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Abstract

Housing value is a major component of the aggregate expenditure used in the analyses of

welfare status of households in the development economics literature. Therefore, an accu-

rate estimation of housing services is important to obtain the value of housing in household

surveys. Data show that a significant proportion of households in a typical Living Standard

Measurement Survey (LSMS), adopted by the Word Bank and others, are self-owned. The

standard approach to predict the housing value for such surveys is based on the rental cost

of the house. A hedonic pricing applying an Ordinary Least Squares (OLS) method is nor-

mally used to predict rental values. The literature shows that Machine Learning (ML) meth-

ods, shown to uncover generalizable patterns based on a given data, have better predictive

power over OLS applied in other valuation exercises. We examined whether or not a class

of ML methods (e.g. Ridge, LASSO, Tree, Bagging, Random Forest, and Boosting) pro-

vided superior prediction of rental value of housing over OLS methods accounting for spatial

autocorrelations using household level survey data from Uganda, Tanzania, and Malawi,

across multiple years. Our results showed that the Machine Learning methods (Boosting,

Bagging, Forest, Ridge and LASSO) are the best models in predicting house values using

out-of-sample data set for all the countries and all the years. On the other hand, Tree regres-

sion underperformed relative to the various OLS models, over the same data sets. With the

availability of abundant data and better computing power, ML methods provide viable alter-

native to predicting housing values in household surveys.

Introduction

According to World Bank [1], the number of world population in poverty had declined from

1.85 billion in 1990 to 767 million in 2013. The World Bank’s Living Standards Measurement
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Study-Integrated Surveys on Agriculture (LSMS-ISA)is a typical household survey conducted

in many countries in Sub-Saharan Africa and elsewhere [2].The LSMS program objectives are

to improve the quality of household survey data, increase the capacity of statistical institutes to

perform household surveys, improve the ability of statistical institutes to analyze household

survey data for policy needs, provide policy makers with data that can be used to understand

the determinants of observed social and economic outcomes [2]. Based on the concept of

money metric utility as a theoretical foundation [3], consumption expenditure is believed to

be appropriate for measuring welfare in households. In many developing countries, gathering

household income data that show greater variability over time is expensive and difficult [4].

Aggregate household expenditure tends to show less variability (or volatility), as compared to

household’s income. Deaton and Zaidi [4] state that annual expenditure that does not change

much over time can be estimated at cheaper cost through surveying two weeks of households’

consumption expenditure than household’s income. Based on data such as the LSMS-ISA,

aggregate expenditure is sub-aggregated in to food, non-food, durable goods, and housing cat-

egories for purposes of welfare analyses.

The value of house is a major component of the household’s aggregate expenditure. The

share of the value of house as a percentage of the aggregate expenditure varies by countries as

shown in Fig 1. Although these numbers are from different countries across different periods,

these numbers support the fact that the value of house represents a significant portion of the

household’s aggregate expenditure. The highest share is observed in Brazil (40%) followed by

Kyrgyzstan (29.6%). The lowest shares are reported in Panama (2.8%) and Ghana (2.5%). It is

expected that the figures might change when disaggregated by regions and districts. For

Fig 1. Percentage share of rental value of housing on overall household expenditure for different countries. Authors data set, and

Deaton and Zaidi [4].

https://doi.org/10.1371/journal.pone.0244953.g001
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example, Zereyesus et al. [5], indicate that in northern Ghana, following food expenditure,

house rent was ranked as the second highest category, forming 16% of household’s aggregate

expenditure.

Data show that a significant proportion of house ownership in a typical household survey is

self-owned. Deaton and Zaidi [4] observed that of all the household consumption aggregate,

the housing sub-aggregate is often one of the most problematic. Implicit rental values (i.e. val-

ues obtained by asking how much households would have paid if they were renting the house)

and hedonic pricing (using econometric model to predict house values) are common

approaches used to estimate the value for self-owned housing service in the World Banks’s Liv-

ing Standards Measurement Studies [4, 6, 7].

In hedonic pricing approach, the rental value of a house is modelled as a function of house

characteristics. The house characteristics are regressed on house rental values using the sub-

population of house renters. Using these parameterizations, the value of self-owned house rent

is predicted. Hedonic pricing is often predicted using an Ordinary Least Squares (OLS)

method with and without accounting for spatial autocorrelation effects (see [4, 8, 9–11]).

Machine Learning (ML) approaches may provide better out-of-sample predictive values

considering higher dimensionality of data structures. Vinod [12] noted that experiments con-

sistently supported a better prediction error by ML methods over OLS. Machine Learning

approaches are widely used in computer science field and have recently been adopted in the

statistics and economics fields [13–16]. Limsombunchai et al. [17] used OLS and ML method

(Artificial Neural Network) to predict the value of owning a house in New Zealand and found

that ML method was better in the prediction. Similarly, Do and Grudnitski [18] applied OLS

and Artificial Neural Network approach to predict the selling price of single-family homes in

San Diego, California, the United States of America. Their results indicated that the ML

method outperformed the OLS regressions in predicting the housing values. Picchetti [19] also

applied ML approach (Gradient Tree Boosting Algorithm) to estimate the residential property

prices and found that ML methods resulted in better out-of-sample predictions compared to

the OLS method. Recently, Yang [20] assessed the effect of fracking on housing prices using

both hedonic and machine learning (Random forest and Boosting) approaches and concluded

that ML methods can significantly improve prediction accuracy.

In this article, we aim to empirically examine Machine Learning (ML) approaches, shown

to uncover generalizable patterns [14] based on a given data, in reference to hedonic pricing

approach, to obtain a better overall prediction of rental value of house using multi-period

household-level survey data from three sub-Saharan Africa countries (Uganda, Tanzania, and

Malawi). The ML approaches evaluated are Ridge, LASSO, Tree, Random Forest, Bagging, and

Boosting. The hedonic pricing approach is implemented using a standard Ordinary Least

Squared (OLS) regression method. Recent developments in spatial autocorrelation analyses

(SEM and SAR) are applied to implement the OLS to account for spatial autocorrelation issues

[9–11]. As Athey [16] emphasizes, the goal is to predict, not to forecast, rental values of houses

in an independent dataset based on the realized values of household features. In our case, the

independent dataset would be the sample of non-rented households in the respective house-

hold survey data for the given year of data used from Uganda, Tanzania, and Malawi.

Besides, results from the study show that both the ML approaches and the hedonic

approach identified similar variables as determinants of rental values: the number of rooms,

availability of electricity, private tap water, and toilet characteristics. Judged by the Mean

Squared Error (MSE) performance, Random Forest, Boosting and Bagging regression outper-

formed in-sample prediction performances of all other ML and OLS approaches for all the

data sets. The OLS predictions outperformed Ridge, LASSO, and Tree regressions countries

and years. Boosting is the best model in predicting house rental values using out-of-sample
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data set for all the countries and all the years. Bagging, Random Forest, Ridge and LASSO also

outperformed OLS in out of sample prediction. Tree regression is the least performer in the

group.

