freezing was checked by a blind scorer
to determine freezing vs. inactivity. All animals were videotaped
using two cameras, a side view and a top view to ensure accurate
behavioral scoring.

Statistical Analysis
All behavior data were separated by age and rearing condition
and analyzed using a two-way analysis of variance (ANOVA)
with repeated measures [maternal presence (alone vs. with
mom) × cue presentation (cue #1–5)] for training day data and
two-way ANOVA [learning condition (paired, unpaired, odor
only) × maternal presence (alone vs. with mom)] for cue test
data, followed by Bonferroni-corrected pairwise tests. Planned
comparisons were used when justified by a priori hypotheses
(see Results section below). No sex effects or interactions
were found in freezing behavior at either PN18 or PN28 and
therefore data were collapsed across sex for analysis of maternal
presence effects on behavior and 2-DG uptake. 2-DG uptake data
were analyzed separately for each age using two-way ANOVA
(rearing×maternal presence), followed by Bonferroni-corrected
pairwise tests. All differences were considered significant when
p < 0.05. All data analysis was performed by an experimenter
blind to the experimental conditions.

RESULTS

Mother-Infant Response to
Scarcity-Adversity Model
Offline, blinded observations of videos of mother-infant
interactions during control and LB Adversity-Rearing (PN8–12)
indicated that the LB pups received more rough handling by the
mother than controls (see Table 1 for further details).

Odor-Shock Conditioning Acquisition
Curves
Assessment of paired animals with and without maternal
presence during conditioning revealed significantly higher
freezing in animals conditioned with the mom relative to animals
conditioned alone during later trials except in PN28 control
animals (Figure 2). For PN18 controls (Figure 2A), there was
no main effect of maternal presence (F(1,14) = 2.601, p = 0.129)
but there was a main effect of cue presentation (F(6,84) = 37.90,
p < 0.001) and a cue presentation by maternal presence
interaction (F(6,84) = 4.567, p = 0.0005). Post hoc tests showed
that during the sixth (p = 0.016) and seventh (p = 0.001)
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FIGURE 2 | Odor-shock cue conditioning increases freezing to odor during
training. Total cumulative (seconds) freezing (±SEM) during paired odor-shock
cue conditioning at (A,B) PN18 (Control: Alone n = 8; Mom n = 8; LB: Alone
n = 8; Mom n = 8) and (C,D) PN28 (Control: Alone n = 9; Mom n = 8; LB:
Alone n = 14; Mom n = 15). Cue conditioning increased freezing at both ages
in both control and low bedding (LB) rearing conditions however increased
freezing was observed in animals conditioned with the mom (except in
PN28 Control group) relative to animals conditioned alone. Open
circle = conditioned with the mom; filled circles = conditioned alone;
blue = controls; red = LB. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001,
∗∗∗∗p < 0.0001.

odor presentations animals conditioned with the mother showed
higher freezing relative to animals conditioned alone. For the
PN18 LB group (Figure 2B), there also was no main effect of
maternal presence (F(1,14) = 2.885, p = 0.112) but there was amain
effect of cue presentation (F(6,84) = 50.66, p < 0.001) and a cue
presentation by maternal presence interaction (F(6,84) = 5.563,
p < 0.001). Similar to the control animals, during later cue
presentations [fifth (p = 0.040), sixth (p = 0.019) and seventh
(p< 0.001)] animals conditioned with the mother showed higher
freezing relative to animals conditioned alone.

At PN28, similar effects were observed in the LB group
although there were fewer differences observed in the control
animals (Figure 2C). For controls, there was no main effect of
maternal presence (F(1,15) = 0.331, p = 0.574) or cue presentation
by maternal presence interaction (F(6,90) = 0.177, p = 0.983),
but there was a main effect of cue presentation (F(6,90) = 167.0,
p < 0.001). The increase in freezing over time did not differ
between animals conditioned alone or with themom. In contrast,
in the PN28 LB group (Figure 2D) there was a main effect of
maternal presence (F(1,27) = 6.810, p = 0.015), cue presentation

(F(6,162) = 410.9, p < 0.001) and a cue presentation by maternal
presence interaction (F(6,162) = 7.722, p < 0.001). During the
fourth (p = 0.046), fifth (p = 0.006), sixth (p < 0.001) and
seventh (p = <0.001) odor presentations, animals conditioned
with the mother showed higher freezing relative to animals
conditioned alone.

Cue Test
Overall, all paired animals at both ages and in both rearing
conditions showed increased freezing to the CS relative to
controls, indicating retention of the learned association between
the odor and the shock (Figure 3; Johansen et al., 2011).
For PN18 Controls (Figure 3A), there was a main effect
of learning condition (F(2,66) = 49.07, p < 0.001), maternal
presence (F(1,66) = 7.27 p = 0.009) and a trending interaction
(F(2,66) = 2.784, p = 0.069). Post hoc tests revealed that freezing
in Paired groups with and without mom was significantly
higher than control groups (all p’s < 0.05) and maternal
presence increased paired group freezing relative to paired
animals conditioned alone (p < 0.001). For the PN18 LB group
(Figure 3B), there was a main effect of learning condition
(F(2,65) = 60.00, p < 0.001), no effect of maternal presence
(F(1,65) = 1.27, p = 0.264) nor an interaction effect (F(2,65) = 0.22,
p = 0.80). Post hoc tests revealed that paired group freezing with
and without mom was significantly higher than control groups
(all p’s < 0.05) and no significant difference between the two
paired groups with andwithout themother (p = 0.359) suggesting
the mother did not suppress learning.

At PN28, similar effects were found for both controls and LB:
only paired animals learned, although both rearing conditions
showed attenuated learning with maternal presence. Specifically,
for controls (Figure 3C) there were significant main effects
of learning (F(2,45) = 36.93, p < 0.001), maternal presence
(F(1,45) = 4.872, p = 0.032) and an interaction (F(2,45) = 6.363,
p = 0.004). Post hoc tests revealed that both paired freezing with
and without the mom was significantly higher than all control
groups (p’s< 0.05) and there was a significant difference between
the two paired groups (with mother freezing increased relative
to without the mother, p < 0.01). A similar behavioral pattern
was found in LB-reared animals (Figure 3D); there was a main
effect of learning condition (F(2,54) = 39.81, p < 0.001), no
effect for maternal presence (F(1,54) = 0.311, p = 0.579) nor was
there an interaction (F(2,54) = 2.215, p = 0.119). Post hoc tests
revealed that the paired groups with and without mom were
significantly higher than all control groups (p’s < 0.001) and
maternal presence increased paired group freezing (with mother
vs. without the mother, p = 0.026).

Neural Analysis of Prefrontal Cortex (PFC)
Overall, we found significant evidence that PFC activation in
several subregions at PN28 varied as a function of rearing
condition (Control and LB) and whether the mother was present
during conditioning. In contrast, no such PFC activation patterns
at age PN18 were observed.

Infralimbic Prefrontal Cortex (IL)
The PFC showed significant differences across the dorsal-ventral
axis at PN28, but not at PN18. Specifically for PN28 animals
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FIGURE 3 | Early abuse modulates maternal buffering of odor-shock conditioning. Total (seconds) freezing (±SEM) to a conditioned stimulus (CS) was higher in
Paired odor-shock conditions than Unpaired and Odor only conditions. Maternal presence during conditioning attenuated learning at both (A,B) PN18 Control
(Paired: Alone n = 12; Mom n = 12; Unpaired: Alone n = 12; Mom n = 12; odor Only: Alone n = 12; Mom n = 12) and LB (Paired: Alone n = 11; Mom n = 12;
Unpaired: Alone n = 12; Mom n = 12; odor Only: Alone n = 12; Mom n = 12) and (C,D) PN28 Control (Paired: Alone n = 9; Mom n = 10; Unpaired: Alone n = 8; Mom
n = 8; odor Only: Alone n = 8; Mom n = 8) and LB (Paired: Alone n = 14; Mom n = 14; Unpaired: Alone n = 8; Mom n = 8; odor Only: Alone n = 8; Mom n = 8),
although this maternal presence effect was not present following early life PN18 LB maltreatment and present but attenuated following early life PN28 LB
maltreatment. ∗p < 0.05, ∗∗∗∗p < 0.0001.

(Figure 4B), IL 2-DG uptake was higher when pups received
paired CS-US conditioning with the mother vs. conditioned
alone, while abused pups failed to show this effect [two-
way ANOVA (rearing × maternal presence): main effect of
rearing (F(1,117) = 30.77, p < 0.0001), main effect of maternal
presence (F(1,117) = 6.754, p = 0.011), and a trending interaction
(F(1,117) = 2.965, p = 0.088)]. Post hoc tests showed that
maternal presence during paired odor-shock conditioning was
associated with increased 2-DG uptake in IL in controls, but
not LB-reared PN28 pups (control alone vs. control with
mom, t(117) = 3.041, p = 0.003; LB alone vs. LB with mom,
t(117) = 0.623, p = 0.535).

