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Ultrafast laser ablation simulator 
using deep neural networks
Shuntaro Tani* & Yohei Kobayashi*

Laser-based material removal, or ablation, using ultrafast pulses enables precision micro-scale 
processing of almost any material for a wide range of applications and is likely to play a pivotal 
role in providing mass customization capabilities in future manufacturing. However, optimization 
of the processing parameters can currently take several weeks because of the absence of an 
appropriate simulator. The difficulties in realizing such a simulator lie in the multi-scale nature 
of the relevant processes and the high nonlinearity and irreversibility of these processes, which 
can differ substantially depending on the target material. Here we show that an ultrafast laser 
ablation simulator can be realized using deep neural networks. The simulator can calculate the 
three-dimensional structure after irradiation by multiple laser pulses at arbitrary positions and with 
arbitrary pulse energies, and we applied the simulator to a variety of materials, including dielectrics, 
semiconductors, and an organic polymer. The simulator successfully predicted their depth profiles 
after irradiation by a number of pulses, even though the neural networks were trained using single-
shot datasets. Our results indicate that deep neural networks trained with single-shot experiments are 
able to address physics with irreversibility and chaoticity that cannot be accessed using conventional 
repetitive experiments.

When an intense ultrafast laser pulse (typically lasting less than a picosecond = 10−12 s) is focused on a material, 
the rapid energy deposition from that pulse leads to material removal with little or no thermal degradation1,2. 
Irradiation using multiple laser pulses allows high-quality drilling, cutting, or microstructuring to be performed 
using optimized processing parameters. Currently, the planning and optimization of these processing parameters 
must be determined on a trial-and-error basis when using a real laser processing machine. The parameter space, 
which includes the beam trajectory, the pulse energy, the pulse duration, and the wavelength, is so vast that the 
optimization process takes considerable time and energy for each material and each application.

One of the significant challenges in this field is the construction of an effective model that can simulate spatial 
profiles after multiple-pulse irradiation to enable planning and optimization of the process parameters. There are 
three major difficulties in the model development. First, the physics that governs ultrafast laser ablation is still 
unclear and is a subject of intense debate3–19. The strong electric fields of laser pulses, which are comparable to the 
electric field inside an atom, drive target materials into states that are strongly out of equilibrium3,11,15,19. This situ-
ation contrasts with the case of material removal using much longer pulses, in which thermal effects, e.g., melting 
or vaporization, dominate the process20. Second, the relevant phenomena range in multi-spatiotemporal scales 
from femtosecond and angstrom to microsecond and micrometre. For each scale, computationally demanding 
calculations including first-principles calculations and molecular dynamics simulations are required9,12,13,17,18,21, 
and unification of these calculations is challenging.

Finally, pulse irradiation induces changes in the material properties including amorphization, defect forma-
tion and surface morphology, which could substantially alter the ablation process for subsequent pulses10,14,16,22–25.

Recent advances in machine learning technology have provided another approach: a way to build models 
from large datasets. In previous studies, the applications of machine learning methods such as neural networks 
to laser processing were reported26–28. Specifically, deep neural networks produce approximate functions from 
various types of inputs and outputs29,30 and can be used to extract hidden features from massive datasets31,32. B. 
Mills et al. used a generative adversarial network to predict laser-ablated surface profiles after three sequential 
pulse irradiation on an electroless nickel mirror33–35. In their studies, the neural network takes as input three 
beam profiles spatially modulated by a digital mirror device and outputs an image of the laser-ablated surface. 
While this method successfully reproduced the results of laser processing on a well-polished metal surface, it is 
not applicable for multiple-location irradiation and cannot be used for predicting micromachining with beam 
scanning.
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Here, we developed a deep-neural-network-based laser-ablation simulator that can predict a three-dimen-
sional depth profile after multiple-pulse irradiation on arbitrary locations for arbitrary pulse energies.

