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A B S T R A C T   

The executive function (EF) domains of working memory (WM), response inhibition (RI), and set shifting (SS) 
show maturational gains and are linked to neuroimaging-measured brain changes. This study explored ways in 
which maturation-linked differences in EF abilities are systematically associated with white matter micro
structural differences from adolescence into young adulthood. Diffusion tensor imaging (DTI) and nine neuro
cognitive tests were collected from 120 healthy subjects ages 12–24. Analyses across the white matter skeleton 
were performed, focusing on fractional anisotropy (FA). Data were ‘fused’ using a multivariate technique 
(CCA+jICA), producing four independent components (ICs) depicting white matter FA values that covaried with 
test performance. Correlations between age and IC loading coefficients identified three EF-DTI profiles that may 
change developmentally. In one, SS performance was linked to greater reliance on the FA of ventral brain tracts, 
and less on dorsal tracts with age. In another, white matter microstructure was related to a pattern of strong WM 
and weak SS that became more pronounced with age. A final IC revealed that younger individuals with low RI 
and high WM/SS skills typically matured out of this cognitive imbalance, underscored by white matter changes 
with age. These novel multivariate results begin to emphasize the complexity of brain structure-cognition re
lationships in adolescents and young adults.   

1. Background 

Although there are many different cognitive abilities described as 
“executive” in nature, a subset of them has been usefully categorized 
into three generally-accepted domains – response inhibition, working 
memory, and set shifting that despite some inter-correlation still are 
generally discete (Miyake et al., 2000). Developmental studies of these 
three domains have found that adult-like levels of ability typically are 
reached after age 15 or so. In studies of response inhibition, rapid im
provements have been noted after preschool (Garon et al., 2008; Klen
berg et al., 2001; Zelazo et al., 2003; Carlson, 2005; Best and Miller, 
2010), followed by a plateau in early adolescence. Working memory 
shows a developmental profile that is somewhat more linear (Best and 
Miller, 2010). Across several working memory tasks examined, Gath
ercole et al. (2004) found linear gains from ages 4–14, leveling between 
the ages of 14 and 15. In the set shifting domain, Luciana and Nelson 
(1998) studied the development of performance on the Intra-Extra 

Dimensional Set Shift task and found that as age approached young 
adulthood, there was a steady increase in participants who completed all 
nine stages of the task. Similarly, Huizinga et al. (2006) reported that 
shift costs for 7- and 11- year olds were significantly greater than those 
of 15-year-olds, who did not differ from young adults. 

Despite this seeming performance plateau at mid-adolescence, 
careful research has found that there are subtle, protracted, strategy- 
and complexity- related improvements within each domain after mid- 
adolescence that indicate these EF domains continue to develop and 
be refined into early adulthood. For example, while the early gains in 
response inhibition are characterized by the attainment of rule forma
tion abilities, faster reaction time, and better overall accuracy, nuanced 
improvements that continue to emerge during adolescence (Best and 
Miller, 2010) include observations that young adults slow their re
sponses after committing an error to prevent further mistakes (Hogan 
et al., 2005). Although working memory capacity itself does not 
appreciably increase after around age 15, there are continued 
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improvements in the ability to handle increased executive demands on 
working memory tasks (Luciana et al., 2005; Conklin et al., 2007). For 
example, Geier et al. (2009) administered a visuospatial working 
memory task (oculomotor delayed response task) to 13 children, 15 
adolescents, and 18 adults (all free of psychiatric/developmental con
ditions) and noted that behavioral precision was only present in adults, 
indicated by corrective saccades following memory-guided saccades 
(also see Luna et al., 2004). For set shifting, Davidson et al. (2006) found 
that accuracy “costs” to rapidly switch mental sets diminished until early 
adolescence, but reaction time-based shift costs continued to increase 
until adulthood. Adults also seemed to learn to slow down responses on 
shift trials to ensure they were responding correctly, as seen in response 
inhibition tasks (Hogan et al., 2005). There has yet to be a consensus 
characterizing protracted developmental nuances in EF beyond peaks in 
overall capacity. 

These extended trajectories in EF maturation parallel robustly 
documented normative brain changes that also continue into early 
adulthood. Although many researchers have focused on changes to 
frontal lobe brain activity and neural network connectivity as measured 
by fMRI metrics of functional connectivity (Durston et al., 2006; Casey 
et al., 1997; Stevens et al., 2009), neurodevelopmentally-characteristic 
changes in white matter structure also occur throughout adolescence. 
There is compelling evidence that these changes do not stop at the end of 
adolescence. Instead, white matter microstructure appears to go through 
an optimization period where increasing myelination lasts well into 
young adult years. Bava et al. (2010) collected diffusion MRI (dMRI) 
data on 22 17-year-olds, and then again 16 months later. Using a 
diffusion tensor imaging (DTI) model, this longitudinal study supported 
the notion of continued microstructural white matter change during late 
adolescence, as well as overall correlations between white matter 
change and cognitive performance. Lebel et al. (2012) modeled the 
evolution of 12 white matter tracts in 403 healthy volunteers across the 
lifespan, reporting an overall inverted U-shaped trajectory peaking at 
age 37. Asato et al. (2010) discussed the cognitive implications of white 
matter change. They found that areas that continued to mature through 
adolescence were more localized in association and projection fibers in 
frontal pathways. Specifically, portions of the uncinate fasciculus (UF), 
superior longitudinal fasciculus (SLF), anterior thalamic radiations 
(ATRs), corona radiata, genu of the internal capsule, and the posterior 
portion of the corpus callosum all showed immaturity during adoles
cence compared to later ages. Those authors posit that protracted 
development in these fibers connecting the PFC and subcortical regions 
may relate to improvements in top-down behavioral and cognitive 
control. 

To our knowledge only one review exists that summarizes the find
ings from studies of white matter microstructure and executive function 
development across adolescence (Goddings et al., 2021). This review 
recapitulates the field’s current understanding of white matter’s rela
tionship to adolescent EF development, organized by the three EF do
mains. Overall, the lack of firm conclusions on how white matter relates 
to the development of EF represents a notable gap in the literature. For 
response inhibition, better inhibitory performance has been consistently 
associated with higher fractional anisotropy (FA) measurements in 
frontal lobe white matter. But there have been notable inconsistencies 
across DTI studies in which specific tracts are associated with inhibition 
ability, and which of these associations are developmental in nature 
(Madsen et al., 2010; Treit et al., 2014; Fjell et al., 2012). