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Abstract: Approaching any issue from a One Health perspective necessitates looking at the
interactions of people, domestic animals, wildlife, plants, and our environment. For antimicrobial
resistance this includes antimicrobial use (and abuse) in the human, animal and environmental
sectors. More importantly, the spread of resistant bacteria and resistance determinants within and
between these sectors and globally must be addressed. Better managing this problem includes
taking steps to preserve the continued effectiveness of existing antimicrobials such as trying to
eliminate their inappropriate use, particularly where they are used in high volumes. Examples are
the mass medication of animals with critically important antimicrobials for humans, such as third
generation cephalosporins and fluoroquinolones, and the long term, in-feed use of antimicrobials,
such colistin, tetracyclines and macrolides, for growth promotion. In people it is essential to better
prevent infections, reduce over-prescribing and over-use of antimicrobials and stop resistant bacteria
from spreading by improving hygiene and infection control, drinking water and sanitation. Pollution
from inadequate treatment of industrial, residential and farm waste is expanding the resistome
in the environment. Numerous countries and several international agencies have now included
a One Health Approach within their action plans to address antimicrobial resistance. Necessary
actions include improvements in antimicrobial use, better regulation and policy, as well as improved
surveillance, stewardship, infection control, sanitation, animal husbandry, and finding alternatives
to antimicrobials.

Keywords: One Health; antibiotics; antimicrobials; antimicrobial resistance; environment; water;
infrastructure

1. Introduction

Antimicrobial resistance is a global public health problem [1,2]. Most bacteria that cause serious
infections and could once be successfully treated with several different antibiotic classes, have now
acquired resistance—often to many antibiotics. In some regions the increased resistance has been so
extensive that resistance is present in some bacteria to nearly all of these drugs [2–4]. The threat is
most acute for antibacterial antimicrobials (antibiotics—the focus of this paper) but also threatens
antifungals, antiparastics and antivirals [5].

Antimicrobial overuse is occurring in multiple sectors (human, animal, agriculture) [3,6].
Microorganisms faced with antimicrobial selection pressure enhance their fitness by acquiring
and expressing resistance genes, then sharing them with other bacteria and by other mechanisms,
for example gene overexpression and silencing, phase variation. When bacteria are resistant they also
present in much larger numbers when exposed to antimicrobials, whether in an individual, in a location
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and in the environment. Additionally important in driving the deteriorating resistance problem are
factors that promote the spread of resistant bacteria (or “contagion”) [7]. This spread involves not only
bacteria themselves but the resistance genes they carry and that can be acquired by other bacteria [8].
Factors that facilitate “contagion” include poverty, poor housing, poor infection control, poor water
supplies, poor sanitation, run off of waste from intensive agriculture, environmental contamination
and geographical movement of infected humans and animals [9–11].

Wherever antimicrobials are used, there are often already large reservoirs of resistant bacteria
and resistance genes. These include people and their local environments (both in hospitals and in the
community), as well as animals, farms and aquaculture environments. Large reservoirs of resistance
and residual antimicrobials occur in water, soil, wildlife and many other ecological niches, not only
due to pollution by sewage, pharmaceutical industry waste and manure runoff from farms [10,12,13],
but often resistant bacteria and resistance genes have already been there for millennia [14,15].

Most bacteria and their genes can move relatively easily within and between humans, animals and
the environment. Microbial adaptations to antimicrobial use and other selection pressures within any
one sector are reflected in other sectors [8,16]. Similarly, actions (or inactions) to contain antimicrobial
resistance in one sector affect other sectors [17,18]. Antimicrobial resistance is an ecological problem
that is characterized by complex interactions involving diverse microbial populations affecting the
health of humans, animals and the environment. It makes sense to address the resistance problem by
taking this complexity and ecological nature into account using a coordinated, multi-sectoral approach,
such as One Health [5,19–23].

One Health is defined by WHO [24] and others [25] as a concept and approach to “designing and
implementing programs, policies, legislation and research in which multiple sectors communicate and
work together to achieve better public health outcomes. The areas of work in which a One Health
approach is particularly relevant include food safety, the control of zoonoses and combatting antibiotic
resistance” [24]. It needs to involve the “collaborative effort of multiple health science professions,
together with their related disciplines and institutions—working locally, nationally, and globally—to
attain optimal health for people, domestic animals, wildlife, plants, and our environment” [25].
The origins of One Health are centuries old and are based on the mutual inter-dependence of people
and animals and a recognition that they share not only the same environment, but also many infectious
diseases [23]. Our current concept of One Health however goes much further. It also embraces the
health of the environment.

2. Use of Antimicrobials in Humans, Animals and Plants

The vast majority of antimicrobial classes are used both in humans and animals (including
aquaculture; both farmed fish and shellfish). Only few antimicrobial classes are reserved exclusively
for humans (e.g., carbapenems). There are also few classes limited to veterinary use (e.g.,
flavophospholipols, ionophores); mainly because of toxicity to humans [26–30].