The rest of the study is organized in the following manner. The next section provides an

account of the methodology used for the study providing brief review of the theoretical back-

ground of the hedonic pricing approach and the Machine Learning approaches. The section

on data documents the data used and provides descriptive analyses of the main variables used

for the estimations. The results and discussion section presents empirical estimation results

and discusses the performances of the hedonic approaches and ML approaches for in-sample

and out-of-sample predictions. The last section wraps up the study with the main findings and

conclusions and pointing for possible extensions of the current study.

Methodology

In his introductory note to the many of the novel machine learning tools, Varian [13] classified

data analysis in statistics and econometrics into 1) prediction, 2) summarization, 3) estimation,

and 4) hypothesis testing. The primary concern of ML is prediction. In ML, the focus is to find

some function that provides a good prediction of Y as a function of X. The vector X is referred

to as ‘predictors’ or ‘features’. In general, these ML methods deal with high-dimensional data

by shrinking some of the variables to zero and retaining the most important covariates.

Machine Learning methods perform better on modeling data with dimensionality problems

such as serial correlation [21, 22]; spatial correlation [23, 24]; small sample size problem [25,

26]; or a combination of all [27].

A practical concern that generally motivates the adoption of ML procedures is the potential

for severe overfitting in high-dimensional settings. To avoid over-fitting, most ML procedures

for “supervised learning” (that is, regression and classification methods used for prediction:

prediction of Y as a function of X) involve two key features, (i) regularized estimation and (ii)

data-driven choice of regularization parameters [28]. Varian [13] stated that ML overcomes

overfitting complexity of models using three ways: (1) regularization, penalizing for some

parameters to gain model simplicity, which in turn are more effective in prediction than com-

plex models; (2) dividing the data into training and testing, where training is used to fit the

model, while testing is considered as out-of-sample and used to evaluate performance of the

model; and (3) using a tuning measure that produces a best of out-sample prediction. K-fold

cross validation, which we elaborate later, is the most common and standard way to estimate

the tuning parameter.

Following is a brief review of the hedonic pricing approach and the various ML approaches.

Hedonic pricing approach

The hedonic pricing model has extensively been used to estimate the value of a commodity

including housing, properties, and agricultural crops [17, 29, 30] or to value environmental

quality, primarily to value environmental disamenities in urban areas including air pollution

and proximity to hazardous waste sites [31, 32]. Sirmans, Macpherson, and Zeitz [33] provide

a summary of the underlying theory and empirical applications of the hedonic pricing models.

The model is based on establishing a functional relationship between the value of housing and

individual attributes that comprise the house [33]. House attributes may include such charac-

teristics of a house as number of bedrooms, number of bathrooms, number of fireplaces, park-

ing facilities, living area and lot size that are implicitly embodied in goods and their observed

market prices [17, 34–37]. Consumers purchase goods that represent the bundles of attributes

that maximize their underlying utility functions [38].
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The hedonic pricing model decomposes the house price into characteristics such as interior,

exterior and others that have a bearing on the house sales price [39]. For the current study, the

rental value of a house is modelled as a function of housing characteristics [40]. The housing

characteristics are regressed on house rental values using the subpopulation of house renters.

Using these parameterizations, the value of self-owned house rent could then be predicted.

The hedonic price model, often implemented using an Ordinary Least Squares (OLS)

regression approach, takes the following general form:

Y ¼ b0X þ ε; ε � ð0; s2Þ ð1Þ

Where Y is the outcome variable (house rental value) in its natural log, X represents a vector

of explanatory variables, ε represents an nx1identically and independently distributed (IID)

error term, and β refers to the vector of parameters. The regression model is used to find the

optimal coefficient estimates that give the least squared errors.

Spatial correlation [23, 24] is an important consideration while modeling housing values.

Eq 1 could be extended in two ways to account for spatial effects [9]. First, various authors

develop a spatial autoregressive process represented by a spatial lag model (SAR) as follows [9–

11]:

Y ¼ rWY þ b0X þ ε; ε � ð0; s2Þ

where ρ is the spatial autoregressive coefficient, W is a square spatial weights matrix which

captures the definition of “neighborhood” chosen, and β0X and ε are as defined before. This W

contains the spatial relations among observations and controls for the impact of any house

rental value on neighboring house rental values across space. Second, the data generation pro-

cess can be represented by the spatial error model (SEM) if the autocorrelation occurs because

some omitted causal factors in the hedonic price function exhibit spatial autocorrelation in the

disturbance term ε. This implies that house rental price at any location in Eq (1) may also be

explained by the omitted variables at neighboring housing observations such that the error

term in Eq 1 is specified as ε = λWε+u, where λ is the coefficient on the spatially correlated

error structure and u is nx1 vector of iid errors uncorrelated with the observed explanatory

variables.

Bias-variance tradeoff

Based on the OLS estimations of the variable coefficients, suppose that our fitted model is

given by Ŷ ¼ b̂X. Relative to the actual values of Y, the Prediction Error (PE) at particular

point of X0 is given by:

PEðX0Þ ¼ EY=X¼X0
fðY � Ŷ Þ2jX ¼ X0g

After some manipulation of the above prediction error equation, the PE could be decom-

posed into the following parts as:

PEðX0Þ ¼ s�
2 þ Bias2ðŶ ðX0ÞÞ þ VarðŶ ðX0ÞÞ:

This decomposition is referred to as the bias-variance tradeoff. As more terms are added to

the model, the estimates are influenced by high variance. Hence, removing some variables

from the model may add little bias in the model but it may reduce the variance significantly,

which in turn reduces the PE. This bias-variance decomposition is at the core of ML models

such as Ridge and LASSO, which attempt to introduce bias into the regression solution, but

reduce the variance significantly as compared to the OLS solutions. While OLS regressions are
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known to provide unbiased coefficient estimates, the lower variance from such ML methods

produces better Mean Squared Error (MSE) results.

As stated previously, ML models generally partition the data into ‘training’ and ‘testing’

parts. The training data are used to build the model; while the testing data are used to test the

prediction power of the model. A K-fold cross-validation, an essential part of the tuning mea-

sure, is considered for model selection. During the cross-validation, the data set is divided ran-

domly into K-sections of equal sizes. A model is fitted using one set and the parameters from

the fitted model are used to predict for the rest, the K-1 section of the data. This process is exe-

cuted K-times, i.e. as many as the number of folds. The MSE at each K-fold predictions are cal-

culated, and the performance of the model is evaluated based on the average of the K-times the

MSE. A model with minimum average MSE over K-fold predictions is considered as the best

model for prediction. In other applications, Akaike Information Criteria (AIC), Bayesian

Information Criteria (BIC), and other methods can also be used for model selection. The

advantage of cross validation over BIC, AIC, and others is that it depends on fewer assump-

tions [13]. The detailed procedure on how K-fold cross-validation works can be found in

James et al. [41].

