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Abstract
Several	biomarkers	of	healthy	aging	have	been	proposed	 in	 recent	years,	 including	
the	epigenetic	clocks,	based	on	DNA	methylation	(DNAm)	measures,	which	are	get-
ting increasingly accurate in predicting the individual biological age. The recently 
developed	 “next-	generation	 clock”	 DNAmGrimAge	 outperforms	 “first-	generation	
clocks” in predicting longevity and the onset of many age- related pathological condi-
tions	and	diseases.	Additionally,	the	total	number	of	stochastic	epigenetic	mutations	
(SEMs),	also	known	as	the	epigenetic	mutation	 load	 (EML),	has	been	proposed	as	a	
complementary	DNAm-	based	biomarker	of	healthy	aging.	A	fundamental	biological	
property	of	epigenetic,	and	in	particular	DNAm	modifications,	is	the	potential	revers-
ibility	of	the	effect,	raising	questions	about	the	possible	slowdown	of	epigenetic	aging	
by	modifying	one's	lifestyle.	Here,	we	investigated	whether	improved	dietary	habits	
and increased physical activity have favorable effects on aging biomarkers in healthy 
postmenopausal	women.	The	study	sample	consists	of	219	women	from	the	“Diet,	
Physical	Activity,	and	Mammography”	(DAMA)	study:	a	24-	month	randomized	facto-
rial	intervention	trial	with	DNAm	measured	twice,	at	baseline	and	the	end	of	the	trial.	
Women	who	participated	in	the	dietary	intervention	had	a	significant	slowing	of	the	
DNAmGrimAge	clock,	whereas	increasing	physical	activity	led	to	a	significant	reduc-
tion	of	SEMs	in	crucial	cancer-	related	pathways.	Our	study	provides	strong	evidence	
of	a	causal	association	between	 lifestyle	modification	and	slowing	down	of	DNAm	
aging	biomarkers.	This	 randomized	 trial	 elucidates	 the	causal	 relationship	between	
lifestyle and healthy aging- related epigenetic mechanisms.
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1  |  INTRODUC TION

Population aging is emerging as one of the most critical health is-
sues,	leading	to	medical,	social,	economic,	and	political	problems.	To	
quantify	healthy	aging	in	epidemiological	and	clinical	studies	is	not	
straightforward.	 Among	 various	 biomarkers	 of	 healthy	 aging	 pro-
posed	in	recent	years,	the	epigenetic	clocks,	based	on	DNA	methyla-
tion	(DNAm)	data,	are	getting	increasingly	accurate	in	predicting	the	
individual	biological	age	(Horvath,	2013;	Horvath	&	Raj,	2018).	The	
concept	of	epigenetic	age	acceleration	(AA)	has	been	introduced	as	
the	difference	between	predicted	DNAm	age	and	the	chronological	
age:	 positive	values	of	AA	 indicate	unhealthy	 aging	 and	vice versa 
(Horvath,	2013).	Recent	literature	suggests	epigenetic	AA	as	a	reli-
able biomarker of healthy aging as it has been associated with lon-
gevity	 (Chen	et	al.,	2016;	Dugué	et	al.,	2018),	 several	pathological	
conditions	 (Horvath	 et	 al.,	 2016),	 and	 non-	communicable	 disease	
risk	factors	like	obesity	(Horvath	et	al.,	2014),	poor	physical	activity	
(PA)	(Quach	et	al.,	2017),	and	low	socioeconomic	status	(Fiorito	et	al.,	
,2017,	2019).

To	 date,	 epigenetic	 clocks	 that	 have	 gained	 considerable	 pop-
ularity	 in	 the	 scientific	 community	 are	 Horvath	 (Horvath,	 2013)	
and	 (Hannum	 et	 al.,	 2013)	 “first-	generation	 clocks,”	 and	 Levine's	
DNAmPhenoAge	 (Levine	 et	 al.,	 2018)	 and	 Lu's	 DNAmGrimAge	
(Lu	 et	 al.,	 2019)	 “next-	generation	 clocks.”	 It	 has	 been	 shown	 that	
the	 “next-	generation	 clocks,”	 DNAmGrimAge	 particularly,	 outper-
form “first- generation clocks” in predicting longevity and the onset 
of	 age-	related	 pathological	 conditions	 and	 diseases	 (Bergsma	 &	
Rogaeva,	2020;	Lu	et	al.,	2019).	Specifically,	the	DNAmGrimAge	is	
built	as	a	linear	combination	of	seven	DNAm-	based	surrogate	mark-
ers	of	plasma	proteins:	adrenomedullin	(ADM),	beta-	2-	microglobulin	
(B2	 M),	 cystatin	 C	 (Cystatin	 C),	 growth	 differentiation	 factor	 15	
(GDF-	15),	 leptin	 (Leptin),	 plasminogen	 activator	 inhibitor-	1	 (PAI-	1),	
and	 tissue	 inhibitor	 metalloproteinases	 1	 (TIMP-	1)	 plus	 DNAm-	
based	 biomarkers	 for	 smoking	 pack-	years,	 using	 DNAm	 values	 of	
1,030	unique	CpG	sites.

Additionally,	the	total	number	of	stochastic	epigenetic	mutations	
(SEMs)	per	individual	has	been	proposed	as	an	alternative	biomarker	
of	 healthy	 aging	 based	 on	 whole-	genome	 DNAm	 data	 (Gentilini	
et	al.,	2015).	The	total	number	of	SEMs	per	 individual,	also	known	
as	epigenetic	mutation	 load	 (EML)	 (Yan	et	 al.,	2020),	 is	defined	as	
the	 sum	of	 extreme	 (outliers)	DNAm	values	 per	 sample.	Recently,	
(Gentilini	et	al.,	2015)	provided	evidence	of	the	exponential	relation-
ship	 between	 age	 and	 SEMs,	which	 occurs	 naturally	 during	 aging	
as	a	consequence	of	the	“epigenetic	drift.”	A	higher	EML	has	been	
associated with age- related pathological conditions like X chromo-
some	activation	skewing	(Gentilini	et	al.,	2015)	and	risk	factors	for	
non-	communicable	diseases	 like	cigarette	 smoking,	 alcohol	 intake,	
exposure	to	toxicants,	and	low	socioeconomic	status	(Curtis	et	al.,	
2019;	 Fiorito	 et	 al.,	 2019),	 and	 it	 is	 associated	with	 increased	 risk	
of	different	types	of	cancer	in	prospective	studies	(Gagliardi	et	al.,	
2020;	Wang	et	al.,	2019).	Interestingly,	DNAm	epigenetic	clocks	and	
EML	are	weakly	 correlated,	 suggesting	 they	describe	different	as-
pects	of	epigenetic	aging	processes	(Yan	et	al.,	2020).