Insects (e.g., bees) and some plants are frequently treated with antimicrobials. Tetracyclines,
streptomycin and some other antimicrobials are used for treatment and prophylaxis of bacterial
infections of fruit, such as apples and pears (e.g., “fire blight” caused by Erwinia amylovora) [31,32].
Antifungals, especially azoles, are used in huge quantities and applied to broad acre crops such as
wheat [33].

There are marked differences in the ways antimicrobials are used in human compared to
non-human sectors. In people, antimicrobials are mostly used for treatment of clinical infections
in individual patients, with some limited prophylactic use in individuals (e.g., post-surgery) or
occasionally in groups (e.g., prevention of meningococcal disease). Antimicrobial uses in companion
animals (e.g., dogs, cats, pet birds, horses) are broadly similar to those in humans, with antimicrobials
mostly administered on an individual basis to treat infection, and occasionally for prophylaxis, such as
post-surgery [34,35].
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In the food-producing animal sector, antimicrobials are also used therapeutically to treat
individual clinically sick animals (e.g., dairy cows with mastitis) [26]. However, in intensive farming
and aquaculture, for reasons of practicality and efficiency, antimicrobials are often administered
through feed or water to entire groups (e.g., pens of pigs, flocks of broilers), either for prophylaxis
(to healthy animals at risk of infection) or metaphylaxis (to healthy animals in the same group as
diseased animals) [36]. Some have even succeeded in having this group level administration defined
(and we believe inappropriately) in the animal health sector as “therapeutic” use. Growth promotion,
prophylaxis and metaphylaxis account for by far the largest volumes of antimicrobials used in the
food-producing animal sector [26,27,37].

Growth Promotion Use

Using antimicrobials for growth promotion is highly controversial because instead of treating sick
animals they are administered to healthy animals, usually for prolonged periods of time, and often at
sub-therapeutic doses in order to improve production. These conditions favor selection and spread of
resistant bacteria within animals and to humans through food or other environmental pathways [38,39].
The period of exposure with growth promotion is usually greater than two weeks and often almost the
entire life of an animal, for example in chicken for 36 days or more.

Based on studies, mostly conducted decades ago, the purported production benefits of
antimicrobial growth promoters range widely (1–10%). Surveillance and animal production data
however now suggests that benefits in animals reared in good conditions are probably quite small
and may be non-existent. Many large poultry corporations are now marketing chicken raised without
antimicrobials administered at hatchery or farm levels [40]. Expressed concerns are that antimicrobial
growth promoters are used to compensate for poor hygiene and housing, and as replacement for
proper animal health management [18,41,42]. For these reasons, the World Health Organization (WHO)
advocates the termination of antimicrobial use for growth promotion [5,41]. This practice has now been
banned in Europe and elsewhere and is being phased out in some other countries [43–45]. However
there are still many countries where they continue to be used [46], including drugs categorized by
WHO as critically important to humans, for example colistin, fluoroquinolones and macrolides [47].

Comprehensive global quantitative data on use of antimicrobial agents in humans, animals and
plants is generally lacking. Table 1 shows the varying levels of antibiotic usage in people around
the world, associated resistance levels, plus some social and infrastructure parameters—the latter of
which can facilitate the spread of resistant bacteria (e.g., poor sanitation). Figure 1 shows antibiotic use
in different regions globally in people and the lack of correlation with increased resistance levels in
bacteria and human antibiotic usage. These data strongly suggest that there are other very important
factors influencing antimicrobial resistance over and above simply antibiotic usage.
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Table 1. Levels of antibiotic usage in people, resistance levels and other parameters globally. (All data taken from reference 7).

Country
Antibiotic Usage

(Standard units per
1000 pop - CCDEP)

E. coli %
Resistance 3rd

gen ceph
(WHO)

E. coli %
Resistance

Fluoroquinolones
(WHO)

Staphylococcus
Aureus (MRSA
Rates - WHO)

2015
Corruption

Index

GNP per capita 2015
(Purchasing Power

Parity in 2011 Dollars)

% with
Adequate

Sanitation 2015

Improved Water Source
(% of Population with

Access)