Simulation architecture
Consider a situation where a series of ultrashort laser pulses are irradiated on to a target as shown in Fig. 1a. If we 
can calculate the changes in depth profiles that are induced by a laser pulse for arbitrary target depth profiles, we 
could also simulate the corresponding depth profiles after multiple-pulse irradiation. One of our major findings 
is that the depth profile that is formed by laser pulses has a characteristic morphology and this surface morphol-
ogy provides sufficient information to predict changes in the depth profile caused by the next pulse. This means 
that we can extract the relevant material properties for the target from its local surface morphology using a deep 
neural network. Another finding is that highly nonlinear and nonlocal processes, including light-matter interac-
tions and ablation, can also be expressed using deep neural networks. We formed the simulator by combining 
these neural networks with a final deep neural network that generated changes in the two-dimensional depth 
profiles that were induced by laser irradiation, as shown in Fig. 1b.

The simulator uses the following quantities as inputs to the deep neural networks: the depth profile before 
irradiation and the spatial energy distribution of the laser pulse. The simulator applies a set of convolutional 
neural networks to the input depth profile to produce a 128-dimensional feature vector at each point on a 
coarse-grained grid. The vectors that were deduced from the local surface morphology represent the relevant 
material properties, including the accumulated changes that were induced by preceding pulses. The subsequent 
neural networks calculate the interactions of these vectors with the input laser parameters through application 
of nonlinear transformations and the results are used to approximate the single-shot laser ablation process and 
produce the output (see “Methods” Section for full details).

We trained our deep neural networks via supervised learning using a set composed of a two-dimensional 
depth profile and its changes, as shown in Fig. 1c,d, respectively, along with the irradiating laser parameters. 
Depth profiles were acquired using our in-situ depth profile measurement system25 for target materials including 
silicon, sapphire, chemically strengthened glass and polyimide. We prepared thousands of datasets composed 
of two-dimensional depth profiles with nanometre-scale precision by irradiating each material with laser pulses 
at random positions and at random pulse energies (see “Methods” Section).

Results for single‑pulse irradiation
To evaluate the simulator, we compared depth profiles that were obtained experimentally with those from the 
simulations after single-pulse irradiation on intact and laser-irradiated surfaces, as shown in Fig. 2. We used 
a silicon substrate as the test target for this evaluation. Despite its industrial importance, there is no simulator 
for silicon that can predict the three-dimensional shape after multiple femtosecond pulse irradiation at present. 
This is due to several practical difficulties, including competing nonlinear optical absorption processes36 and 
the accumulated changes in the material properties during multiple-pulse irradiation37. The irradiating pulse 
energy was set at 40 mJ for each experiment and simulation. When the target surface is well-polished and intact, 
as shown in Fig. 2a, the changes in the depth profile induced by laser ablation are smooth, as shown in Fig. 2b, 
while those obtained for the surface after multiple-pulse irradiation are enhanced and bumpy, as shown in 
Fig. 2d,e. The differences should be the laser-induced changes in the material properties and the changes in the 
light-matter interactions. Figure 2c,f show the corresponding changes in the depth profiles that were calculated 
using the simulator for the depth profiles shown in Fig. 2a,d, respectively. The characteristics described above 
are reproduced well. The datasets used for the evaluation are not included among the datasets used for training 
throughout the paper (see “Methods” Section for the details). Note that our approach is not to aim for an exact 
match of the surface morphology, but to generate a surface that reproduces the features of the surface morphol-
ogy. With this approach, we can use a deterministic difference equation based on the neural network to handle 
data containing chaotic processes in laser processing, such as resolidification and amorphization. The good agree-
ment demonstrates that the feature vectors that were deduced from the local surface morphology play essential 
roles and that the deep neural networks can capture them. In other words, the surface morphology produced 
by the neural network contains enough information to predict the subsequent-pulse ablation. To further verify 
the predictability of the developed neural network, we perform quantitative evaluations of the simulator with 
respect to the primary objective, i.e., the depth profiles after multiple-pulse irradiation.