A	fundamental	property	of	epigenetic	is	the	potential	reversibil-
ity	of	the	effect,	raising	questions	about	the	possible	slowdown	of	
epigenetic aging by improving lifestyle. Recent observational stud-
ies	 provided	 evidence	 that	 smoking-	related	 DNAm	 modifications	
tend to reverse after smoking cessation in a time- dependent man-
ner	 (Guida	et	 al.,	2015),	 and	epigenetic	AA	due	 to	early-	life	 social	
adversities can be partially reversed improving lifestyle and social 
conditions	in	adulthood	(Fiorito	et	al.,	2017).	A	pilot	clinical	trial	con-
ducted on nine volunteers suggests that the epigenetic clock could 
be reversed after one- year treatment with a cocktail of drugs based 
on	recombinant	human	growth	hormone	(Fahy	et	al.,	2019).

In	this	study,	we	aimed	to	investigate	whether	modifying	dietary	
habits	and	increasing	PA	have	favorable	effects	on	biological	aging,	
measured	using	both	 the	DNAmGrimAge	and	 the	EML,	 in	healthy	
postmenopausal women. This study sample consists of 219 adult 
post-	menopausal	 women	 from	 the	 “Diet,	 Physical	 Activity,	 and	
Mammography”	(DAMA)	study:	a	single-	center,	24-	month	random-
ized	intervention	trial	whose	primary	aim	was	to	investigate	whether	
mammographic	 breast	 density	 (an	 established	 independent	 risk	
factor	for	breast	cancer	development)	could	be	reduced	in	healthy	
postmenopausal women by modifying their dietary habits and phys-
ical	activity	levels	(Masala	et	al.,	2019).

2  |  RESULTS

After	DNAm	data	 quality	 controls	 and	 filtering,	 this	 study	 sample	
include	 219	 DAMA	 participants,	 distributed	 into	 four	 trial	 study	
arms	 (arm 1:	 dietary	 intervention,	 arm 2:	 PA	 intervention,	 arm 3: 
dietary +PA	 intervention,	 and	 arm 4:	 control	 group),	 with	 whole-	
genome	 DNAm	 measured	 from	 blood	 collected	 at	 baseline	 and	
after	two	years	of	intervention.	For	each	sample,	we	computed	the	
total	number	of	SEMs	and	DNAmGrimAge	measures.	For	statistical	
comparisons,	we	used	a	logarithm	transformation	of	the	total	num-
ber	of	SEMs	 (referred	 to	as	EML	henceforth),	and	DNAmGrimAge	
Acceleration	(referred	to	as	DNAmGrimAA	henceforth)	was	defined	
as	the	residuals	of	the	regression	of	DNAmGrimAge	on	chronologi-
cal	age	as	described	by	Lu	and	colleagues	(Lu	et	al.,	2019).

2.1  |  Association analyses at baseline

In	Table	S1,	we	reported	the	characteristics	of	the	study	sample	by	
study arm at baseline. There were no statistically significant differ-
ences among the four groups considering anthropometric and life-
style	characteristics,	nor	DNAmGrimAA,	whereas	the	EML	differed	
by	groups	at	baseline	(ANOVA	test	p-	value	=0.01).

In	Table	1,	we	reported	the	results	of	two	multivariate	linear	re-
gression	models	having	either	baseline	DNAmGrimAA	or	EML	used	
as	 the	outcome,	and	baseline	anthropometric	and	 lifestyle	charac-
teristics	 entered	 as	 the	 predictors.	DNAmGrimAA	was	 associated	
with	obesity	(β =	0.80	95%	CI	0.11–	1.49,	p = 0.02 comparing over-
weight with normal- weight; β =	2.53	95%	CI	1.28–	3.78,	p = 0.0001 
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comparing	obese	with	normal-	weight)	and	smoking	(β =	0.88	95%	CI	
0.23–	1.52,	p =	0.01	comparing	former	with	never	smokers)	adjusting	
for	the	other	risk	factors	in	Table	1,	whereas	EML	was	not	associated	
with any lifestyle variables at baseline.

Table	 2	 reports	 Pearson	 correlation	 coefficients	 (and	 corre-
sponding	p-	values)	among	the	two	epigenetic	aging	biomarkers	and	
dietary variables at baseline. Higher consumption of fruit and vege-
tables	was	associated	with	decreased	DNAmGrimAA	(p =	0.05	and	
p =	0.002,	respectively),	whereas	a	higher	consumption	of	processed	
meat	was	associated	with	increased	EML	(p =	0.01).

2.2  |  Association analyses after the intervention

We	run	a	difference-	in-	difference	model	to	estimate	the	differential	
changes	of	DNAmGrimAA	and	EML	in	the	treated	group	compared	
with	the	control	group	during	the	two-	year	intervention.	We	applied	
a	 two-	step	 approach:	 First,	we	defined	 the	 “delta	DNAmGrimAA”	
and	“delta	EML”	as	the	difference	between	the	two	epigenetic	aging	
biomarkers	measured	after	and	before	the	intervention.	In	Figure	1,	
we	reported	the	distribution	of	delta	DNAmGrimAA	(Figure	1a)	and	
delta	EML	 (Figure	1b)	 in	 controls	 and	 intervention	groups	 (dietary	
intervention	for	DNAmGrimAA	and	PA	intervention	for	EML).	The	

TA B L E  1 Associations	of	biological	aging	measures	with	anthropometric	and	lifestyle	variables	at	baseline:	estimates,	95%	confidence	
intervals,	and	p-	values	were	derived	from	multivariate	linear	regression	models.	The	effect	of	each	baseline	characteristic	on	DNAmGrimAA	
and	EML	is	adjusted	for	all	the	other	covariates	in	the	table

DNAmGrimAA EML

Estimate (95% CI) p Estimate (95% CI) p

BMI	(ref.	<25) - - - - 

25–	30 0.80	(0.11;	1.49) 0.02 0.23	(−0.06;	0.52) 0.14

>30 2.53	(1.28;	3.78) 0.0001 −0.10	(−0.65;	0.45) 0.73

Smoking	(ref.	Never) - - - - 

Former 0.88	(0.23;	1.52) 0.01 −0.17	(−0.44;	0.10) 0.10

Education	(ref.	Primary) - - - - 

secondary 0.08	(−0.70;	0.86) 0.85 −0.05	(−0.38;	0.28) 0.78

University	or	above 0.47	(−0.37;	1.31) 0.27 −0.01	(−0.36;	0.34) 0.94

Physical	Activity	(ref.	Inactive) - - - - 

Mod. Inactive 0.00	(−0.84;	0.84) 0.99 −0.13	(−0.48;	0.22) 0.47

Mod.	Active −0.79	(−1.69;	0.11) 0.09 −0.06	(−0.43;	0.31) 0.75

Active −0.14	(−1.20;	0.92) 0.80 0.10	(−0.35;	0.55) 0.66

Coffee	(ref.	<=	3	cups/day) - - - - 

> 3 cups/day −0.26	(−0.91;	0.39) 0.43 0.08	(−0.19;	0.35) 0.57

Alcohol	(ref.	Never) - - - - 

<= 1 drink/day 0.14	(−0.74;	1.02) 0.75 0.04	(−0.33;	0.41) 0.83

> 1 drink/day 0.85	(−0.23;	1.93) 0.12 0.30	(−0.15;	0.75) 0.20

Dietary	style	(ref.	good) - - - - 

bad 0.43	(−0.22;	1.08) 0.19 −0.07	(−0.34;	0.20) 0.64

Breastfeeding	(ref.	<=	3	months) - - - - 

> 3 months 0.11	(−0.54;	0.76) 0.73 −0.17	(−0.44;	0.10) 0.23

Oral	contraceptives	(ref.	Never) - - - - 

Ever −0.11	(−0.76;	0.54) 0.74 0.22	(−0.05;	0.49) 0.11

Menopausal	hormones	(ref.	Never) - - - - 

Ever 0.02	(−0.69;	0.73) 0.95 −0.16	(−0.45;	0.13) 0.30

TA B L E  2 Pearson	correlation	test	comparing	biological	aging	
measures with dietary variables at baseline.

Dietary variables 
(gr/die)

DNAmGrimAA EML

Pearson R p Pearson R p

Vegetables −0.14 0.05 0.14 0.06

Fruit −0.21 0.001 0.09 0.19

Red meat 0.08 0.26 0.07 0.29

Processed meat −0.05 0.48 0.18 0.01

Poultry 0.01 0.84 −0.02 0.72

Fish 0.07 0.30 0.13 0.06

Dairy products −0.08 0.26 0.02 0.78

Kcal −0.07 0.27 0.10 0.13
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average	delta	DNAmGrimAA	were	0.25	(95%	CI	−0.07	to	0.57)	and	
−0.41	(95%	CI	−0.79	to	−0.03)	in	the	control	and	dietary	intervention	
groups,	respectively.	The	average	delta	EML	were	1.82	(95%	CI	1.28	
to	2.37)	and	−0.23	 (95%	CI	−0.82	 to	−0.35)	 in	 the	control	and	PA	
intervention	groups,	respectively.

Then,	 we	 have	 estimated	 the	 differential	 changes	 of	
DNAmGrimAA	 and	 EML	 through	 linear	 regression	 models	 using	
the	 delta	DNAmGrimAA	 and	 delta	 EML	 as	 the	 outcomes	 (control	
group	 as	 the	 reference).	 The	 dietary	 intervention	 led	 to	 a	 signifi-
cant	 reduction	 of	 delta	 DNAmGrimAA	 (β =	 −0.66,	 95%	 CI	 −1.15	
to	−0.17,	p =	0.01,	Table	3),	whereas	the	PA	intervention	caused	a	
significant	reduction	of	the	delta	EML	(β =	−2.06,	95%	CI	−2.84	to	
−1.28,	p <	0.0001,	Table	3).	There	was	no	significant	reduction	of	
DNAmGrimAA	 associated	 with	 the	 PA	 intervention	 nor	 reduced	
EML	 associated	 with	 the	 dietary	 intervention	 (Table	 3).	 For	 both	
DNAmGrimAA	 and	 EML,	 the	 estimated	 differences	 presented	 in	
Table	 3	 (i.e.,	 the	 β	 coefficients)	 can	 be	 interpreted	 as	 the	 change	
in	biological	age	(in	years)	compared	with	the	reference	group	(see	
Methods	for	more	details).

2.3  |  Additional investigation on the eight 
DNAmGrimAA components

We	 further	 investigate	 the	 effect	 of	 dietary	 intervention	 sepa-
rately	on	each	component	of	the	DNAmGrimAA	in	order	to	identify	
which contributed the most on the previously described associa-
tion.	The	results	of	the	single-	component	analyses	are	summarized	

in	 Figure	 2a.	 DNAmPAI1	 biomarker	 was	 the	 only	 DNAmGrimAA	
component with a significant reduction after the two- year dietary 
intervention	(β =	−0.33	standard	deviations,	95%	CI	−0.62	to	−0.05,	
comparing women who participated in the dietary intervention vs. 
controls,	 Figure	 2b)	 and	 contribute	 for	more	 than	 30%	of	 the	 ex-
plained	variability	 (Figure	2c).	Also,	 reduction	of	DNAmLeptin	and	
DNAmGDF15	provided	a	substantial	contribution	(20%	and	15%	re-
spectively,	Figures	2d-	e-	f).

2.4  |  Enrichment analyses on epimutated CpG sites

We	further	investigated	the	biomolecular	pathways	involved	in	the	
reduction	of	EML	caused	by	 the	PA	 intervention	and	 the	 stability	
of	SEMs	over	these	two	years.	The	majority	of	the	 identified	CpG	
sites	carrying	a	SEM	at	baseline	(i.e.,	before	the	intervention)	were	
still	epimutated	after	the	two-	year	trial	 (the	average	proportion	of	
“stable”	SEMs	per	 individual	was	69%,	 ranging	 from	54%	to	89%).	
We	performed	additional	investigation	of	what	we	named	“physical	
activity-	related	reversible	SEMs”	(PArSEMs),	that	is,	those	CpG	sites	
in	which	we	found	a	SEM	at	baseline	but	not	after	the	PA	interven-
tion trial.

PArSEMs	were	enriched	in	non-	CpG	islands	(p =	0.02,	Table	S3),	
genomic	 regions	 characterized	 by	 heterochromatin/low	 transcrip-
tional	signal/copy	number	variants	(p <	0.0001,	Table	S4),	and	tran-
scription	factor	binding	sites	(TFBS)	of	EZH2	and	SUZ12	(p = 0.001 
and p=0.006,	respectively,	Table	S5).	Furthermore,	the	top	20	KEGG	
pathways from the gene ontology enrichment analysis are listed in 

F I G U R E  1 Violin	Plots:	(a)	Distribution	of	the	delta	DNAmGrimAA	(DNAmGrimAA	after	two-	year	trial	minus	DNAmGrimAA	at	
baseline)	in	women	participating	in	the	dietary	intervention	vs.	controls.	Dietary	intervention	leads	to	a	significant	reduction	of	the	delta	
DNAmGrimAA	(0.66	years),	computed	via	linear	regression	model	adjusted	for	anthropometric	and	lifestyle	characteristics	at	baseline.	(b)	
Distribution	of	the	delta	age-	adjusted	EML	(EML	after	two-	year	trial	minus	EML	at	baseline)	in	women	participating	in	the	PA	intervention	
vs.	controls.	PA	intervention	leads	to	a	significant	reduction	of	the	delta	age-	adjusted	EML	(2	years),	computed	via	linear	regression	model	
adjusted for anthropometric and lifestyle characteristics at baseline
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Figure	 3.	 After	 false	 discovery	 rate	 (FDR)	 correction	 for	 multiple	
testing,	PArSEMs	were	enriched	in	the	following	seven	KEGG	path-
ways: hsa05205	 (“Proteoglycans	 in	cancer,”	p =	0.0004),	hsa05224 
(“Breast	 cancer,”	p =	 0.0006),	hsa04310	 (“Wnt	 signaling	pathway,”	
p =	 0.0007),	 hsa04713	 (“Circadian	 entertainment,”	 p =	 0.0008),	
hsa04024	(“cAMP	signaling	pathway,”	p =	0.0008),	hsa04390	(“Hippo	
signaling	pathway,”	p =	0.0009),	and	hsa04020	 (“Calcium	signaling	
pathway,”	p =	0.001)	(Table	S5).