Algeria 15.4 17 2 44.8 36 $13,795 88 87.7

Argentina 6.2 5.1 7.8 54 32 $19,102 96 98.9

Australia 11 7.7 10.6 30 79 $43,631 100 100

Austria 7.2 9.1 22.3 7.4 76 $44,048 100 100

Bahrain 55 62 10 51 $43,754 99 100

Bangladesh 4.3 57.4 89 46 25 $3,137 61 86.2

Belgium 12.6 6 21.5 17.4 77 $41,826 100 100

Bhutan 19.4 35.5 10 65 $7,861 50 100

Bosnia and Herzegovina 7.5 1.5 7.8 38 $10,119 95 99.9

Brazil 5.9 30 40 29.5 38 $14,533 83 98.1

Brunei Darussalam 6.5 12 55 $73,605 100 100

Bulgaria 9.4 22.9 30.2 22.4 41 $17,000 86 99.6

Burkina Faso 36 52.8 38 $1,593 20 82.1

Burundi 7.2 16 13 21 $683 48 75.8

Cambodia 45 71.8 21 $3,278 42 73.4

Canada 7.2 8 26.9 21 83 $42,983 100 99.8

Central African Republic 30 53 24 $581 22 68.4

Chile 4.3 23.8 90 70 $22,197 99 99

China 3 51.9 55.1 38.3 70 $13,572 77 94.8

Colombia 2.9 11.7 59 7.2 37 $12,988 81 91.3

Croatia 10.6 6 14 13 51 $20,664 97 99.6

Cuba 42.9 56 47 $21,017 93 94.6

Cyprus 36.2 47.4 41.6 61 $30,383 100 100

Czech Republic 7.5 11.4 23.5 14.5 56 $30,381 99 100

Denmark 6.7 8.5 14.1 1.2 91 $45,484 100 100

Dominican Republic 2.4 33 49 30 33 $13,372 84 86.5

Ecuador 6.7 15.1 43.8 29 32 $10,777 85 86.9

Egypt 9.1 44.4 34.9 46 36 $10,250 95 99.2

Estonia 4.4 9.9 1.7 70 $27,345 97 99.6
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Table 1. Cont.

Country
Antibiotic Usage

(Standard units per
1000 pop - CCDEP)

E. coli %
Resistance 3rd

gen ceph
(WHO)

E. coli %
Resistance

Fluoroquinolones
(WHO)

Staphylococcus
Aureus (MRSA
Rates - WHO)

2015
Corruption

Index

GNP per capita 2015
(Purchasing Power

Parity in 2011 Dollars)

% with
Adequate

Sanitation 2015

Improved Water Source
(% of Population with

Access)

Ethiopia 62 71 31.6 33 $1,530 28 55.4

Finland 7.2 5.1 10.8 2.8 90 $38,994 98 100

France 12.9 8.2 17.9 20.1 70 $37,775 99 100

Germany 7.1 8 23.7 16.2 81 $43,788 99 100

Greece 14.6 14.9 26.6 39.2 46 $24,095 99 100

Guatemala 39.8 41.8 52 28 $7,253 64 92.7

Honduras 36.7 43.1 30 31 $4,785 83 90.6

Hong Kong 7.5 75 $53,463 96 100

Hungary 7.3 15.1 31.2 26.2 51 $24,831 98 100

Iceland 6.2 14 79 $42,704 99 100

India 5 51.4 52.3 42.7 38 $5,733 40 94.1

Indonesia 3.6 36 $10,385 61 86.8

Iran 41 54 53 27 $16,507 90 96.2

Ireland 11.4 9 22.9 23.7 75 $61,378 91 97.9

Israel 2.6 17.9 46.7 61 $31,971 100 100

Italy 11.5 19.8 40.5 38.2 44 $34,220 100 100

Japan 5.3 16.6 34.3 53 75 $37,872 100 100

Jordan 6.3 22.5 14.5 53 $10,240 99 96.9

Kazakhstan 7.5 28 $23,522 98 93.5

Kenya 87.2 91.4 20 25 $2,901 30 63.1

Kuwait 6.3 20.1 32 49 $70,107 100 99

Latvia 5.2 15.9 16.8 9.9 55 $23,080 88 99.3

Lebanon 9.3 27.7 47 20 28 $13,089 81 99

Lesotho 2 14 44 $2,770 30 81.6

Lithuania 7.6 7 12.9 5.8 61 $26,971 92 96.6

Luxembourg 11 8.2 24.1 20.5 81 $93,900 98 100

Malaysia 4.3 17.4 23 17.3 50 $25,312 96 98.2

Malta 12.8 32 49.2 56 $32,720 100 100

Mexico 2.4 42.1 46.3 29.9 35 $16,490 85 96.1
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Table 1. Cont.