At PN18 (Figure 4A), we failed to observe an effect of
maternal presence on 2-DG uptake, though a main effect of
rearing was observed [two-way ANOVA (rearing × maternal
presence), main effect of rearing (F(1,136) = 4.705, p = 0.032); no
main effect of maternal presence (F(1,136) = 1.127, p = 0.293);
no interaction (F(1,136) = 1.557, p = 0.214)]. Post hoc tests
showed that LS-reared pups exhibited lower 2-DG uptake levels
compared to controls (LS with mom vs. control with mom,

t(136) = 2.44, p = 0.016; LB with mom vs. control alone,
t(136) = 2.26, p = 0.025).

Prelimbic Prefrontal Cortex (PL)
We observed that in PN28 pups (Figure 4D), the ventral region
of the PL showed significant changes in 2-DG metabolism
depending on rearing condition (Control vs. LS) as well as
maternal presence [two-way ANOVA (rearing × maternal
presence), main effect of rearing (F(1,128) = 9.127, p = 0.003),
main effect of maternal presence (F(1,128) = 12.13, p = 0.001),
no interaction (F(1,128) = 1.902, p = 0.170)]. Post hoc tests
showed that maternal presence increased activity in Control pups
conditioned with the mom but not LB (control alone vs. control
with mom, t(128) = 3.39, p = 0.001; LB alone vs. LB with mom
(t(128) = 1.51, p = 0.134). In the dorsal PL, only a main effect
of rearing was observed (F(1,95) = 9.045, p = 0.003) with no
main effect of maternal presence (F(1,95) = 1.288, p = 0.259)
or interaction (F(1,95) = 1.869, p = 0.175). 2-DG uptake was
decreased in all LS-reared groups compared to controls (LS with
mom vs. control with mom, t(95) = 3.138, p = 0.002; LB alone
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vs. control mom, t(95) = 2.888, p = 0.005). At PN18 (Figure 4C),
dorsal PL had no effects of maternal presence, rearing, or an
interaction observed in the ventral (F(1,101) = 1.066, p = 0.304,
F(1,101) = 1.764, p = 0.1871, and F(1,101) = 3.199, p = 0.076,
respectively) or dorsal (F(1,119) = 0.480, p = 0.490, F(1,119) = 1.831,
p = 0.1785, F(1,119) = 0.243, p = 0.623, respectively).

DISCUSSION

Here, we assessed the neurobiology of social buffering of threat
learning in typical and perturbed development. We focused on
a developmental transition from dependence on the mother
(PN18) to independence in preadolescent rats (PN28) weaned
from the mother. Overall, our results show that social buffering
of threat occurs across the lifespan, although the underlying
neural circuit diverges, with the present results suggesting a late
emerging role for the PFC after weaning from the mother. We
summarize these results and integrate them into the existing
social buffering literature in Figure 5: maternal presence blocks
fear learning in early development, but switches to attenuation
of threat responding, which behaviorally appears similar from
PN16 into adulthood. This system is disrupted by early life
trauma: PN18 maltreated pups were not socially buffered by
the mother, but social buffering of threat emerged again by
PN28. Most surprisingly, expression of social buffering in
maltreated preadolescents did not require PFC engagement.
Taken together, these results suggest that social buffering is a
dynamic process that is sensitive to developmental events in an
age-dependent manner.

Using an age range when the PFC and its connectivity with
the amygdala are maturing (Bouwmeester et al., 2002; Cressman
et al., 2010; Willing and Juraska, 2015; Arruda-Carvalho et al.,
2017), we asked if the PFC is involved in maternal suppression of
fear learning in infant rats during a developmentally significant
transitional period. In humans, the late-developing PFC shows a
switch from positive to negative connectivity with the amygdala
as children develop into adolescents and amygdala-prefrontal
circuitry is associated with increased behavioral modulation of
children by their mothers (Gee et al., 2013b, 2014). Furthermore,
early life trauma is associated with dysregulated cortico-limbic
network connectivity through adolescence, impaired stress
responding, and cortico-limbic hyperactivity in response to
negative social cues (Andersen and Teicher, 2008; Suzuki et al.,
2014; Teicher et al., 2014, 2016; Kaiser et al., 2018). Together
with the current results, these reports suggest that prefrontal
modulation of interacting fear and social systems contributes to
the developmental profile of maternal fear regulation and this
system can be disrupted following early life trauma. However,
further investigation is needed to confirm this hypothesis.