Machine learning approaches

The ML methods used in this article are Ridge regression, LASSO, Tree Regression, Bagging,

Random Forest and Boosting.

Ridge regression. Ridge regression is an extension of the OLS in that it minimizes the

MSE by applying a penalty parameter, which depends on the complexity of the model. Ridge

model is specified as:

Minimize
P

iðYi � bXiÞ
2
þ l
P

jbj
2

ð2Þ

where λ represents the penalty parameter. When λ = 0, Ridge is equivalent to OLS.

Least absolute shrinkage and selection operator regression. Unlike in the Ridge, the

Least Absolute Shrinkage and Selection Operator (LASSO) penalizes the summation of the

absolute value of the coefficients in. The LASSO model is given by:

Minimize
P

iðYi � bXiÞ
2
þ l
P

jjbjj ð3Þ

The LASSO reduces some of the coefficients to zero. Ridge is chosen over LASSO when

many explanatory variables have small impact on the outcome variable. LASSO is chosen over

Ridge when some explanatory variables have large effect on the outcome variable. We assign

values to λ, and calculate the cross-validation errors at each value of λ [17, 28]. Mean Square

Error is drawn against various values of λ and the model that provides minimum Mean Square

Error is selected for the analysis.

Tree regression. Unlike the previous ML approaches, Tree Regression is a non-paramet-

ric approach that does not require specification of any particular functional form. It splits the

data into subtrees based on the variable that best explains the data. It keeps dividing the data

into subtrees until (1) there is single observation in each subtree, (2) all data in the subtree are

identical, or (3) number of subtrees can be determined by the practitioner.

The model for the regression tree is given by:

Y ¼
P

nbn1ðX�RnÞ ð4Þ

The indicator 1(X�Rn) is a dummy variable with a value of X = 1 if the variable is with sub-

tree n, and 0 otherwise. The βn is the mean value of the dependent variable of the data in
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subtree n. The mean value serves as the predicted value of the dependent variable from new

explanatory variables. Tree Regression is applied when the response variable is continuous

(e.g. rental value of house). However, when the response variable is discrete, then the model is

called classification tree. Tree regression holds any number of variables [42]. In a linear regres-

sion model, the entire data set is represented using the same parameters. However, in Tree

Regression, splitting the data set helps to fit the model using relatively homogenous data set.

Data partitioned to relatively homogenous level avoids or reduces degree of collinearity and

may potentially fit well when the response variables have non-linear or more complex relation-

ship with the explanatory variables. Tree Regression may not perform well with small sample

data. Moreover, linear model may perform well when the dependent variable has generally lin-

ear relationship with the explanatory variable. To overcome these potential challenges in Tree

Regression, various tree families (Bagging, Random Forests, and Boosting) have been devel-

oped as discussed below.

Bagging. Bagging is another type of Tree Regression applied to reduce potentially high

variance using a bootstrapping method [43]. Bagging arises to overcome the problem of high

variance (due to small sample size) by Tree Regression. Generally, bootstrapping, a repetitive

random sampling with replacement, reduces variance of the parameter of estimates [43]. Fit-

ting the prediction model using two randomly partitioned training data sets may give diverse

outcomes (high variance), which leads to lower quality predictions. To overcome this problem,

Bagging, that potentially form large group of training data set for regression tree through ran-

dom resampling with replacement yields low variance prediction results [41]. One of the draw-

backs for Bagging is that it may not perform well when the predictive power of some of the

Bagging Regressions are much better than others. Variables that are less important or weak

covariates in the regression yields high variance during bootstrapping, which in turn leads to

poor prediction. An ML method that comes to overcome this challenge is the Random Forest.

Random forests. Random Forest provides better predictions when there are highly corre-

lated explanatory variables. Although Random Forest follows similar procedures as Bagging, it

is possible that strong covariates could be chosen at random. The foundation of Random For-

est rests on randomly picking a certain number of the explanatory variables at each sampling.

A more detailed theoretical and practical application of Random Forest can be found in Liaw

and Wiener [44] and Breiman [45]. Randomly selecting part of the predictors results in a

much different outcome than Bagging, which uses the sample explanatory variables at each

sampling. The underlining assumption is that average outcomes of unrelated results may bring

larger variance reduction than averaging similar results. For example, James et al. [41] argued

that averaging various uncorrelated quantities offer much less variance compared to highly

correlated quantities. By picking only part of the available predictors, Random Forest helps to

overcome overfitting problem due to a large number of covariates [45]. A drawback of Ran-

dom Forest is that picking only relatively less strong covariates, but not strong explanatory var-

iables, may lead to largely poor predictions.

Boosting. Unlike Random Forest, that build trees independent of each other, Boosting,

another type of Tree Regression, builds the trees sequentially [28, 41]. Each previous tree has

substantial effects on the construction of the following tree. Each tree is built using the infor-

mation from the previous created tree. Later, a tree is fitted to the residuals, instead of the out-

come variable of the former tree, then the errors are updated by adding the new decision tree

to the fitted function. This continuous fitting of data over the error terms shrinks the variance

of the model, which in turn results in good prediction [41]. This strategy avoids fitting a large

single tree in to the data that potentially reduces the possibility of overfitting the data. Unlike

the other tree families, Varian [13] indicated that Boosting is useful for any functional forms

(linear, non-linear, logistic, etc.). Boosting is less sensitive to changes in training data set [44,
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46]. It is important to point out here that heterogeneity of data may cause users to question the

results of the regression. Freund and Schapire [46] caution that the fact that Boosting retains

the properties of the previous regression, may unnecessarily dictate the behavior of the follow-

ing fitting data set.