Country
Antibiotic Usage

(Standard units per
1000 pop - CCDEP)

E. coli %
Resistance 3rd

gen ceph
(WHO)

E. coli %
Resistance

Fluoroquinolones
(WHO)

Staphylococcus
Aureus (MRSA
Rates - WHO)

2015
Corruption

Index

GNP per capita 2015
(Purchasing Power

Parity in 2011 Dollars)

% with
Adequate

Sanitation 2015

Improved Water Source
(% of Population with

Access)

Mongolia 64.1 64.7 39 $11,478 60 64.2

Morocco 6 4 23.3 19 36 $7,365 77 85.3

Myanmar 68 55 26 22 $4,931 80 80.5

Nepal 37.9 64.3 44.9 27 $2,312 46 90.7

Netherlands 4.1 5.7 14.3 1.4 87 $46,354 98 100

New Zealand 10.9 3 6.5 10.4 88 $35,159 100 100

Nicaragua 48.1 42.9 27 $4,884 68 86.9

Nigeria 6.7 36.5 47.1 26 $5,639 29 67.6

Norway 5.9 3.6 9 0.3 87 $63,650 98 100

Pakistan 7.1 36.2 35.3 37.6 30 $4,706 64 91.3

Panama 9.2 23.3 21.1 39 $20,885 75 94.4

Papua New Guinea 24.1 13.3 43.9 25 $2,723 19 40

Paraguay 1.4 22.1 27 27 $8,639 89 96.6

Peru 3.4 44.1 62.8 65.9 36 $11,768 76 86.3

Philippines 2.2 26.7 40.9 54.9 35 $6,938 74 91.5

Poland 9.3 11.7 27.3 24.3 62 $25,323 97 98.3

Portugal 9.3 11.3 27.2 54.6 63 $26,549 100 100

Puerto Rico 9.1 99

Republic of Moldova 28 15.3 50.3 33 $4,742 76 88.4

Russian Federation 6.2 18 25.7 29.3 29 $24,124 72 96.9

Rwanda 21.4 54 $1,655 62 75.5

Serbia 10.6 21.3 16 44.5 40 $13,278 96 99.3

Singapore 5.7 20 37.8 85 $80,192 100 100

Slovakia 9.2 31 41.9 25.9 51 $28,254 99 100

Slovenia 6.3 8.8 20.7 7.1 60 $29,097 99 99.6

South Africa 8.7 8.2 16.1 52 44 $12,393 66 92.8

South Korea 10.9 24.4 40.9 65.3 56 $34,387 100 97.6

Spain 14.3 12 34.5 22.5 55 $32,219 100 100

Sri Lanka 3.9 58.9 58.8 37 $11,048 95 95.6
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Table 1. Cont.

Country
Antibiotic Usage

(Standard units per
1000 pop - CCDEP)

E. coli %
Resistance 3rd

gen ceph
(WHO)

E. coli %
Resistance

Fluoroquinolones
(WHO)

Staphylococcus
Aureus (MRSA
Rates - WHO)

2015
Corruption

Index

GNP per capita 2015
(Purchasing Power

Parity in 2011 Dollars)

% with
Adequate

Sanitation 2015

Improved Water Source
(% of Population with

Access)

Sudan 49.5 56.8 12 $4,121 24 58.5

Saudi Arabia 11.1 15.9 40.9 41.9 52 $50,284 100 97

Sweden 4.8 3 7.9 0.8 89 $45,488 99 100

Switzerland 5.2 8.2 20.2 10.2 86 $56,517 100 100

Syrian Arab Republic 49.8 18 $- 96 90.1

Taiwan 8.7 62

Thailand 7 37.9 52.5 22.4 38 $15,347 93 97.8

Tunisia 18 20.6 9.4 55.8 38 $10,770 92 97.7

Turkey 18.5 43.3 46.3 31.5 42 $19,460 95 100

United Arab Emirates 10.5 23 32.5 33.4 70 $65,717 98 99.7

United Kingdom 9 9.6 17.5 13.6 81 $38,509 99 100

United States of America 10.3 14.6 33.3 51.3 76 $52,704 100 99.2

Uruguay 6.6 0 15 40 74 $19,952 96 99.6

Venezuela 8.1 12.5 37.2 31 17 $16,769 94 93.1

Vietnam 9.4 0.2 31 $5,667 78 96.4

Zambia 37.4 50.5 32 38 $3,602 44 64.6
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there are other very important factors influencing antimicrobial resistance over and above simply 
antibiotic usage. (Figures assembled from data taken from reference 7) 

The World Organization for Animal Health has developed a global database on the use of 
antimicrobial agents in animals [46]. Figure 2 shows reported quantities of antimicrobials used in 
animals in 2014, summarized by OIE Region and expressed as total quantities (tons) and adjusted 
for animal biomass. Additionally, included is the per cent of countries authorizing the use of 
antimicrobials for growth promotion. Tetracyclines accounted for the largest proportion of overall 
antimicrobial use globally (37.1% of total), followed by polypeptides (15.7%), penicillins (9.8%), 
macrolides (8.9%) and aminoglycosides (7.8%) [46].  

 
Figure 2. Reported use of antimicrobial agents in animals in 2014 by World Organisation for 
Animal Health (OIE) Region (adapted from [46]). 

Figure 1. Global aggregated regions: antimicrobial resistance E. coli to third generation cephalosporins
and fluoroquinolones versus antibiotic usage.