Results for multiple‑pulse irradiation
We compared the depth profiles that were obtained from the simulations with those from the experiments after 
multiple-pulse irradiation, as shown in Fig. 3. Figure 3a shows the laser irradiation trajectory. The simulator 
calculated the two-dimensional depth profiles after laser irradiation along the circular or star-shaped trajectories 
using hundreds of pulses. The experimental verification was performed under the same irradiation conditions. 
Figure 3b,c show the resulting depth profiles that were obtained from the experiment and the simulation, respec-
tively. The simulated results agree well with the experimental data without use of any adjustable parameters. For 
quantitative comparison, the depth profiles measured along the circular trajectory and those measured along 
the radial cross-section are plotted in Fig. 3d,e, respectively. The simulator reproduced both the average depth 
and the roughness of the depth profile well. This good agreement holds for a wide range of incident pulse ener-
gies, as illustrated in Fig. 3f, which shows the averaged ablated depth as a function of the pulse energy. The deep 
neural networks thus accurately reproduced these multi-shot ablation processes. One concern is that the neural 
network may just be outputting the fluence-dependent average ablation depth, in addition to random bumps 
proportional to the surface roughness before irradiation. To eliminate this possibility, the results of predicting 
the depth after multi-pulse irradiation based on the fluence-dependent average ablation depth in the training 
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Figure 1.   Schematic of laser ablation simulator using deep neural networks. (a) Simulation procedure. The 
simulator extracts a depth profile around an irradiation position as indicated by the vertical dotted lines 
and performs the calculation. The simulator calculates changes in the depth profiles caused by single-shot 
irradiation, represented by the pink shaded areas. The dashed lines and solid lines represent the depth profiles 
before and after irradiation, respectively. These calculations can be repeated at arbitrary irradiation positions 
using arbitrary pulse energies. (b) Configuration of the four deep neural networks. The first neural network 
performs a convolution to extract the feature vectors from the input depth profile. The second neural network 
calculates the responses to the incident laser pulse at each point. The third neural network combines the outputs 
from these two neural networks and calculates the nonlocal nonlinear interactions. The final neural network 
then performs a deconvolution to produce the output. (c,d) Three-dimensional representation of a typical 
training dataset. (c) Depth profile (96 × 96 pixels). (d) Changes in the depth profile (96 × 96 pixels).
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data are shown by dashed lines (see “Methods” Section). If the neural network were simply outputting an aver-
age value, the predictions should be on these dashed lines, but the neural network shows much better predictive 
performance. This demonstrates that the neural network has succeeded in extracting enough surface features to 
predict the outcome of the process, and in generating surface features with sufficient characteristics to estimate 
the changes caused by subsequent pulses. An example showing pulse-by-pulse comparison of the simulation 
results with the experimental measurements is provided in the Supplementary Information.

The simulator can be applied to a variety of materials that would otherwise require completely separate mod-
els. We trained the neural networks for each of the required materials, including sapphire, chemically strength-
ened glass, and an organic polymer film. Each material has a different band-gap, nonlinear optical coefficient, 
melting temperature, and other optical, thermal and mechanical properties. Each material is trained separately, 
but the structure of the network and the hyper parameters of the training are identical. Figure 4 shows the 
average depths along the circular trajectory as a function of the pulse energy, as per Fig. 3. The neural networks 
capture both the material-dependent nonlinearities and their cumulative behaviours. The deviation from the 
experimental results, particularly around the ablation thresholds, would be due to the limitations of the optical 
system in terms of its ability to capture the changes in the material properties.

Conclusion
Our approach provides a quantitative method to treat phenomena with irreversibility and chaoticity. Our data-
sets consisted of vast numbers of pairs of an initial state and changes in that state, and almost none of the initial 
states are identical. This situation is in contrast to the conventional methodology in physics, which assumes an 
identical initial state before the response measurements when performing repetitive experiments.

Methods
Samples.  We used (100)-silicon substrates, c-face sapphire substrates, chemically strengthened glass plates 
(Gorilla Glass 3, Corning), and polyimide films with surface roughnesses (Sa) of 2 nm, 3 nm, 2 nm, and 70 nm, 
respectively. These surface roughnesses were measured using a white-light interferometric microscope (Contour 
GT-K, Bruker).

Laser irradiation.  We used a 1 kHz Ti:sapphire regenerative amplifier (Astrella, Coherent Inc.) as the light 
source. The centre wavelength of this laser was 800 nm, and the pulse duration was 50 fs. The focal length of 
the focusing lens was 150 mm, and the laser spot size at the focus position was 26 mm at the full width at half 
maximum, which was measured using the diameter regression technique.