Data

Data used in the article comes from the nationally representative Living Standards Measure-

ment Study (LSMS) of household level surveys compiled by the World Bank collected in 2010/

2012, 2014/2016, and 2014/2016, in Uganda, Tanzania, and Malawi, respectively. The use of

data from these three countries is mainly based on the availability of the data set and the com-

pleteness of the variables used to achieve the objectives of the current study. Information from

surveyed households pertaining to rental values and other variables of interest describing the

location, quality of housing, and other features was extracted from the survey data for use in

the current article. The number of houses that were rented out during the survey in each sur-

vey year, by country, form the basis of the sample sizes for the analyses. In Uganda, the sample

sizes are 242 and 263 in the years 2010 and 2012, respectively. In Tanzania, the sample sizes

are 873 and 1,363 in the years 2014 and 2016, respectively. In Malawi, the sample sizes are 662

and 1,479 in the years 2014 and 2016, respectively (Table 1). The rental monetary values from

the domestic currency in each of the countries is converted to a United States Dollar to facili-

tate easier comparison and analyses of results. The year 2012 is taken as a base year and the

rental value of each year is converted to the year 2012 prices. Districts provide some level of

administrative subdivisions in the respective countries. There are 66 districts, 9 districts, and

32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

Table 1 contains descriptive statistics of key variables used in the analyses. The explanatory

variables included in the OLS model and the features in the ML models are selected based on

their perceived relationship with the house rental price as supported by economic theory and

housing economic literature (e.g. [4, 6, 47]). The average rent amount in each country does

not vary significantly over the years. The rental rate per month in U.S. Dollars is around $22

for Uganda and Tanzania. There is higher monthly rent variation in Uganda (standard devia-

tion of $36.20 in the year 2012) as compared to Tanzania (standard deviation of $21.30 in the

year 2014). In Malawi, the mean monthly rental rates are $20.34 with a standard deviation of $

$23.37 in year 2014, and $17 with a standard deviation of $19.96 in year 2016. The majority of

houses in all countries have roofs, floors, and external walls made up of mud. The average

number of rooms per house ranged from 1.61 in Tanzania in year 2014 to 2.25 in Malawi in

2016. Percentage of households with access to electricity ranged from 37 to 59%. The types of

water sources include private tap water, public tap water, borehole water, protected well water,

and unprotected water. There is no consistent pattern in the type of water source used in the

three countries. Public tap water in Uganda (47%) and Malawi (27%) and protected well water

in Tanzania (25%) are relatively dominant sources of water used. The type of toilets available

are covered private and shared toilets, VIP and uncovered latrine toilets, and flush toilets. The

main type of toilet for both years in Uganda is shared toilet (61%) but it varies by year in Tan-

zania and Malawi. In the year 2014, VIP latrine type of toilet turned out to be the main type of

toilet in Malawi.

Results and discussions

The manuscript aims to examine multiple ML approaches (i.e. Ridge, LASSO, Tree, Random

Forest, Bagging, and Boosting) and hedonic pricing approach to predict house rental values.

The estimations of both the hedonic and ML models are carried out in R statistical software.
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The detailed R package commands for ML are presented in James et al. [41]. Model diagnostic

tests of the hedonic pricing model is presented first. The determinants of house rental values

are presented next, followed by in-sample and out-of-sample predictions.

Hedonic pricing model diagnostic tests

To avoid the influence of outliers on the estimated regression coefficients, data points falling

below and above three standard deviations of the mean in each dataset are removed prior to

estimations. For example, the mean rental rate in Uganda in the year 2010 for the 6 observa-

tions flagged as outliers is $104 US dollars, which is higher than the mean value of $22 US dol-

lars by more than 3 standard deviations. To test the severity of multicollinearity in the OLS

regression, a Variance Inflation Factor (VIF) is used. Results show that the VIF indexes of the

variables are below 4, except for the variables ‘bore hole water’ ‘public tap water’ and ‘protected

well water’ in the Uganda data exceeding 5 but still less than 10. The null hypothesis of homo-

scedasticity (constant variance) is assessed based on the standard Breusch-Pagan test at a sig-

nificance level of 5% [48]. Results showed that the null hypothesis of constant variance is not

rejected for all models except in the dataset for 2014 in Tanzania and both years in Malawi. To

overcome heteroscedasticity, predictions using the hedonic pricing model for the year 2014 in

Tanzania and both years in Malawi are done by applying generalized weighted least squared

regression methods.

Hedonic pricing models are also prone to spatial correlation [23, 24] especially when loca-

tion is an important factor such as in the current study. Lack of adequate treatment of spatial

dependence in the estimation of the hedonic pricing models could result in faulty results. We

tested spatial autocorrelation in the model using Moran’s I test [32]. We tested the spatial

dependence using univariate Moran’s I for the dependent variable, housing rental value. The

spatial distribution of the households is measured using geolocation of the houses based on the

longitude and latitude coordinates. We used arc distance in kilometers to measure the close-

ness of the households. Results indicated that we reject at the 1% significance level that the null

hypothesis of no spatial dependence (significant Moran’s I) across all years and countries of

study To account the presence of spatial autocorrelation[49], we implemented both the spatial

lag model (SAR) the spatial error model (SEM) outlined in the methodology section [9–11].

Determinants of house rental values

Tables 2–4 present the results from the OLS and various machine-learning approaches used in

the article to estimate the determinants of house rental values in Uganda, Tanzania and

Malawi. The significance of the explanatory variables in the OLS models, including the SAR

and SEM specifications, are consistent in the two periods for the three countries providing

robust estimates for the determinants of house rental values in these countries. We chose to

include the OLS results in Tables 2–4 from the model specifications without the spatial auto-

correlation only in the interest of space, although the results of the prediction performances of

all specifications are presented later in Tables 9–11. District fixed effect variables are used in

the estimation of the models and the specific results for these variables are not reported in the

tables in the interest of space. In Uganda, factors that are significantly associated with house

rental values are number of rooms, availability of electricity, floor, water characteristics and

flush toilet (Table 2). In Tanzania, number of rooms, availability of electricity, water, and toilet

characteristics, are significantly associated with the house rental values (Table 3). In Malawi,

roof, number of rooms, electricity, toilet, and water characteristics are significantly associated

with the house rental values (Table 4). None of the other explanatory variables is significantly

associated with the dependent variables in any of the three countries.
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Of the significantly associated variables, for example, house rent increases with the increase

of number of rooms. If the number of rooms is increased by one, average monthly aggregate

house rent increases by about $0.36–6.43 in Uganda, $0.66–0.80 in Tanzania, and $0.41–0.50

in Malawi. The effect of electricity on house rent is also positive. Rental values of houses with

access to electricity are higher by $0.50–0.60 per month in Uganda, $0.54–0.64 in Tanzania,

and $0.71–0.82 in Malawi. These results imply the essence of electricity for household purposes

(e.g. lighting, cooking, etc.), mechanizations (farming and non-farming), and communication

and other purposes [50]. Private tap water is also positively associated with the value of house

rent in all the three countries. On average, a house rent in dwellings with a private water tap

are higher by $2.36 in the year 2010 in Uganda, by $0.15 in the year 2014 in Tanzania, and by

$0.58 in the year 2014 in Malawi. North and Griffin [51] found that households value in-house

piped water sources higher than any other house characteristics which is in agreement with

the results of the current work. Rental houses increase with access to clean water because more

households want to stay closer to clean water [52].