Aggregating countries into regional groupings shows a pattern where there is an inverse aggregate
relationship between antimicrobial resistance and usage. These data help confirm that there are other
very important factors influencing antimicrobial resistance over and above simply antibiotic usage.
(Figures assembled from data taken from reference 7)

The World Organization for Animal Health has developed a global database on the use of
antimicrobial agents in animals [46]. Figure 2 shows reported quantities of antimicrobials used in
animals in 2014, summarized by OIE Region and expressed as total quantities (tons) and adjusted for
animal biomass. Additionally, included is the per cent of countries authorizing the use of antimicrobials
for growth promotion. Tetracyclines accounted for the largest proportion of overall antimicrobial use
globally (37.1% of total), followed by polypeptides (15.7%), penicillins (9.8%), macrolides (8.9%) and
aminoglycosides (7.8%) [46].
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3. One Health Antimicrobial Resistance Case Studies

The following examples illustrate antimicrobial resistance problems that arise when the same
classes of antimicrobials are used in humans and animals, and the challenges that arise from competing
interests and imbalances of risk and benefit in various sectors.
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3.1. Third Generation Cephalosporins

Third generation cephalosporins are broad spectrum beta-lactam antimicrobials that are widely
used in humans and animals. In people, cefotaxime, ceftriaxone and several other members of the class
are used for a wide variety of frequently serious infections, particularly in hospital settings, for example
bloodstream infections due to Escherichia coli and other bacteria, but also in community settings,
for example Neisseria gonorrhea [47]. Third generation cephalosporins are classified as “critically
important” for human health [47].

Ceftiofur is the principal third generation cephalosporin for veterinary use; others include
cefpodoxime, cefoperazone and cefovecin. Ceftiofur is injected and used in animals as therapy
to treat pneumonia, arthritis, septicemia and other conditions [48,49]. However ceftiofur is also used
in mass therapy (metaphylaxis or prophylaxis), either under an approved label claim (e.g., injection of
feedlot cattle for control of bovine respiratory disease), or off-label (e.g., injection of hatching eggs or
day-old chicks for prevention of E. coli infections). Factors that encourage overuse of ceftiofur are its
broad spectrum activity, zero withdrawal time for milk from dairy animals (due to its high maximum
residual level; MRL), and availability of a long-acting preparation [48,49].

In Europe, approximately 14 tons of third and fourth generation cephalosporins were used in 2014
for use in animals [28]. Similar volumes are used in the US [50]. In many countries, cephalosporins
are commonly used in humans but with wide variations. Overall, 101 tons of third generation
cephalosporins were used in people Europe in 2012 [29] and in the US, approximately 82 tons in
2011 [51].

Resistance to the third generation cephalosporins is mainly mediated by extended-spectrum
beta-lactamases (ESBLs) and AmpC beta-lactamases [47]. ESBL genes are highly mobile and transmitted
on plasmids, transposons and other genetic elements. AmpC beta-lactamases were originally reported
to be chromosomal but have also been identified on plasmids and to have spread horizontally among
Enterobacteriaceae [47]. Unfortunately, in many countries resistance to third generation cephalosporins
is now common among E. coli and K. pneumonia [52,53]. Resistance genes are frequently co-located with
genes encoding resistance to other classes of antimicrobials, including tetracyclines, aminoglycosides
and sulfonamides. As a consequence, the use of other antimicrobials in animals, for example
tetracyclines administered in feed, can select for ESBL strains of bacteria [54].

Ceftiofur can be administered to eggs or day-old chicks in hatcheries, using automated equipment
that injects small quantities of the drug into the many thousands of hatching eggs or chicks intended for
treated flocks as prophylaxis against E. coli infections [55,56]. This practice selected for cephalosporin
resistance in Salmonella Heidelberg, an important cause of human illness and associated with
consumption of poultry products [57]. Surveillance detected a high degree of time-related correlations
in trends of resistance to ceftiofur (and ceftriaxone, a drug of choice for treatment of severe cases of
salmonellosis in children and pregnant women) among Salmonella Heidelberg from clinical infections
in humans, from poultry samples collected at retail, and in E. coli from retail poultry samples [55].
Voluntary termination of ceftiofur use in hatcheries in Quebec was followed by a precipitous drop in
the prevalence of resistance to ceftiofur. Subsequent re-introduction of its use, was followed by a return
to higher prevalence of resistance [56]. In recognition of the resultant human health risks, in 2014,
the Canadian poultry industry placed a voluntary ban on the use of ceftiofur and other critically
important antimicrobials for disease prophylaxis [58].