Typical Rearing: Social Buffering of Threat
Occurs at Both PN18 and PN28, but the
PFC Is Only Engaged in Newly
Independent PN28 Pups
The similar social buffering effects on the behavioral level at
PN18 and PN28 appear to be supported by different neural

networks; the ventromedial (vm)PFC IL and PL subregions were
only modulated by the mother in the PN28 animals. The PFC
is a late-developing structure (Gee et al., 2013b; Schubert et al.,
2015; Hennessy et al., 2018) and the older infant/child and
adult literature validates the important role of the amygdala
and vmPFC for social buffering in humans (Lungwitz et al.,
2014; Hornstein et al., 2016; Hornstein and Eisenberger, 2017;
van Rooij et al., 2017), nonhuman primates (Winslow et al.,
2003; Suomi et al., 2008; Sanchez et al., 2015; Howell et al.,
2017) and rodents (Hennessy et al., 2015; Penha Farias et al.,
2019). The absence of a PFC effect in the youngest pups is
consistent with the literature as well. These reports suggest
that the rodent vmPFC is not engaged by simple maternal
presence, simple innate threat presentation, or learning about
threat until around weaning age (∼PN23; Kim et al., 2009;
Chan et al., 2011; Ball and Slane, 2012; Li et al., 2012; Shechner
et al., 2014; Takahashi, 2014; Almada et al., 2015; Perry et al.,
2016; Heroux et al., 2017; Robinson-Drummer et al., 2018). It
should be noted that the PFC appears to be involved in the
appetitive system in PN18 pups (Lilliquist et al., 1999; Nair et al.,
2001a,b), suggesting a staggered developmental functional onset
for various PFC functions.

The newly emerging role of the vmPFC by PN28 to support
social buffering of threat is consistent with vmPFC importance
in adult fear conditioning social presence literature in humans
and rodents. For example, in adult rats, the presence of a
cage mate significantly attenuates fear learning, compared to
those conditioned alone and engages the vmPFC (Kiyokawa
et al., 2014, 2007; Penha Farias et al., 2019). This effect
also occurs in humans and involves the vmPFC; in adults,
the presence of an important social partner (i.e., mother,
romantic partner, cage mate) or a stimulus that provokes the
memory of an individual (i.e., odor, photo) dampens fear
through amygdala-vmPFC to block adult fear learning across
species (Guzmán et al., 2009; Fuzzo et al., 2015; Hornstein
et al., 2016; Hornstein and Eisenberger, 2017; van Rooij et al.,
2017; Toumbelekis et al., 2018). Our results also overlap
with the literature involving non-social cues predicting safety
within a threatening situation: conditioned inhibitors/safety
signals use a similar network of PFC input suppressing the
amygdala (Rogan et al., 2005; Pollak et al., 2008; Christianson
et al., 2012; Harrison et al., 2017; Levin et al., 2017). The
specific connection between the vmPFC and amygdala has
not been documented within the social buffering of threat
literature, although our general understanding of vmPFC-
amygdala functional connectivity suggests the PFC is required
to modulate the amygdala’s output response to threat (Phelps
et al., 2004; Corcoran and Quirk, 2007; Marek et al., 2013).
In general, the IL appears to reduce fear (Quirk et al., 2000;
Sotres-Bayon et al., 2004; Do-Monte et al., 2015), and this is
consistent with our findings; the largest maternal response in
the PFC was found in the IL. In contrast, the PL is generally
associated with enhanced amygdala responding and enhanced
amygdala-dependent response to threat (Sharpe and Killcross,
2015a,b, 2018; Ye et al., 2017) although prelimbic-infralimbic
projections have been shown to contribute to reductions in
fear expression (Marek et al., 2018). The dorso-ventral gradient
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FIGURE 5 | Developmental transitions in amygdala inputs regulating social suppression of threat. The neural circuit supporting infant fear learning and its maternal
presence blockade (≤PN15) or attenuation (≥PN16) undergoes developmental changes. Social buffering in early infancy is supported by VTA-amygdala connectivity
(≤PN15), while in older pups (PN28) and adults social attenuation of fear is supported by vmPFC-amygdala connectivity. This system is disrupted following early life
abusive rearing. At PN18, the ability of the mother to block fear learning is abolished and VTA showed compromised suppression of the amygdala. Early life
maltreatment leaves social suppression of fear learning intact at PN28, although it is effectiveness is reduced and social modulation of vmPFC engagement is
significantly reduced.

of activity observed at PN28 support a role for a subset of
PL contributing to fear reduction with ventral regions sharing
function with the IL cortex; a finding not surprising due to their
close anatomical proximity.