Mullainathan and Spiess [14] noted that machine learning algorithms are not built for

parameter estimation and hence the estimated regression coefficients are rarely consistent.

The results of the estimated coefficients from the ML approaches are estimated with this caveat

in mind. However, in general, results from the Ridge ML regression models show that most of

the estimated coefficients of the explanatory variables are smaller in magnitude compared to

the OLS coefficients (Tables 2–4). This is consistent with the literature [41] in that Ridge

regression shrinks the estimated coefficients and reduces the variance resulting in increased

predictive power of the covariates. Similarly, the LASSO regression approach shrinks the vari-

able estimates, and, in some cases, the coefficients are reduced to zero. When the estimated

variable coefficients are zero, then the variables may not play a role in predicting the value of

Table 1. Summary statistics of variables used in the house rental value predictions.

Variable Definitions Mean values (standard deviations)

Uganda Tanzania Malawi

2010 2012 2014 2016 2014 2016

Annual rent Rent paid per month in dollar 22.18 (25.25) 23.46 (36.20) 17.89 (21.30) 22.65 (24.20) 20.34 (23.37) 17.39 (19.96)

Dwelling 1 if the room is located within a house, 0 otherwise 0.65 (0.46) 0.66 (0.46) 0.30 (0.40) 0.37 (0.48) 0.92 (0.28) 0.92 (0.27)

Roof 1 if roof type is mud, 0 otherwise 0.92 (0.27) 0.95 (0.26) 0.95 (0.25) 0.96 (0.25) 0.86 (0.35) 0.89 (0.31)

Floor 1 if floor is mud, 0 otherwise 0.68 (0.46) 0.34 (0.46) 0.22 (0.41) 0.91 (0.41) 0.80 (0.41) 0.77 (0.41)

External wall 1 if external wall is in mud, 0 otherwise 0.70 (0.45) 0.68 (0.45) 0.54 (0.45) 0.63 (0.48) 0.95 (0.21) 0.97 (0.18)

Number of rooms Number of rooms rented 1.86 (1.12) 1.84 (1.16) 1.68 (0.91) 1.61 (0.92) 2.09 (0.97) 2.25 (0.98)

Electricity 1 if the house has electricity, 0 otherwise 0.35 (0.48) 0.37 (0.49) 0.53 (0.50) 0.59 (0.49) 0.42 (0.50) 0.44 (0.49)

Water sources

Private tap water 1 if private tap water source, 0 otherwise 0.03 (0.16) 0.07 (0.25) 0.12 (0.32) 0.56 (0.50) 0.14 (0.35) 0.43 (0.49)

Public tap water 1 if public tap water source, 0 otherwise 0.07 (0.26) 0.47 (0.49) 0.12 (0.33) 0.26 (0.44) 0.27 (0.44) 0.28 (0.45)

Bore hole water 1 if bore hole water source, 0 otherwise 0.47 (0.50) 0.19 (0.39) 0.07 (0.25) - 0.31 (0.46) 0.23 (0.42)

Protected well water 1 if protected well water source, 0 otherwise 0.18 (0.39) 0.13 (0.34) 0.25 (0.43) 0.09 (0.29) 0.04 (0.28) 0.04 (0.20)

Unprotected water 1 if unprotected well water, 0 otherwise 0.14 (0.35) 0.10 (0.25) 0.13 (0.34) 0.08 (0.28) 0.20 (0.40) 0.01 (0.11)

Covered private toilet 1 if covered private toilet, 0 otherwise 0.16 (0.37) 0.17 (0.37) 0.04 (0.19) - 0.16 (0.37) -

Cover shared toilet 1 if covered shared toilet, 0 otherwise 0.61 (0.49) 0.62 (0.48) 0.25 (0.43) - 0.05 (0.22) -

VIP latrine private toilet 1 if VIP private toilet, 0 otherwise 0.02 (0.13) 0.08 (0.26) 0.05 (0.22) 0.06 (0.23) 0.64 (0.48) 0.09 (0.29)

Pit latrine 1 if pit latrine, 0 otherwise - - 0.48 (0.31) 0.76 (0.42)

Flush toilet 1 if flush toilet, 0 otherwise 0.12 (0.19) 0.42 (0.38) 0.13 (0.34)

Observations 242 263 873 1363 662 1,479

https://doi.org/10.1371/journal.pone.0244953.t001
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Table 2. Determinants of housing rental values based on Ordinary Least Squares (OLS), LASSO, and ridge regressions models in Uganda.

Variables+ 2010 2012

OLS Ridge LASSO OLS Ridge LASSO

Constant 1.66 1.78 1.77 1.09 (55.60) 1.98 1.70

Dwelling 0.40 (0.18) 0.16 0.11 0.22 (0.14) 0.08 0.13

Roof -0.38 (0.33) 0.01 - 0.23 (0.73) -0.27 -0.09

Floor 0.64�� (0.24) 0.28 0.29 0.01 (0.09) -0.08 -

External wall 0.32 (0.22) 0.28 0.29 0.40�� (0.18) 0.29 0.37

Number of rooms 0.36�� (0.18) 0.22 0.12 6.43�� (2.34) 0.39 0.53

Electricity 0.60��� (0.16) 0.38 0.49 0.50��� (0.11) 0.42 0.49

Private tap water 2.36��� (0.85) 0.94 1.15 0.29 (0.30) 0.31 0.20

Public tap water -0.15 (0.41) 0.22 - 0.05 (0.24) 0.07 -

Bore hole water -0.13 (0.30) 0.04 - -0.58� (0.33) -0.42 -0.56

Protected well water 0.02 (0.39) -0.05 - 0.25 (0.26) 0.20 0.13

Unprotected water -0.04 (0.33) -0.01 - -0.87�� (0.36) -0.54 -0.74

Covered private toilet 0.42 (0.79) -0.13 - 0.63� (0.32) 0.17 0.21

Cover shared toilet 0.53 (0.75) -0.02 - 0.40 (0.28) 0.02 0.04

VIP latrine toilet 0.22 (1.01) 0.09 - -0.14 (0.45) -0.34 -0.38

Flush toilet 0.62 (0.75) 0.06 - 1.29��� (0.49) 0.86 0.87

R2 0.75 0.41

+ District fixed effect variables are used in the estimation of the models and the specific results for these variables are not reported in the Tables in the interest of space.

There are 66 districts, 9 districts, and 32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

https://doi.org/10.1371/journal.pone.0244953.t002

Table 3. Determinants of housing rental values based on Ordinary Least Squares (OLS), LASSO, and ridge regressions models in Tanzania.