In Japan, voluntary withdrawal of the off-label use of ceftiofur in hatcheries in 2012 was
also followed by a significant decrease in broad-spectrum cephalosporin resistance in E. coli from
broilers [59]. Some other countries (e.g., Denmark and Australia) have also placed voluntary restrictions
in its use [60]. The label claim for day-old injection of poultry flocks was withdrawn in Europe,
while some countries banned off-label use of third generation cephalosporins (e.g., U.S.) [48,61], and in
other countries there is a requirement that use is restricted to situations where no other effective
approved drugs are available for treatment [62].
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3.2. Colistin

Colistin is in the polymyxin class of antimicrobials, and has been used in both people and animals
for over 50 years [63]. Polymyxins, when administered systemically, frequently cause nephrotoxicity
and neurotoxicity in people [64]. Thus, until recently its use was mainly limited to topical use and the
treatment of infections in cystic fibrosis patients by inhalation (with a colistimethate sodium).

Colistin however is now used much more frequently, as a drug of last resort by injection,
for treatment of multi-resistant gram-negative infections including carbapenem-resistant Pseudomonas
aeruginosa and E. coli [65–67]. Where approved for use in food animals (e.g., Brazil, Europe, China),
most colistin is administered orally to groups of pigs, poultry and in some cases calves, for treatment
and prophylaxis of diarrhea due to gram-negative infections or for growth promotion [63,67,68].
In countries where data are available, the quantities consumed for animal production vastly exceed
those used in humans and is very variable between countries [69]. In 2013 total animal consumption
in Europe was 495 tons; 99.7% in oral form (e.g., for oral solution, medicated feed premix and oral
powder) [63]. In China, the world’s largest producer of pigs and poultry, an estimated 12,000 tons of
colistin was used in food animals [68].

Until recently, limited data on colistin resistance were available, partly because of technical
difficulties in phenotypic susceptibility testing [63,70]. In Europe in 2016, resistance was found in
1.9% of indicator E. coli from broilers, 3.9% from broiler meat, 6.1% from turkeys and 10.1% from
turkey meat [71]. Colistin resistance was thought limited to chromosomal mutation and was essentially
non-transferable [63], however in 2015 the transferable plasmid-mediated colistin resistance gene,
mcr-1, was found in E. coli isolates obtained from animals, food and human bloodstream infections from
China [68]. Spread of the gene by conjugation has been shown in Klebsiella pneumoniae, Enterobacter
aerogenes, Enterobacter spp. and P. aeruginosa [68]. Retrospective analyses have demonstrated the
mcr-1 gene in several bacterial species isolated from humans, animals and environmental samples in
numerous countries [72–76], and the gene was found in about 5% of healthy travelers [77]. The earliest
identification of the gene thus far was in E. coli from poultry collected in the 1980s in China [78].
The mcr-1 gene has also been detected in isolates obtained from wildlife and surface water samples,
demonstrating environmental contamination [79]. Recently, other plasmid-mediated colistin resistance
genes has been reported for example mcr-2 in E. coli from pigs in Belgium [80].

Colistin illustrates some important One Health dimensions of antimicrobial resistance that differ
from those of third generation cephalosporins. The toxicity with systemic use and the availability
of other safer and more effective antimicrobials, meant for many years colistin was mainly used
topically in people. However with the emergence of multi-drug resistance in many Gram-negative
bacteria, there has been increasing need for this drug to systemically treat severe, life-threatening
infections in humans in many countries. The colistin case demonstrates (once again) that using large
quantities antimicrobials for group treatments or growth promotion in animals can lead to significant
antimicrobial resistance problems for human health, even if the drug class is initially believed to be
of lesser importance, because the relative importance of antimicrobials to human health can change.
This is the same problem that arose from using avoparcin as a growth promoter until it was banned;
it selected for resistance to another glycopeptide, vancomycin, which is used for the treatment of
life-threatening MRSA (methicillin resistant Staphylococcus aureus) and for treating serious enterococcal
infections (the latter especially in penicillin allergic patients) [81,82].

4. Risks to Public Health and Animal Health

Antimicrobial resistance is harmful to health because it reduces the effectiveness of antimicrobial
therapy and tends to increase the severity, incidence and costs of infection [3,83]. There is now
considerable evidence that antimicrobial use in animals is an important contributor to antimicrobial
resistance among some pathogens of humans, in particular, common enteric pathogens such as
Salmonella spp., Campylobacter spp., Enterococcus spp. and E. coli [6,18,26,38,41].
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Non-typhoidal Salmonella (NTS) are among the most common bacteria isolated from foodborne
infections of humans. Globally, there are approximately 94 million cases, including 155,000 deaths each
year [1]. Animals are the most important reservoirs of NTS for humans [38,84–86]. Fecal shedding by
carrier animals is an important source of antimicrobial resistant Salmonella contamination of meat and
poultry products [38], and may also be responsible for fruit and vegetable contamination through fecal
contamination of the environment [87]. Salmonella resistance to any medically important antimicrobial
is of concern, but particularly to those critically important to human health, such as cephalosporins
and fluoroquinolones [38,41,56]. Therapy in some groups (e.g., children and pregnant women) can
be very restricted and beta-lactams such as third generation cephalosporins often may be the only
therapy available to treat serious infections.