2.5  |  Sensitivity analyses

For	sensitivity	analyses,	we	repeated	the	previously	described	 lin-
ear regression models including additional adjustment for estimated 
white	blood	cells	(WBC)	proportions.	The	sensitivity	analyses	con-
firmed	the	reduction	of	the	delta	DNAmGrimAA	in	women	partici-
pating	in	the	dietary	intervention	(β =	−0.42	95%	CI	−0.83	to	−0.01,	
p =	0.05)	and	the	reduction	of	delta	EML	in	women	participating	in	
the	PA	intervention	(β =	−2.04	95%	CI	−2.82	to	−1.26,	p =	0.001).

3  |  DISCUSSION

Various	 cross-	sectional	 studies	 provided	 evidence	 of	 a	 favorable	
effect	 of	 a	 healthy	 lifestyle	 on	 several	 biological	 aging	 indicators,	
including	DNAm-	based	aging	biomarkers	(Koop	et	al.,	2020;	Quach	
et	 al.,	 2017).	 However,	 longitudinal	 and	 intervention	 studies	 are	
needed	to	clarify	causality	and	accurately	quantify	the	benefit	of	im-
proving	lifestyle	at	a	biomolecular	level.	A	recent	review	by	ElGendy	
and	colleagues	summarizes	the	effect	of	several	intervention	stud-
ies	of	folic	acid	and	B	vitamins	supplementation	on	whole-	genome	
DNAm	profiles.	They	conclude	that	the	effects	on	DNAm	are	gene	
and	site-	specific,	depending	on	cell	type	and	tissue,	and	the	duration	
of	the	intervention,	making	the	results	difficult	to	interpret.	However,	
they	observed	consensus	on	increased	global	DNAm	consequence	

of	folic	acid	and	B	vitamins	supplementation	(Elgendy	et	al.,	2018).	
DNAm-	based	biological	aging	measures	provide	an	easily	interpret-
able summary measure of the state of health of an individual and can 
be used to investigate the beneficial effects of improving lifestyle on 
aging-	related	epigenetic	mechanisms	(Lu	et	al.,	2019).

Few intervention studies have evaluated the effect of improv-
ing	dietary	habits	on	DNAm	epigenetic	clocks	at	the	current	stage,	
whereas	no	studies	investigated	changes	in	the	EML.	For	example,	
Sae-	Lee	and	colleagues	investigated	folic	acid	and	vitamin	B12	sup-
plementation	in	a	randomized	trial	including	44	participants	(+13 par-
ticipants	from	a	non-	randomized	trial),	concluding	that	the	slowing	
down	of	the	DNAm	aging	is	gender-		and	MTHFR genotype- specific 
(Sae-	Lee	et	al.,	2018).	More	recently,	Fitzgerald	and	colleagues	pro-
vide evidence of reversal epigenetic clocks improving diet and life-
style	in	a	randomized	trial	including	38	participants	(Fitzgerald	et	al.,	
2021).	Although	there	is	strong	evidence	that	physical	exercise	has	
favorable	 effects	 on	 epigenetic	 mechanisms	 (Ferioli	 et	 al.,	 2019),	
there is a lack of intervention studies on increasing physical activ-
ity associated with longitudinal measures of epigenetic clocks and 
aging- related epigenetic drift.

In	this	study,	we	explored	the	effects	of	a	two-	year	dietary	and	
PA	intervention	trial	on	two	DNAm-	based	biomarkers	of	biological	
aging:	DNAmGrimAge,	since	it	has	been	shown	it	outperforms	other	
epigenetic	 clocks	 in	 predicting	 aging-	related	 outcomes	 (McCrory	
et	al.,	2020),	and	the	epigenetic	mutation	load	(EML,	as	a	biomarker	
of	the	aging-	related	epigenetic	drift),	in	more	than	200	healthy	post-
menopausal	women	from	the	DAMA	study.

Our	 results	on	 the	analyses	performed	at	baseline	 (before	 the	
intervention	 trial)	 confirmed	 previously	 observed	 cross-	sectional	
associations between the epigenetic clocks and risk factors for non- 
communicable	diseases,	like	obesity,	consumption	of	processed	meat	
(with	unfavorable	effects),	and	consumption	of	fruit	and	vegetables	
(with	favorable	impacts).	Interestingly,	the	two	epigenetic	biomark-
ers of aging likely describe different aspects of the aging- related mo-
lecular	mechanisms,	as	they	are	associated	with	different	risk	factors	

TA B L E  3 Average	differences	and	95%	confidence	intervals	(CIs)	of	DNAmGrimAA	and	EML	measured	before	the	randomized	trial	minus	
DNAmGrimAA	and	EML	measured	after	the	randomized	trial	(first	two	columns);	and	differential	changes	in	the	delta	DNAm-	based	aging	
measures	(difference-	in-	difference	model,	third	column).	Comparison	of	the	dietary	intervention	(arms	2	and	4)	with	the	control	group	(arms	
1	and	3)	on	the	top	of	the	table;	comparison	of	the	PA	intervention	(arms	1	and	4)	with	the	control	group	(arms	2	and	3)	on	the	bottom	of	the	
table.	Estimates,	95%	Cis,	and	p-	values	come	from	a	two-	step	difference-	in-	difference	model

Mean (95% CI) difference (measure after 
intervention minus measure before 
the intervention) in control group 
(arms 2 and 4)

Mean (95% CI) difference (measure after 
the intervention minus measure before the 
intervention) in dietary intervention group 
(arms 1 and 3)

Differential effect of dietary 
intervention vs. control group

Estimate (95% CI) p

DNAmGrimAA 0.25	(−0.07,	0.57) −0.41	(−0.79,	−0.03) −0.66	(−1.15,	−0.17) 0.01*

EML 1.00	(0.41,	1.60) 0.63	(0.03,	1.23) −0.37	(−1.21,	0.48) 0.39

Mean (95% CI) difference (measure 
after the intervention minus measure 
before the intervention) in control group 
(arms 1 and 4)

Mean (95% CI) difference (measure after 
the intervention minus measure before 
the intervention) in PA intervention group 
(arms 2 and 3)

Differential effect of PA 
intervention vs. control group

Estimate (95% CI) p

DNAmGrimAA −0.12	(−0.43,	0.20) −0.03	(−0.43,	0.37) 0.09	(−0.42,	0.60) 0.73

EML 1.82	(1.28,	2.37) −0.23	(−0.82,	0.36) −2.06	(−2.84,	−1.28) <0.001*
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F I G U R E  2 Analysis	of	the	eight	components	of	the	DNAmGrimAge:	a.	Forest	plot	indicating	the	effect	of	the	dietary	intervention	on	
each	component	of	the	DNAmGrimAge	(expressed	as	standard	deviations	change	to	be	comparable	among	them).	b.	Proportion	of	variability	
explained	by	each	component	of	the	DNAmGrimAge.	c.	Correlation	matrix	among	DNAmGrimAge	and	its	components.	d-	e-	f.	Violin	plots.	
Distribution	of	the	standardized	delta	DNAmPAI1,	delta	DNAmLeptin,	and	delta	DNAmGDF15	(measure	after	two-	year	trial	minus	measure	
at	baseline)	in	women	participating	in	the	dietary	intervention	vs.	control	group
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for	 non-	communicable	 diseases.	 In	 fact,	 in	 our	 sample,	 obesity	 is	
associated	with	DNAmGrimAA	but	not	with	EML.	Similarly,	higher	
DNAmGrimAA	is	associated	with	lower	consumption	of	fruit	but	not	
with	higher	consumption	of	red	meat,	whereas	an	inverse	pattern	of	
associations	was	observed	for	the	EML.

3.1  |  Dietary improvement slows down the 
DNAmGrimAge biomarker

The	 main	 aim	 of	 the	 present	 study	 was	 to	 compare	 the	 DNAm-	
based aging biomarkers before and after the intervention. Our re-
sults highlighted a significant slowing down of the epigenetic aging 
processes	 because	 of	 the	 improved	 dietary	 quality	 and	 increased	
PA.	Specifically,	the	dietary	intervention	led	to	a	significant	slowing	
down	of	the	DNAmGrimAA	biomarker,	whereas	the	PA	intervention	
had	a	significant	effect	on	the	total	number	of	SEMs.

We	performed	 additional	 statistical	 analyses	 to	 identify	which	
components	 of	 the	 DNAmGrimAA	 contributed	 most	 to	 the	 ob-
served association. The results highlighted a significant decrease of 
the	DNAm	surrogate	measure	of	the	plasma	protein	PAI-	1	as	well	a	
substantial	decrease	of	Leptin	and	GDF-	15	proteins	DNAm	surro-
gates among women in the dietary intervention trial arm. Our re-
sults provide further support on the association of specific plasma 

proteins	with	healthy	 aging	 and	 longevity.	High	 level	 of	PAI-	1	has	
been associated with a number of age- related conditions and lifes-
pan	 (Khan	 et	 al.,	 2017),	 and	 previous	 studies	 reported	 a	 benefi-
cial	 effect	of	PA	on	PAI-	1	 serum	 levels	 (Lira	 et	 al.,	 2010).	 Further,	
DNAm	surrogate	 for	PAI1	has	a	strong	association	with	metabolic	
syndrome,	obesity,	and	fatty	liver	(Lu	et	al.,	2019).	Leptin	is	mainly	
produced in the white adipose tissue and is one of the main catabolic 
regulators	of	 food	 intake	and	energy	expenditure.	During	aging,	 a	
significant	increase	in	Leptin	resistance	leads	to	unfavorable	health	
outcomes	(Balaskó	et	al.,	2014).	Evidence	 indicates	that	caloric	re-
striction	 reduces	 Leptin	 levels	 in	 a	 dose–	response	 manner	 (Hong	
et	 al.,	 2018).	 Finally,	 the	 dietary	 intervention	was	 associated	with	
decreased	levels	of	GDF-	15	protein	DNAm	surrogate,	that	emerged	
recently	as	a	biomarker	of	inflammation,	regulation	of	apoptosis,	cell	
repair,	healthy	aging,	and	a	robust	prognostic	protein	in	patients	with	
different	diseases	such	as	heart	diseases	and	cancer	(Baek	&	Eling,	
2019;	Luan	et	al.,	2019).

3.2  |  Increasing physical activity slows down the 
EML biomarker

Increasing evidence indicates that aging is associated with an accu-
mulation	of	SEMs,	and	in	turn,	the	total	number	of	SEMs	is	associated	

F I G U R E  3 PArSEMs	CpGs	gene	
ontology enrichment analysis. Top 
20	KEGG	pathways	and	-	log10	enrichment	
p- values. Red dotted line indicates the 
FDR	threshold	of	significance.	After	FDR	
correction	for	multiple	testing,	PArSEMs	
were	significantly	enriched	in	seven	KEGG	
biological pathways
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with	an	increased	risk	for	several	cancer	types	(Gentilini	et	al.,	2015,	
2017;	Wang	et	al.,	2019).	We	observed	a	slowing	down	of	the	EML	
biomarker	 in	women	who	participated	 in	 the	PA	 intervention	 trial	
compared	with	the	control	sample.	Such	slowing	down	of	the	EML	
caused	by	increased	PA	may	be	explained	with	an	adaptive	increase	
in antioxidant capacity and reduction of reactive oxygen species 
(ROS),	 which	 in	 turn	 leads	 to	 a	 higher	 DNA	 repair	 capacity	 and	
therefore	a	lower	number	of	dangerous	SEMs	(Grazioli	et	al.,	2017;	
Kietzmann	et	al.,	2017).

Although	a	 large	proportion	of	 the	 identified	SEMs	was	stable	
over	 time,	many	SEMs	were	no	 longer	present	 after	 the	PA	 inter-
vention.	 A	 more-	in-	depth	 investigation	 indicates	 that	 reversible	
SEMs	 are	 enriched	 in	 non-	CpG	 islands	 and	 genomic	 regions	 char-
acterized	by	heterochromatin,	 low	 transcriptional	 signal,	 and	copy	
number variants. These results are in line with previous observations 
of	lower	DNAm	variability	in	CpG	islands	and	CpG-	rich	genomic	re-
gions	(Palumbo	et	al.,	2018).	Functional	characterization	of	PArSEMs	
CpGs	highlights	an	enrichment	of	reversible	epimutations	in	TFBS	of	
two	members	of	 the	Polycomb	Repressive	Complex	2	 (PRC2)	pro-
teins:	EZH2	and	SUZ12.	Interestingly,	previous	studies	indicate	that	
a	 lower	number	of	SEMs	 in	genes	targeted	by	these	two	proteins,	
mostly	tumor	suppressor	genes,	is	associated	with	a	lower	risk	of	fu-
ture	cancer	development	(Gagliardi	et	al.,	2020).	Additionally,	KEGG	
pathway	 gene	 ontology	 enrichment	 analysis	 shows	 that	 PArSEMs	
are	enriched	 in	several	cancer-	related	pathways	such	as	hsa05205	
(“Proteoglycans	 in	cancer”),	hsa05224	 (“Breast	cancer”),	hsa04310	
(“Wnt	 signaling	 pathway”),	 and	 hsa04024	 (“cAMP	 signaling	 path-
way”).	Thus,	the	established	association	between	increasing	PA	and	
reduced cancer risk might be partly explained via a reduction of epi-
mutations in critical cancer- related pathways.

4  |  CONCLUSIONS

We	provided	strong	evidence	of	a	causal	association	of	 improving	
dietary	habits	and	 increasing	physical	activity	on	DNAm-	based	bi-
omarkers	 of	 healthy	 aging.	 It	 is	worthy	 to	 note	 that	DAMA	 study	
is	 intentionally	based	on	non-	extreme	 interventions,	meaning	 that	
relatively easily achievable changes in one's lifestyle behaviors lead 
to	a	significant	slowing	down	of	biological	aging	biomarkers,	which	
in	turn	are	associated	with	higher	longevity,	lower	risk	of	developing	
age-	related	diseases,	and	 increased	quality	of	 life	 in	the	older	age.	
Further,	our	results	indicate	that	dietary	quality	and	physical	activity	
influence epigenetic aging through complementary molecular mech-
anisms,	suggesting	that	their	effect	is	potentially	cumulative	rather	
than	 interchangeable.	 In	 conclusion,	 our	 results	 provide	 further	
evidence about the importance of policy intervention programs to 
promote	a	healthy	diet	and	physical	activity,	leading	to	a	substantial	
reduction of the burden for many aging- related pathological condi-
tions	and	diseases.	Additionally,	our	results	provide	a	step	forward	
in understanding the biological mechanism of aging and identifying 
health- related biomarkers.

4.1  |  Strength and limitations

Since	 this	was	 a	 secondary	 analysis,	 the	 relatively	modest	 sample	
size	is	a	possible	limitation	of	this	study.	The	original	factorial	study	
design	included	four	arms	(arm 1:	diet,	arm 2:	PA,	arm 3: diet +PA,	
and arm 4:	controls),	but	for	statistical	comparisons,	we	used	the	two	
main	intervention	groups	(arms	1	and	3	for	investigating	the	effect	
of	dietary	intervention,	and	arms	2	and	3	for	investigating	the	effect	
of	PA	intervention).	However,	a	post	hoc	power	analysis	of	the	study	
indicates that our analytical strategy makes this study well- powered 
(β >	0.80)	considering	the	effect	sizes	observed	in	linear	regressions.	
On	 the	 contrary,	 the	 factorial	 design	of	 the	DAMA	study	and	our	
analytical	choice	make	that,	 in	estimating	the	effect	of	the	dietary	
intervention,	around	50%	of	the	treated	group	and	around	50%	of	
the controls have completed the physical activity intervention also 
(and	vice	versa	 considering	 the	effect	of	PA	 intervention),	 leading	
to possible confounding of the results. This study includes only 
women making impossible to investigate possible differential effect 
by	gender.	Finally,	due	to	the	limited	sample	size,	we	were	not	able	
to include extra stratified statistical analyses to test additional hy-
potheses	(e.g.,	whether	the	effect	of	the	trial	is	higher	among	obese	
women	at	baseline),	underlining	the	need	for	further	investigations	
in the field.

This study also has several strengths. To the best of our knowl-
edge,	this	is	the	first	study	investigating	longitudinal	changes	in	the	
DNAmGrimAge	 and	 epigenetic	mutation	 load	with	 a	 suitable	 life-
style	 intervention,	 allowing	 a	 robust	 causal	 interpretation	 of	 the	
results.	Of	note,	our	results	are	not	biased	by	the	presence	of	patho-
logical	conditions	or	smoking	(well	known	for	having	a	strong	influ-
ence	on	DNAm	profiles	and	epigenetic	aging)	since	the	study	sample	
is composed of healthy non- smokers women.

5  |  E XPERIMENTAL PROCEDURES

5.1  |  Study sample

The	DAMA	study	was	a	single-	center,	24-	month	randomized	inter-
vention	 trial	 (Trial	 Registration	 ID:	 ISRCTN28492718)	 with	 a	 2x2	
factorial	 design,	 whose	 primary	 aim	 was	 to	 investigate	 whether	
mammographic	breast	density	(MBD)	could	be	reduced	in	high-	MBD	
(>50%)	healthy	post-	menopausal	women	by	modifying	their	dietary	
habits	and/or	PA	levels	(Masala	et	al.,	2019).	Study	participants	were	
selected	 in	 2009–	2010	 among	 postmenopausal	women	 aged	 50–	
69	years	that	attended	the	local	breast	cancer	screening	program	in	
Florence,	Italy	(Masala	et	al.,	2014).	Women	were	eligible	for	inclu-
sion	if	they	had	a	negative	screening	mammogram	with	MBD	>50%	
(assessed	 using	 the	 BI-	RADS	 classification	 (Liberman	 and	Menell,	
2002));	 those	 selected	 for	 a	 second-	stage	 diagnostic	 procedure	
following the screening mammogram were excluded regardless of 
the final outcome of the diagnostic process. Other exclusion crite-
ria	were	as	follows:	recent	(past	12	months)	hormone	replacement	
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therapy	use;	current	smoking,	or	having	quit	smoking	by	<6	months;	
being	previously	diagnosed	with	cancer	(except	non-	melanoma	skin	
cancer)	or	suffering	from	any	illness	that	could	hamper	an	active	par-
ticipation in the study activities.

At	 baseline,	 all	 participants	 provided	 information	 on	 dietary	
habits	and	lifestyle	(including	household,	occupational	and	leisure-	
time	 PA)	 by	 filling	 two	 questionnaires	 previously	 used	within	 the	
EPIC	(European	Prospective	Investigation	into	Cancer	and	Nutrition)	
study	 (Palli	 et	 al.,	 2003),	 and	 had	 their	 anthropometric	 measures	
taken	using	standardized	procedures.	A	fasting	venous	blood	sam-
ple	was	taken,	divided	into	plasma,	red	cells,	and	buffy-	coat	aliquots,	
and stored together with urine samples in the project biobank. Each 
woman was then randomly assigned to one of the four study arms 
(diet,	PA,	diet+PA,	and	control)	according	to	a	permuted-	block	ran-
domization	 scheme	 stratified	 by	 age	 (50–	59	 vs.	 60–	69	 years)	 and	
body	mass	index	(BMI)	category	(<25	vs.	≥25	kg/m2),	with	a	constant	
block	size	(n=4).

Study	participants	 assigned	 to	 the	dietary	 intervention	 (arm 1)	
were counseled to adopt a diet based on the consumption of plant 
foods,	with	a	low	glycemic	load,	low	in	saturated-		and	trans- fats and 
alcohol,	and	rich	 in	antioxidants.	The	change	 in	dietary	habits	was	
aimed	to	be	achieved	in	an	isocaloric	context,	as	no	advice	was	given	
about	the	quantity	of	food	to	be	consumed.	The	intervention	objec-
tives	included:	(a)	replacement	of	refined	grains	with	whole	grains;	
(b)	consumption	of	at	 least	one	portion	of	raw	vegetables	and	one	
portion	of	cooked	vegetables	at	each	meal;	(c)	consumption	of	fish	
at	least	2–	3	times	weekly;	(d)	reduction	of	the	consumption	of	fresh	
and	processed	red	meat	to	less	than	once	weekly;	(e)	consumption	of	
at	least	3–	4	portions	of	legumes	and	pulses	per	week;	(f)	daily	con-
sumption	of	at	least	2–	3	portions	of	fruit;	(g)	cakes	and	desserts	con-
sumed	no	more	than	once	weekly;	 (h)	no	more	than	1	portion/day	
of	milk	or	yogurt	and	2	portions/week	of	cheese;	(i)	exclusive	use	of	
extra-	virgin	olive	oil	as	dressing	and	cooking	fat;	and	(j)	consumption	
of no more than one glass of wine daily at meals for those already 
used	to	drink	alcohol.	In	addition,	women	allocated	to	the	dietary	in-
tervention	study	arm	were	also	requested	to	attend	six	group	meet-
ings and eight cooking classes over the course of the study.