Training datasets.  The training datasets were prepared using a pulse-by-pulse depth profile measurement 
system25. The system consists of a precision motorized stage, a white-light-interference microscope, and the 
optical system described above. The system compares the depth profiles before and after the laser pulse irradia-
tion and can measure the change in depth profile by a single laser pulse irradiation with a precision of 3 nm. The 
acquired two-dimensional depth profiles consisted of 96 × 96 pixels, corresponding to dimensions of 57 × 57 mm 
(one pixel corresponds to 0.6 mm). For a series of data acquisition measurements, the system irradiated the 

Figure 2.   Comparison of experiments with simulations for single-shot irradiation. (a–c) Evaluation of an intact 
surface, (d–f) Evaluation of a laser-irradiated surface. (a,d) Depth profiles before irradiation. (b,e) Changes in 
depth profiles obtained experimentally. (c,f) Changes in depth profiles calculated using the simulator. A silicon 
substrate was used as the test target. The pulse energy for each evaluation was 40 mJ.
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target with 200–2000 pulses at random positions over a ring with an inner radius of 35 mm and an outer radius 
of 65 mm. The pulse energy was randomly varied over the range from 5 to 75 mJ for each pulse. The number of 
pulses is chosen to avoid situations where the total ablated depth exceeds 10 µm and the measurement time with 
the white-light-interference microscope becomes too long. Each single-shot acquisition took 20–40 s, includ-
ing the data saving time. After the series of data acquisition measurements, the sample position was moved by 
500 mm and another series of measurements was carried out using the same procedure. In this way, datasets on 
the changes in the depth profile caused by a laser pulse on a fresh surface and on a surface under the processing 
could be obtained. Datasets that included unmeasurable regions due to insufficient numbers of interferometric 

Figure 3.   Comparison of experiments with simulations for multi-shot irradiation. (a) Trajectories for 
multi-shot irradiation. (b,c) Final depth profiles after irradiation obtained by experiments and simulations, 
respectively. (d,e) One-dimensional depth profiles on circular irradiation from the simulation (blue lines) and 
the experiment (black lines). (d) Depth profiles along the circular trajectory. (e) Depth profiles along the radial 
cross-section (see “Methods” Section). (f) Averaged ablated depth along the circular trajectory as a function of 
the pulse energy from the simulation (open circles) and the experiment (filled diamonds). Intact initial surfaces 
were irradiated using 100 (red), 200 (green), or 300 (blue) pulses. Error bars for the experimental results were 
calculated using the standard deviation from three independent measurements. Dashed lines represent the 
calculation reproduced from the arithmetic mean of the ablated depth over the training datasets for each of the 
pulse energies (see “Methods” Section). A silicon substrate was used as the test target.
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fringes were omitted. We prepared 39,000, 11,800, 8600, and 3700 training datasets for the silicon, sapphire, 
chemically strengthened glass, and polyimide materials, respectively.

Testing datasets for single‑pulse irradiation.  The acquisition of the testing datasets for the single pulse 
irradiation, Fig. 2 and the supplementary data, was carried out in the same procedure as for the training data 
acquisition. The acquisition of testing datasets was done in a series completely independent of the acquisition of 
the dataset for training. They were carried out on different days and with different samples. The input of the neu-
ral network is 96 × 96 pixel, so even if the height profile has only two levels, high and low, there are 296 × 96 > 102774 
patterns, which cannot be included in tens of thousands of training data almost certainly. The protrusions in 
Fig. 2c may appear to be a computational artefact, but this often happens in actual experiments as shown in Sup-
plementary Fig. S3a. Such a structure is caused by the presence of dust on the surface before laser irradiation and 
is particularly noticeable on clean surfaces. These dusts were generated by laser irradiation during the previous 
data acquisition. They are visible under a brightfield microscope but is too small to be seen in a white-light-
inteference 3D microscope. For a simulator looking only at a 3D surface, it is rather natural for characteristic 
protrusions to appear on a flat surface.