From the One Health antimicrobial resistance perspective, the third generation cephalosporins are
good examples of antimicrobials that are considered critically important for both human and animal
health. The main concern regarding selection and spread of resistance from animals to humans is their
use as mass medications in large numbers of animals, either for therapy or prophylaxis. There are
parallels with fluoroquinolones, another class of critically important antimicrobials, to which resistance
among Campylobacter jejuni emerged following mass medication of poultry flocks [88–90]. In Australia
where fluoroquinolones were never approved in food animals, fluoroquinolone resistant strains in
food animals remain very rare [91].

Fluoroquinolone use in food animals is also linked to quinolone resistance in Salmonella [41,92–94].
Surveillance data compiled by WHO indicate that rates of fluoroquinolone resistance in non-typhoidal
Salmonella vary widely by geographical region. For example, rates are relatively low in Europe (2–3%),
higher in the Eastern Mediterranean region (up to 40–50%) and wide ranging in the Americas (0–96%)
(1). Many Salmonella are also resistant to antimicrobials that have long been used as growth promoters
in many countries (e.g., Canada, USA) including tetracyclines, penicillins and sulfonamides [41,84].
Antimicrobial resistance in some of the more virulent Salmonella serovars (e.g., Heidelberg, Newport,
Typhimurium) has been associated with more severe infections in humans [38,83,86,95]. Resistance to
other critically important antimicrobials continues to emerge in Salmonella, for example, a carbapenem
resistant strain of Salmonella was identified on a pig farm that routinely administered prophylactic
cephalosporin (ceftiofur) to piglets [96].

Escherichia coli are important pathogens of both humans and animals. In humans, E. coli are
a common cause of serious bacterial infections, including enteritis, urinary tract infection and
bloodstream infections [97–99]. Currently in England the rate for blood stream infections is about
64 cases per 100,000 per year and rising. A large and increasing proportion involves antimicrobial
resistance, including fluoroquinolone resistance [100]. These higher rates are also being seen in
countries with good surveillance systems in place, for example Denmark [60].

Many E. coli appear to behave as commensals of the gut of animals and humans, but may be
opportunistic pathogens as well as donors of resistance genetic elements for pathogenic E. coli or other
species of bacteria [101,102]. Although antimicrobial resistance is a rapidly increasing problem in E.
coli infections of both animals and humans, the problem is better documented for isolates from human
infections, where resistance is extensive, particularly in developing countries [1,103]. Humans are
regularly exposed to antimicrobial resistant E. coli through foods and inadequately treated drinking
water [104,105].

Travelers from developed countries are at risk of acquiring multi-resistance E. coli from other
people or contaminated food and/or water [97,105,106]. There are now serious problems with extended
spectrum beta lactamase (ESBL) E. coli in both developing and developed countries and foods from
animals, in particular poultry, have been implicated as sources for humans [99,107,108], although the
magnitude of the contribution from food animals is uncertain [102–104].

Given the critical importance of third and fourth generation cephalosporins and fluoroquinolones
to human medicine and the clear evidence that treatment of entire groups of animals selects for
resistance in important pathogens that spread from animals to humans [56,90], these drugs should
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be used rarely, if at all in animals, and only when supporting laboratory data demonstrate that no
suitable alternatives of lesser human health importance are available. Their use as mass medications
should be restricted.

Serious staphylococcal infections in people are common, including with Methicillin-resistant
Staphylococcus aureus (MRSA) in both community and hospital settings, causing skin, wound,
bloodstream and other types of infection [1,109–111]. Staphylococcus aureus and other staphylococci are
also recognized pathogens of animals, for example they are responsible for cases of mastitis in cattle,
and skin infections in pigs and companion animals [112,113]. MRSA were until recently relatively
rare in animals but strains pathogenic to humans have emerged in several animal species [113–116].
Transmission to humans is thought currently to be mainly through contact with carrier animals [116].
The predominant strain isolated from animals is sequence type (ST) 398, and while pathogenic to
humans, it is not considered a major epidemic strain [112,113]. Antimicrobial use in livestock, as well
as lapses in biosecurity within and between farms, and international trade in animals, food or other
products, are factors contributing to the spread of this pathogen in animals [113,117].