Women	randomized	to	the	PA	intervention	 (arm 2)	were	asked	
to	 increase	 their	moderate-	level	 recreational	PA	up	 to	1	hour/day	
(corresponding	 to	about	3	MET-	hours	day	 [MET=metabolic	equiv-
alent]),	 to	be	combined	with	a	more	strenuous	activity	accounting	
for	6–	10	MET-	hours	weekly.	Women	were	also	requested	to	attend	
weekly	a	one-	hour	session	 led	by	 trained	PA	experts	 in	an	appro-
priate	 fitness	 facility	and	were	provided	with	some	equipment	 for	
home	exercises.	Finally,	the	study	protocol	also	included	participa-
tion in six group sessions and six collective walks supervised by the 
study team.

Women	assigned	to	the	diet	+PA	intervention	(arm 3)	were	re-
quested	to	change	both	their	dietary	habits	and	PA	levels	by	combin-
ing the protocols of arms 1 and 2.

Study	participants	assigned	to	any	 intervention	arm	(1,	2,	or	3)	
were	requested	to	keep	five	written	one-	week	diaries	on	diet	and/
or	PA	 levels	 (depending	on	study	arm),	which	were	 then	 reviewed	

by the study personnel to monitor the achievement of the study ob-
jectives and provide further tailored counseling to the participants.

Women	randomly	assigned	to	the	control	group	(arm	4)	received	
general	advice	on	healthy	diet	and	PA	levels	according	to	the	recom-
mendations	from	the	World	Cancer	Research	Fund	(WCRF)	report	
2007	(Wiseman,	2008),	were	invited	to	attend	a	group	meeting	tak-
ing	place	in	the	first	six	months	of	the	study,	and	were	distributed	ad 
hoc printed material.

At	the	end	of	the	study	(24±3	months	from	enrollment,	coincid-
ing	with	 the	 time	of	 the	next	mammographic	 screening),	 all	 study	
participants	underwent	a	final	visit,	in	which	the	same	protocol	as	at	
the baseline visit was applied.

Compliance	with	the	proposed	interventions	was	good,	with	an	
increased	consumption	of	 vegetables	 and	 legumes,	 and	a	 reduced	
consumption	of	meat	and	cakes,	observed	women	assigned	to	the	
dietary	intervention	group,	and	an	increase	in	all	type	of	recreational	
physical	activity	for	those	allocated	to	the	PA	group	(Masala,	2019).

In	 the	main	 analysis,	 a	decrease	 in	MBD	was	observed	among	
women	 in	 the	dietary	 intervention	and	 in	 the	PA	group	compared	
to	controls,	while	no	significant	effect	on	MBD	was	 found	among	
women	in	the	double	intervention	group	(Masala,	2019).

5.2  |  Genome- wide DNA methylation analyses

Buffy	 coats	 stored	 in	 liquid	 nitrogen	 were	 thawed,	 and	 genomic	
DNA	 was	 extracted	 using	 the	 ReliaPrep	 Blood	 gDNA	 Miniprep	
System	 Kit	 (Promega).	 The	 concentration	 of	 the	 genomic	 DNA	
was	 assessed	 by	 Qubit	 fluorimetric	 quantitation	 (Thermo	 Fisher	
Scientific).	 500	 ng	 of	 DNA	 was	 bisulfite-	converted	 using	 the	 EZ-	
96	DNA	Methylation-	Gold	Kit	 (Zymo	Research)	 and	 hybridized	 to	
Illumina	 Infinium	 HumanMethylation450	 BeadChips	 (Illumina).	
Matched	pairs	(pre-		and	post-	intervention)	were	arranged	randomly	
on	the	same	array.	All	 the	chips	were	subsequently	scanned	using	
the	 Illumina	HiScanSQ	system.	Control	probes	 included	 in	 the	mi-
croarray were used to assess bisulfite conversion efficiency and to 
exclude	lower-	quality	samples	from	further	analyses.

5.3  |  Statistical analyses

5.3.1  |  Data	pre-	processing

Initial	dataset	has	DNAm	data	 for	482,421	CpG	sites	 in	448	sam-
ples	(224	matched	pairs,	pre-	/post-	intervention):	57	women	in	arm 
1	(diet);	56	women	in	arm 2	(PA);	53	women	in	arm 3	(diet	+PA);	and	
58	women	in	arm 4	(controls).	Five	samples	were	discarded	for	low	
bisulfite conversion total intensities according to the Illumina guide-
lines	(Figure	S1),	leading	to	a	final	study	sample	of	219	matched	pairs	
(pre-		 and	 post-	intervention).	 Potentially,	 cross-	hybridizing	 probes	
and	those	containing	SNPs	with	minor	allele	frequency	lower	than	
0.05	 in	 European	 were	 excluded	 from	 the	 analysis	 (McCartney	
et	al.,	2016).	Probes	on	Y	chromosome	and	those	with	non-	unimodal	
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distribution	were	also	excluded,	as	well	as	those	with	low	call	rate	
(lower	 than	 95%).	 The	 final	 dataset	 has	 343,439	 probes	 in	 438	
(219	pairs)	samples.	Differences	by	batch	for	fluorescence	 intensi-
ties of methylated and non- methylated probes were removed using 
ComBat	algorithm	(Müller	et	al.,	2016)	(Figure	S2).	The	proportion	of	
WBC	per	sample	was	computed	according	to	Houseman	algorithm	
(Houseman	et	al.,	2012).

5.3.2  |  Computation	of	DNAmGrimAge

We	 computed	 the	 epigenetic	 age	 acceleration	 (AA)	 measures	 ac-
cording	 to	 the	 algorithm	 described	 by	 Lu	 et	 al.	 (Lu	 et	 al.,	 2019).	
Briefly,	DNAmGrimAge	is	computed	in	two	steps:	(1)	computation	of	
DNAm	surrogate	of	seven	plasma	proteins	and	smoked	pack-	years,	
using	a	total	of	1,030	CpGs;	(2)	computation	of	the	DNAmGrimAge	
as	a	linear	combination	of	the	eight	DNAm	surrogates	plus	chrono-
logical	age	and	sex.	Weights	were	defined	using	a	penalized	regres-
sion	model	(Elastic-	net	regularization).	DNAmGrimAge	acceleration	
(DNAmGrimAA)	is	defined	as	the	residuals	of	the	regression	of	epi-
genetic	on	chronological	age.	Since	DNAmGrimAge	may	be	corre-
lated	with	WBC	proportions,	 the	DNAmGrimAA	WBC-	adjusted	 is	
defined	as	the	residuals	from	the	linear	regression	of	DNAmGrimAA	
on	WBC	percentage.	We	used	DNAmGrimAA	for	the	analyses	pre-
sented	in	the	main	text,	and	the	measure	adjusted	for	WBC	for	sen-
sitivity analyses.