2014 2016

Variables+ OLS Ridge LASSO OLS Ridge LASSO

Constant 1.65 (0.13) 1.82 1.68 1.34��� (0.24) 1.77 1.33

Roof -0.63 (0.11) -0.53 -0.52 -0.73 (0.14) -0.66 -0.72

Floor -0.16 (0.07) -0.21 -0.21 -0.28 (0.08) -0.32 -0.28

External wall 0.42 (0.05) 0.40 0.44 - 0.11 -0.00

Number of rooms 0.66��� (0.05) 0.60 0.61 0.80��� (0.05) 0.72 0.80

Electricity 0.64��� (0.05) 0.62 0.70 0.54��� (0.05) 0.50 0.50

Private tap water 0.15� (0.09) 0.14 0.10 0.10��� (0.05) 0.05 -

Public tap water -0.15 (0.11) -0.19 - 0.31��� (0.09) -0.15 -0.20

Protected well water -0.27 (0.18) -0.29 -0.13 -0.04 (0.12) 0.12 0.05

Unprotected water -0.15 (0.12) -0.16 -0.05 - 0.12 0.09

VIP latrine toilet -0.18 (0.11) -0.17 -0.04 0.89��� (0.24) 0.32 0.80

Flush toilet 0.03 (0.11) 0.05 0.01 0.72��� (0.22) 0.19 0.63

Pit latrine 0.14 (0.10) 0.15 0.10 0.49�� (0.22) -0.01 0.40

Private toilet -0.16 (0.13) -0.19 -0.07 - - -

Shared toilet -0.31��� (0.07) -0.30 -0.22 - - -

R2 0.75 0.58

+District fixed effect variables are used in the estimation of the models and the specific results for these variables are not reported in the Tables in the interest of space.

There are 66 districts, 9 districts, and 32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

https://doi.org/10.1371/journal.pone.0244953.t003
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the dependent variables. In Uganda, the variable estimates that were reduced to zero under

LASSO regression are roof (in the year 2010), floor (in the year 2012), public tap water, bore

hole water, protected well water, covered private toilet, covered shared toilet, VIP latrine, and

flush toilet (in the year 2010). In Tanzania, the estimated coefficient values of public tap water

(in the year 2014) and private tap water (in the year 2016) are reduced to zero. For Malawi, the

variables with zero estimated coefficients in the year 2014 under LASSO regression are exter-

nal wall, borehole water, protected water well, VIP and pit latrine type of toilet. Variables that

are reduced to zero in the year 2016 under LASSO estimation are public water tap, and VIP

latrine type of toilet.

Unlike OLS, Ridge, and LASSO, the other ML approaches (i.e. the Regression Tree, Bag-

ging, Random Forest, and Boosting) do not provide the estimated coefficients. With the

Regression Tree method, the prediction of the house rental values is done by using the mean

of the group at each node of the tree. For example, in Uganda, variables selected in the Regres-

sion Tree by rank are availability of electricity, and number of rooms (Fig 2). The figures of the

results for the rest of the Regression Trees for other countries and years are not presented here

in the interest of space. For Uganda, the variables selected in the Regression Tree in the year

2010 by rank are availability of electricity, floor, and number of rooms. Regression Tree is

highly criticized in that changing the data slightly brings substantial change in tree construc-

tion [41]. The variables used in the Regression Tree in Tanzania are electricity, number of

rooms, and external wall in the year 2014; and number of rooms, electricity, and dwelling in

the year 2016. In Malawi, variables such as electricity, private water tap and district 16 in 2014;

and electricity, flush toilet, and roof in 2016 are used in the Tree Regression.

As previously stated, the Bagging method is an extension of the Regression Tree. We con-

struct numerous trees through resampling multiple times from the same data (i.e. bootstrap-

ping) and then we average the entire prediction. In each Bagging, 500 trees are created using

all of the variables. Results from the Bagging are presented in Tables 5–7 for the three

Table 4. Determinants of housing rental values based on Ordinary Least Squares (OLS), LASSO, and ridge regression models in Malawi.

Variables+ 2014 2016

OLS Ridge LASSO OLS Ridge LASSO

Constant 1.29��� (0.21) 1.44 1.36 1.57�� (0.25) 1.57 1.43

Dwelling - 0.30 0.30 -0.01 (0.12) 0.06 0.01

Roof 1.11�� 0.18 0.12 0.34 (0.10) 0.29 0.30

Floor - -0.15 -0.11 -0.15 (0.06) -0.15 -0.14

External wall 0.14 (0.13) 0.11 - 0.17 (0.12) 0.15 0.09

Number of rooms 0.50��� (0.07) 0.42 0.42 0.41��� (0.05) 0.40 0.40

Electricity 0.82��� (0.08) 0.58 0.69 0.71��� (0.05) 0.67 0.72

Private tap water 0.58��� (0.18) 0.49 0.47 0.14��� (0.20) 0.17 0.15

Public tap water 0.24��� (0.09) 0.17 0.09 0.01 (0.20) 0.02 -

Bore hole water -0.12 (0.19) 0.03 - -0.22 (0.20) -0.18 -0.18

Protected well water 0.06 (0.14) 0.05 - -0.07 (0.22) -0.08 -0.04

Unprotected water 0.55 (0.41) 0.41 0.09 -0.21 (0.28) -0.17 -0.10

VIP latrine toilet 0.13 (0.13) 0.04 - 0.24 (0.15) -0.07 -

Flush toilet 0.26 (0.17) 0.26 0.20 0.86��� (0.16) 0.52 0.61

Pit latrine - -0.05 - 0.14 (0.14) -0.18 -0.07

R2 0.75 0.65

+District fixed effect variables are used in the estimation of the models and the specific results for these variables are not reported in the Tables in the interest of space.

There are 66 districts, 9 districts, and 32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

https://doi.org/10.1371/journal.pone.0244953.t004
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countries. The results from the Bagging regression are ordered according to their importance

in the prediction process. For example, in the year 2010 in Uganda, the four top most variables

used during the Bagging regression by rank are electricity, external wall, floor and number of

rooms (Table 5). The arrangement of variables varies by year and by country of analysis (see

Tables A1 and A2 in S1 Appendix).

Random Forest is similar to Bagging, but instead of averaging all the predictors, the

approach selects some of the predictors via random selection to perform the prediction.

Results of the Random Forest regressions for Uganda are shown in Table 6. The top four vari-

ables randomly selected under Random Forest in Uganda are electricity, external wall, floor

and district 20 in the year 2010 (Table 6); and are electricity, district 20, number of rooms and

flush type of toilet in the year 2012 (Table 6). Results of the Random Forest regressions for

Tanzania (Table A3 in S1 Appendix) and Malawi (Table A4 in S1 Appendix) are reported in

the S1 Appendix in the interest of space.