5. One Health Considerations from the Environment

One Health includes consideration of the environment as well as human and animal
health [23,111]. The ecological nature of antimicrobial resistance is a reflection and consequence of the
interconnectedness and diversity of life on the planet [22]. Many pathogenic bacteria, the antimicrobials
that we use to treat them, and genes that confer resistance, have environmental origins (e.g.,
soil) [8,14,20]. Some important resistance genes, such as beta lactamases, are millions of years old [14,15].
Soil and other environmental matrices are rich sources of highly diverse populations of bacteria and
their genes [14,118]. Antimicrobial resistance to a wide variety of drugs has been demonstrated in
environmental bacteria isolated from the pre-antibiotic era, as well as from various sites (e.g., caves)
free of other sources of exposure to modern antimicrobials [8,15,111,119]. Despite having ancient
origins, there is abundant evidence that human activity has an impact on the resistome, which is the
totality of resistance genes in the wider environment [13,14,118,119]. Hundreds of thousands of tons
of antimicrobials are produced annually and find their way into the environment [18,27]. Waste from
treatment plants and pharmaceutical industry, particularly if inadequately treated, can release high
concentrations of antimicrobials into surface water [18,19,120,121]. Residues of antimicrobials are
constituents of human sewage, livestock manure, and aquaculture, along with fecal bacteria and
resistance genes [118,122–125]. Sewage treatment and composting of manure reduce concentrations of
some but not all antimicrobials and microorganisms, which are introduced to soil upon land application
of human and animal bio-solids [126].

Various environmental pathways are important routes of human exposure to resistant bacteria
and their genes from animal and plant reservoirs [18,96,127] and provide opportunities for better
regulations to control antimicrobial resistance. In developed countries with good quality sewage and
drinking water treatment, and where most people have little to no direct contact with food-producing
animals, transmission of bacteria and resistance genes from agricultural sources is largely foodborne,
either from direct contamination of meat and poultry during slaughter and processing, or indirectly
from fruit and vegetables contaminated by manure or irrigation water [38,87,90].

In countries with poor sewage and water treatment, drinking water is likely to be very important
in transmission of resistant bacteria and/or genes from animals [11,97,111,120]). Poor sanitation
also facilitates indirect person–person waterborne transmission of enteric bacteria among residents
as well as international travelers who then return home colonized with resistant bacteria
acquired locally [103,128]. Through these and other means, including globalized trade in animals
and food, and long-distance migratory patterns of wildlife, antimicrobial resistant bacteria are
globally disseminated.
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General measures to address antimicrobial resistance in the wider environment include improved
controls on pollution from industrial, residential and agricultural sources. Improved research as well
as environmental monitoring and risk assessment is required to better understand the role of the
environment in selection and spread of antimicrobial resistance, and to identify more specific measures
to address resistance in this sector [12,14,18,100,103,129].

6. One Health Strategies to Address Antimicrobial Resistance

WHO and other international agencies (e.g., Food and Agriculture Organization (FAO),
World Organization for Animal Health (OIE)), along with many individual countries, have developed
comprehensive action plans to address the antimicrobial resistance crisis [5,130–136]. The WHO Global
Action Plan seeks to address five major objectives that comprise the subtitles of the following sections.
The WHO Plan embraces a One Health approach to address antimicrobial resistance, and it calls on
member countries to do the same when developing their own action plans (6). There are five main
pillars to the WHO Global Plan:

1. Improve Awareness and Understanding of Antimicrobial Resistance through Effective
Communication, Education and Training

2. Strengthen the Knowledge and Evidence Base through Surveillance and Research
3. Reduce the Incidence of Infection through Effective Sanitation, Hygiene and Infection

Prevention Measures
4. Optimize the Use of Antimicrobial Medicines in Human and Animal Health
5. Develop the Economic Case tor Sustainable Investment that Takes Account of the Needs of

All Countries, and Increase Investment in New Medicines, Diagnostic Tools, Vaccines and
Other Interventions

The One Health approach laid out in the WHO Global Action Plan is appropriate and consistent
with statements made in action plans from other international and national organizations. There is
however, a long way to go before a fully integrated One Health approach to antimicrobial resistance
is implemented at country and global levels. Among the numerous barriers to overcome include
the competing interests among multiple sectors (involving animals, humans, and environment) and
organizations, agreement on priorities for action, and gaps in antimicrobial resistance surveillance,
antimicrobial use policy, and infection control in many parts of the world.

7. Conclusions

History has shown that it is not feasible to neatly separate antimicrobial classes into those
exclusively for use in human or non-human sectors, with the exception of new antimicrobial classes.
These should probably be reserved for use in humans as long as there are few or no alternatives
available. The majority of classes, however, will be available for use in both sectors and the challenge
for One Health is to ensure that use of these drugs is optimal overall. This is likely to be achieved
when antimicrobials used in both sectors are used for therapy, only rarely for prophylaxis and never
for growth promotion, and when we better control the types and amounts of antimicrobials plus the
numbers of resistant bacteria we allow to be placed into the environment. What is vitally important is
that we do more to stop the spread of resistant bacteria—not only from person to person but between
and within the human and agriculture sectors and the environment, giving particular emphasis to
controls of contaminated water.
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