Evaluation datasets for multiple‑pulse irradiation.  In the circular trajectory shown in Fig.  3, the 
radius of each of the circles was 20 mm and the angular frequency of irradiation was 0.5 rad/pulse. The pulse 
energy was set at 40 mJ and the surface was irradiated using 200 pulses. In the star-shaped trajectory, the length 
of each of the edges was 125 mm and the irradiation pitch was 12.5 mm. The pulse energy was set at 50 mJ and 
the surface was irradiated using 500 pulses. We stitched 3 × 3 two-dimensional depth profiles together to obtain 
an entire depth profile for the star-shaped depth profile. The pulse irradiation rate was 1 Hz for all datasets.

Data processing of the evaluation datasets.  We calculated the one-dimensional depth profile along 
the radial cross-section in Fig. 3e by averaging the radial cross-section from 0 to 180°. We then calculated the 
average of the ablated depth over the training datasets for each pulse energy, as represented by the dashed lines 
shown in Figs. 3f and 4, based on the arithmetic mean of the ablated depth over these training datasets and using 
the following formula:

where N represents the number of training datasets with a specific irradiation pulse energy, di(r, θ) represents 
the depth in polar coordinates (where the origin is at the irradiation position in the ith dataset), and R represents 
the radius of the circular irradiation used in the evaluation. Averaging is performed over every 2 mJ of the pulse 
energy. We multiplied 〈d〉 by the number of pulses with which the surface was irradiated to calculate the average 
ablated depth value over the training datasets.

Deep neural networks and their training.  The first neural networks (NNs) consisted of one normali-
zation layer and three subsequent layers of convolutional NNs with a batch renormalization process and these 
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Figure 4.   Comparison between experiments and simulations for various materials. Averaged ablated depths 
along the circular trajectory from the simulation (open circles) and the experiment (filled diamonds) are plotted 
as a function of the pulse energy. The radius of the circular irradiation is 20 mm. Intact initial surfaces were 
irradiated using 100 (red), 200 (green), or 300 (blue) pulses. The error bars for the experimental results were 
calculated using the standard deviation from three independent measurements. Dashed lines represent the 
calculation reproduced from the arithmetic mean of the ablated depth over the training datasets for each of the 
pulse energies (see “Methods” Section). (a), Sapphire. (b) Chemically strengthened glass (Corning Gorilla Glass 
3). (c) Polyimide.
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NNs converted the input depth profile into feature vectors. The second NNs consisted of two average pooling 
layers and two fully-connected layers and these NNs calculated the local nonlinearities of the optical responses 
at each point on the grid. The third NNs consisted of a merging layer for the outputs from the first and second 
NNs and a U-net38 and these NNs calculated the nonlocal light-matter interactions. The final NNs consisted of 
deconvolutional NNs that were used to generate changes in the fine and coarse depth profiles. The sum of two 
changes in the depth profiles resulted in the output, i.e., the changes in the depth profile. The NN structures are 
described in detail in the Supplementary Information.

These NNs were constructed, trained and executed in Keras using Tensorflow as a backend.
For the training datasets, the input depth profiles and the laser energy distributions were passed directly to the 

deep NN, while the changes in the depth profiles were separated into two components; one contained the high 
spatial frequency components and the other contained the remaining coarse components. The high-frequency 
spatial filter applied used a box average over 8 × 8 pixels.

Data augmentation for training.  We performed data augmentation to allow the neural networks to 
acquire the following traits: the output, i.e., the changes in the depth profile, should be insensitive to the absolute 
heights of the input depth profile and should be zero when the incident pulse energy is zero. The following two 
types of datasets were added: datasets with homogeneous offsets in their initial depth profiles and datasets with 
zero pulse energy and no changes in their depth profiles. In the former augmentation, a uniform random num-
ber in the range of − 1 to + 1 mm was added as an offset to the input depth profile, while the pulse energy and 
output were the same. This data augmentation increased the number of datasets by a factor of four. The latter 
augmentation set the input pulse energy to zero and the output differential depth profile to zero, while the input 
depth profile was the same. This data augmentation increased the number of datasets by a factor of two.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to their huge data 
size (more than 1 TB) but are available from the corresponding author on reasonable request.

Code availability
The neural network models described above were written in Python and are available from the corresponding 
author upon reasonable request.
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