The results from the Boosting Regression, which is another extension to the Tree Regres-

sion, are presented in Table 7. The estimation output from the Boosting Regression are

arranged in order of their importance to the prediction process. For instance, in Uganda in the

year 2010, the top three variables used in Boosting by order of importance are private tap

water, electricity, and number of rooms; whereas the four variables that are not used for pre-

diction in the Boosting regression are VIP private latrine, flush toilet, and a district informa-

tion (Table 7). A number of variables are not used in the Boosting Regression of different

countries and in different years as shown in Tables A5 and A6 in the S1 Appendix.

In-sample prediction

The main strength of ML approaches is their predictive capability. Machine Learning

approaches outperform OLS regression, especially when the number of determinants is large

[53]. The Mean Squared Error and R Squared are two of the methods used to compare the pre-

diction performance between the ML approaches and the standard OLS regression. The Mean

Squared Error is used to compare the results of the ML approaches and the standard OLS

regression. The model with minimum average MSE of the predictions is considered as the best

Fig 2. Tree regression in Uganda for 2012.

https://doi.org/10.1371/journal.pone.0244953.g002
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Table 5. List of explanatory variables by importance in predicting housing rental values using bagging regression in Uganda.

Variable+ Relative information Variable Relative information

2010 2012

Electricity 22.68 Electricity 28.51

External wall 12.20 Number of rooms 13.34

Floor 10.98 District 20 13.09

Number of rooms 10.09 Flush toilet 7.49

Private water tap 7.09 External wall 5.56

District 20 6.67 Floor 5.32

Dwelling 6.12 Dwelling 4.83

District 64 2.86 District 64 3.55

Public tap water 2.60 Unprotected well 3.53

Flush toilet 2.31 Private water tap 3.44

Borehole water 2.14 Borehole water 2.93

District 27 2.07 Public water tap 2.71

District 33 1.79 Shared toilet 2.65

Unprotected well 1.75 Private toilet 2.01

Private toilet 1.66 Protected well 2.00

Protected well 1.66 District 41 1.90

District 32 1.54 District 37 1.74

Shared toilet 1.54 VIP toilet 1.64

District 37 1.52 District 51 1.36

Roof 1.22 District 4 1.04

+ District fixed effect variables are used in the estimation of the models and the specific results for these variables are not reported in the Tables in the interest of space.

There are 66 districts, 9 districts, and 32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

https://doi.org/10.1371/journal.pone.0244953.t005

Table 6. List of explanatory variables by importance in predicting housing rental values using random forest regression in Uganda.

Variable+ Relative information Variable Relative information

2010 2012

Electricity 11.20 Electricity 7.89

External wall 8.46 District 20 4.43

Floor 6.83 Number of rooms 3.63

District 20 5.44 Flush toilet 3.08

Private tap water 3.87 Private water tap 2.63

Number of rooms 3.62 External wall 2.25

Dwelling 2.97 Floor 2.06

Public tap water 2.70 Unprotected water 1.99

Borehole water 1.93 Borehole water 1.58

Protected well 1.49 Public tap water 1.20

Private toilet 1.34 District 4 1.09

Roof 1.22 District 37 0.99

District 37 1.13 District 41 0.82

District 64 1.08 dwelling 0.72

District 37 1.00 Private toilet 0.49

District 55 0.91 Shared toilet 0.47

Flush toilet 0.79 Protected well 0.45

+ District fixed effect variables are used in the estimation of the models and the specific results for these variables are not reported in the Tables in the interest of space.

There are 66 districts, 9 districts, and 32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

https://doi.org/10.1371/journal.pone.0244953.t006
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model for prediction. The MSE results for the ML approaches are presented as a proportion of

the MSE of the OLS model such that the MSE of the OLS model will be equal to 1. The results

of the in-sample prediction comparisons of these models is presented in Table 8.

An overall performance score is developed to rank the ML approaches in relation to the

OLS approach. The score is developed by adding the number of instances the MSE in each

year of analysis is lower than the MSE of the OLS model. Then, this number is divided by 6

(for a total of 6 comparisons with 3 countries and 2 years) and then multiplied by 100. The

score ranges from 0 to 100% and the higher the percentage, the better the performance. A 50%

threshold is used to determine whether a particular model outperformed the OLS predictions.

A score of 50% indicates that the model outperformed the OLS model in 3 out of the 6 datasets,

indicating that both models are equally preferred. The overall performance score is shown in

the last column of Table 8. Based on this score, Boosting, Bagging, Random Forest Regression

outperformed all other ML and OLS approaches for all the data sets. Ridge, LASSO and Tree

Regressions have been outperformed by the OLS in-sample predictions in all countries and all

years.

Out-of-sample prediction

As previously mentioned, ML approaches are believed to provide better out-of-sample predic-

tive values considering higher dimensionality of data structures. The results of out-of-sample

prediction performance of the models are presented in Tables 9–11.

Table 7. List of explanatory variables by importance in predicting housing rental values using boosting regression in Uganda.

Variable+ Relative information Variable Relative information

2010 2012

Private water tap 25.78 Electricity 24.00

Electricity 21.56 Private water 23.85

Number of rooms 18.45 Number of rooms 19.87

District 20 9.41 District 22 9.77

Public water tap 8.15 Public water tap 6.27

Protected well 5.72 Protected well 5.57

Dwelling 4.18 Dwelling 4.17

Floor 2.41 Floor 2.78

Shared toilet 1.82 External wall 1.70

External wall 1.36 Shared toilet 1.45

District 64 0.66 District 68 0.33

Private toilet 0.18 Private toilet 0.16

Borehole water 0.16 Uncovered latrine 0.05

Roof 0.09 Bore hole 0.02

Uncovered latrine 0.04 VIP shared latrine 0.01

VIP shared latrine 0.02 Unprotected well 0.01

Unprotected well 0.01 roof 0.00

VIP private latrine 0.00 VIP private latrine 0.00

Flush toilet 0.00 Flush toilet 0.00

District 1 0.00 District 1 0.00

District 2 0.00

+District fixed effect variables are used in the estimation of the models and the specific results for these variables are not reported in the Tables in the interest of space.

There are 66 districts, 9 districts, and 32 districts included in the data from Uganda, Tanzania, and Malawi, respectively.

https://doi.org/10.1371/journal.pone.0244953.t007
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Tables 9 and 10 contain results of the spatial lag model (SAR) and the spatial error model

(SEM) respectively. These tables present the standardized MSE values of the OLS and the ML

approaches. Overall, except Tree Regression, all ML methods are preferred to the OLS model

in predicting house rental values using an out-of-sample data set for all of the countries and

years. Boosting Regression is superior to OLS in terms of out-of-sample predictions in all of

the datasets. Ridge, LASSO, Bagging, and Forest Regression outperformed OLS in most of the

datasets.