As we consider the functional significance of late PFC
engagement by social buffering of threat during early life,
we suggest that as pups leave the nest they encounter a far
more complicated environment where higher order brain areas
(such as the vmPFC) are required for processing complex
threat and safety cues. Indeed, outside the nest an animal
must use changing, context- and time-dependent safety/threat
cues to choose appropriate approach/avoidance responses in
environments with complex social hierarchy (Cunningham et al.,
2002; Holland and Gallagher, 2004; Taylor et al., 2008; Maren
et al., 2013; Opendak et al., 2017). Development of functional
connectivity between the vmPFC, threat and social circuits would
allow necessary integration of these cues thereby facilitating
proper social interactions and threat evaluation.

Maltreatment Rearing Blocked Social
Buffering of Threat at PN18, but Returns
at PN28 Without PFC Engagement
One of the more intriguing aspects of the present data is the
effect of rearing on social buffering at across development;
early life maltreatment transiently suppressed social buffering
at PN18 (replicating effects observed in Opendak et al., 2019)
and social buffering returned at PN28. Our experiments do not
suggest a mechanism for this transition, although the evidence
points to the slow decline of the infant VTA social buffering
system and the protracted emergence of the adult-like, PFC-
dependent, social buffering system (see Figure 5). Specifically,
our previous work suggests this PN18 maltreatment effect is
due to disruption of the infant VTA dopaminergic input to
the basolateral amygdala, the mechanism supporting social
blockade and suppression of fear learning in younger pups
(Barr et al., 2009; Opendak et al., 2019). In further support of
this framework, in typically-reared PN28 pups, social buffering
was associated with PFC engagement, which was not observed
at PN18.

Another striking feature of these data is the dissociation
between PFC and social buffering following maltreatment in
preadolescents. Specifically, buffering was still observed at
PN28 following maltreatment, though we failed to observe
the engagement of the PFC documented in control-reared
pups. We should note that early maltreatment seemed to
reduce the effect of maternal presence on fear learning;
LB pups showed a smaller difference in freezing between
paired conditioning alone and with mom groups although
this result requires replication and direct comparison in a
future study. However this complements existing literature
on the impact of early life stress on the infant PFC and
infant learning (Callaghan and Richardson, 2012; Pattwell
et al., 2012; Fareri et al., 2017; Peña et al., 2017; Bath, 2018;
Callaghan et al., 2019; Junod et al., provisionally accepted)
and extends these results to include reduced social reduction
of fear.

While it is abundantly clear that early life stress disrupts
pups’ neurobehavioral development (Barbosa Neto et al., 2012;
Tang et al., 2014; Doherty and Roth, 2016; Pattwell and
Bath, 2017; Walker et al., 2017), including PFC development
(Braun and Bock, 2011; Kunzler et al., 2015; Schubert et al.,
2015; Hanson et al., 2018; VanTieghem and Tottenham,
2018), we speculate that a critical feature of this effect is
that the ability of the mother to impact pups’ brains has
failed to acquire the strength or value it has in typically
reared pups. Indeed, our previous assessment of the value
of maternal odor in control-reared vs. maltreatment-reared
pups shows a slight yet significant decrease in approach to
the maternal odor and decreased activation of amygdala and
PFC in response to a maternal odor presentation without
threat (Perry et al., 2016). It should be noted that the
maltreatment-associated maternal odor increases in value across
development. Indeed, adults reared with maltreatment have
greater reduction of threat by maternal odor compared to
controls, as evidenced by suppression of amygdala, attenuated
fear conditioning and normalization of depressive-like behaviors
(Sevelinges et al., 2011; Rincón-Cortés et al., 2015). This
phenomenon may contribute to the transient effect of LB on
behavior between PN18 and 28; as weaned animals approach
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adulthood, the weakened maternal cue naturally regains value
and is able to reduce fear behavior. This would suggest that
modulation of LB fear behavior is redirected through other
circuit nodes (e.g., the VTA) when maternal presence fails
to modulate vmPFC activity at this age. Thus, in addition
to the social buffering network changing during development,
the social signal processing within a larger social brain
network may contribute to maltreatment-associated effects on
social buffering.

CONCLUSION

As we consider the implications of these results for infant
neurobehavioral development and integration with the
broader human development work, this work may inform
our understanding of attachment. Within Attachment Theory,
the mother is considered a ‘‘safe haven’’ or a source of safety,
wherein the infant approaches the caregiver for safety and
the caregiver reduces fear (Kerns et al., 2015; Hornstein et al.,
2016). Here, using a fear conditioning paradigm, we show that
maltreatment diminishes the mother’s ability to serve as a ‘‘safe
haven’’ and social buffering of threat takes on a nonlinear effect
across development.
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