5.3.3  |  Identification	of	stochastic	epigenetic	
mutations	(SEMs)

We	identified	SEMs	based	on	the	procedure	described	by	Gentilini	
et	al.	(Gentilini	et	al.,	2015).	Specifically,	for	each	CpG,	considering	
the	distribution	of	DNA	methylation	beta	values	across	all	samples,	
we	computed	the	interquartile	range	(IQR)—	the	difference	between	
the	3rd	 quartile	 (Q3)	 and	 the	1st	 quartile	 (Q1)—	and	we	defined	 a	
SEM	as	a	methylation	value	 lower	than	Q1-	(3×IQR)	or	higher	than	
Q3+(3×IQR).	 Finally,	 for	 each	 individual,	 we	 computed	 the	 total	
number	 of	 SEMs	 across	 the	 assay.	 Since	 the	 number	 of	 SEMs	 in-
creased	exponentially	with	age,	we	used	a	logarithmic	transforma-
tion	of	 the	 total	 number	of	 SEMs	 (named	EML)	 for	 all	 association	
analyses.

5.3.4  |  Regression	models	at	baseline

We	investigated	the	association	of	DNAmGrimAA	and	EML	at	base-
line with lifestyle and anthropometric characteristics at baseline via 
multivariate	linear	regression	models.	We	used	the	epigenetic	aging	
biomarkers	 as	 the	 outcomes;	 BMI,	 smoking	 habits	 (former/never),	
education,	coffee	and	alcohol	intake,	PA,	and	dietary	quality	as	the	
predictors.	 Dietary	 quality	 was	 defined	 using	 the	 Mediterranean	

diet	score	(bad	diet	=MDS	<5;	good	diet	=MDS	≥5)	(Fasanelli	et	al.,	
2019).

5.3.5  |  Difference-	in-	difference	models

To	 investigate	whether	 the	 two	years	dietary	and	PA	 intervention	
had	 positive	 effects	 on	 (meaning	 a	 reduction	 of)	 the	 two	 biologi-
cal	aging	biomarkers,	we	ran	linear	regression	models.	We	used	the	
delta	 DNAm-	based	 biomarker	 (epigenetic	measure	 after	 the	 two-	
year	trial	minus	those	at	baseline)	as	the	outcomes	and	intervention	
group	as	the	predictor	(control	group	as	the	reference).	In	order	to	
make	the	effect	sizes	of	the	EML	biomarker	comparable	with	those	
of	DNAmGrimAA	 (i.e.,	 expressed	 as	 years	 of	 increasing	 biological	
age),	we	re-	scaled	both	the	effect	sizes	and	the	standard	deviation	
of	the	EML	by	a	factor	σ = σAA / σSEMs,	where	σAA is the deviation of 
DNAmGrimAA	and	σSEMs	is	the	standard	deviation	of	the	EML	vari-
able.	After	the	linear	transformation,	the	scaled	effect	size	of	EML	
can	be	interpreted	as	years	of	increasing	biological	age,	as	is	the	case	
of	DNAmGrimAge.

To	 investigate	 which	 of	 the	 eight	 components	 of	 the	 DNAm	
GrimAA	 have	 the	 highest	 contribution	 in	 the	 observed	 associa-
tions,	we	repeated	the	analyses	using	each	component	as	the	out-
come,	separately.	To	make	the	effect	sizes	comparable	among	them,	
estimates from the regression models were expressed as standard 
deviations increase.

In	 all	 the	 regression	 models,	 comparisons	 with	 p-	value	 lower	
than	0.05	were	considered	statistically	significant.

5.3.6  |  Enrichment	analyses

The	 genomic	 locations	 of	 SEMs	 were	 annotated	 by	 merging	 the	
Illumina information on the chromosomal position of each probe 
with ENCODE/NIH Roadmap Chromatin ImmunoPrecipitation 
Sequencing	 (ChIP-	Seq)	data	for	chromatin	states	and	transcription	
factor	 binding	 sites	 (TFBS)	 in	 untreated	 human	 embryonic	 stem	
cells	(hESC)	(ENCODE	Project	Consortium,	2012).	We	investigated	
whether	 SEMs	were	enriched	 in	 functional	 genomic	 regions	using	
the	procedure	 implemented	 in	 the	R	package	 regioneR	 (Gel	et	 al.,	
2016).	Briefly,	the	algorithm	is	specifically	designed	to	test	whether	
a set of genomic loci significantly overlap with a set of genomic re-
gions,	using	a	permutation	procedure	that	controls	the	type	I	error	
rate and avoids spurious associations driven by the intrinsic struc-
ture	of	 the	DNA	 (i.e.,	 relationship	between	CG	content,	gene	pro-
moters,	and	copy	number	alterations)	(Gel	et	al.,	2016).

We	 investigated	enrichment	of	SEMs	according	to	 (1)	 the	“re-
lation	 to	 CpG	 islands”	 as	 defined	 in	 the	 Illumina	 annotation	 file,	
which	 has	 four	 mutually	 exclusive	 categories:	 CpG	 island,	 Shelf,	
Shore,	 non-	CpG	 island	 (or	 “open	 sea”	 region)	 plus	 evidence	 for	
“Open chromatin state” and evidence for “DNase hypersensitiv-
ity”	 according	 to	 the	 Illumina	 annotation	 file	 (information	 from	



    |  11 of 13FIORITO eT al.

the	ENCODE	project	 (Dunham,	2012));	 (2)	 the	chromatin	state	 in	
human	 embryonic	 stem	 cells	 (hESC)	 according	 to	 the	 ENCODE	
ChIP-	Seq	experiments	(Dunham,	2012),	with	11	mutually	exclusive	
categories:	 “active	 promoter,”	 “weak	 promoter,”	 “inactive/poised	
promoter,”	 “strong	 enhancer,”	 “weak/poised	 enhancer,”	 “insula-
tor,”	 “transcriptional	 transition/elongation,”	 “weak	 transcribed,”	
“Polycomb-	repressed,”	 “heterochromatin/low	signal/copy	number	
variation	 (CNV),”	and	 “non-	regulatory	 regions”;	 (3)	 the	TFBSs	 tar-
geted	by	58	human	proteins	according	to	 the	ENCODE	ChIP-	Seq	
experiments	(Dunham,	2012)	in	human	embryonic	stem	cells	(H1-	
hESC);	(4)	Gene	ontology	enrichment	using	KEGG	biological	path-
ways	 (Kanehisa	 et	 al.,	 2004)	 as	 the	 reference	 dataset.	 The	 latter	
enrichment analysis was carried out using the MissMethyl R pack-
age,	gometh	function	(Phipson	et	al.,	2016).
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