An overall performance score is also developed for the out-of-sample predictions. The

results of such overall performance score comparisons are presented in the final columns of

Tables 9–11. Based on this score, Boosting is the top performer in terms of out-of-sample pre-

dictions, followed by Bagging, Random Forest and Ridge and LASSO Regressions. Unlike in

the in-sample predictions, Ridge and LASSO regressions performed better than OLS in the

out-of-sample predictions. Tree Regression is again the least performer in the group.

Conclusion and recommendation

Housing value is a major component of the household’s aggregate expenditure, a commonly

used metric for welfare analysis. Data shows that a significant proportion of households in a

typical household survey, adopted by the Word Bank are self-owned, and predicting the true

market price of housing service are crucial to obtain true assessment of economic well-being.

Table 8. In-sample prediction performances based on standardized mean squared errors of predicting housing rental values by country and years of analysis.

Uganda Tanzania Malawi Overall performance score

2010 2012 2014 2016 2014 2016

OLS+ 1.00 1.00 1.00 1.00 1.00 1.00 -

Ridge 1.03 1.01 1.01 1.01 1.01 1.01 0%

LASSO+ + 1.03 1.01 1.01 1.01 1.01 1.01 0%

Tree 0.95 0.98 1.06 1.59 1.13 1.07 33%

Bagging 0.94 0.93 0.97 0.68 0.91 0.98 100%

Forest 0.71 0.89 0.94 0.51 0.77 0.90 100%

Boosting 0.86 0.90 0.88 0.48 0.76 0.89 100%

+ OLS = Ordinary Least Squares
+ +LASSO = Least Absolute Shrinkage and Selection Operator.

https://doi.org/10.1371/journal.pone.0244953.t008

Table 9. Out-of-sample prediction performances based on standardized mean squared errors of predicting housing rental values by country and by year, account-

ing spatial lag autocorrelation (SAR).

Uganda Tanzania Malawi Overall performance score

2010 2012 2014 2016 2014 2016

OLS+ 1.00 1.00 1.00 1.00 1.00 1.00 -

Ridge 0.94 0.98 0.99 0.96 0.95 1.01 83%

LASSO+ + 0.88 0.96 0.99 0.88 0.95 1.01 83%

Tree 0.83 0.86 1.11 1.59 1.12 1.06 33%

Bagging 0.78 0.83 0.97 1.28 0.87 0.91 83%

Forest 0.82 0.91 1.00 0.80 0.84 0.89 83%

Boosting 0.87 0.88 0.96 0.95 0.86 0.91 100%

+OLS = Ordinary Least Squares
+ +LASSO = Least Absolute Shrinkage and Selection Operator.

https://doi.org/10.1371/journal.pone.0244953.t009
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Several Machine Learning approaches (Ridge, LASSO, Tree, Random Forest, Bagging, and

Boosting), in reference to hedonic pricing approach, are evaluated in this article for the pur-

pose of predicting the rental values of housing in household level survey data from three sub-

Saharan countries (Uganda, Tanzania, and Malawi).

Results from the OLS specifications and various machine-learning approaches used to esti-

mate the determinants of house rental values in Uganda, Tanzania, and Malawi are presented.

The significance of the explanatory variables in the OLS models are consistent across all the

data sets providing robust estimates for the determinants of house rental values in these coun-

tries. Most variables selected by all the ML approaches are similar with what the OLS regres-

sion identified as determinants of rental values: the number of rooms, availability of electricity,

private tap water, and toilet characteristics.

The Mean Squared Error (MSE) is used to compare the prediction performance of the ML

approaches and the OLS regressions. The model with minimum average MSE of the predic-

tions is considered as the best model for prediction. In general, Boosting is the best model in

predicting house values using out-of-sample data set for all the countries and all the years.

Tree is the least performer in the group. Although hedonic pricing models using OLS regres-

sion provide consistent and reliable predictions of house rental values, especially when the sta-

tistically properties (e.g. consistency and unbiasedness of estimated coefficients) of the

Table 10. Out-of-sample prediction performances based on standardized mean squared errors of predicting housing rental values by country and by year, account-

ing for spatial error autocorrelation (SEM).

Uganda Tanzania Malawi Overall performance score

2010 2012 2014 2016 2014 2016

OLS+ 1.00 1.00 1.00 1.00 1.00 1.00 -

Ridge 0.93 0.92 1.01 0.89 0.96 1.01 66%

LASSO+ + 0.92 0.93 1.01 0.96 0.95 1.01 66%

Tree 0.88 0.86 1.13 1.30 1.13 1.05 33%

Bagging 0.86 0.76 0.99 0.89 0.88 0.92 100%

Forest 0.83 0.82 1.00 0.88 0.83 0.89 83%

Boosting 0.91 0.84 0.97 0.99 0.88 0.92 100%

+OLS = Ordinary Least Squares
+ +LASSO = Least Absolute Shrinkage and Selection Operator.

https://doi.org/10.1371/journal.pone.0244953.t010

Table 11. Out-of-sample prediction performances based on standardized mean squared errors of predicting housing rental values by country and by year without

accounting for spatial autocorrelation.

Uganda Tanzania Malawi Overall performance score

2010 2012 2014 2016 2014 2016

OLS+ 1.00 1.00 1.00 1.00 1.00 1.00 -

Ridge 0.94 0.96 0.99 0.97 0.95 1.01 83%

LASSO+ + 0.89 0.92 1.00 0.88 0.95 1.01 83%

Tree 0.84 0.83 1.11 1.60 1.11 1.05 33%

Bagging 0.78 0.80 0.98 1.28 0.88 0.91 83%

Forest 0.82 0.88 1.00 0.81 0.84 0.88 83%

Boosting 0.88 0.85 0.96 0.96 0.87 0.91 100%

+OLS = Ordinary Least Squares
+ +LASSO = Least Absolute Shrinkage and Selection Operator.

https://doi.org/10.1371/journal.pone.0244953.t011
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explanatory variables are of interest, most of the ML approaches tend to provide alternative

predictive performances, both in in-sample and out-of-sample datasets. Therefore, while pre-

dicting the rental value non-rented houses in household surveys, the ML methods could be

used as alternative approaches. With the availability of abundant data and better computing

power, ML methods provide viable alternative to predicting housing values in household sur-

veys. Finally, whether a particular ML model is preferred to hedonic pricing model for predict-

ing rental value of housing is driven by the particular dataset, and one has to empirically test

among the range of available methods.

The current work could be extended by including data set from multiple countries and

across time. Future work should also include evaluations of consumption aggregates and wel-

fare comparisons using house values estimated by the hedonic pricing and ML approaches.
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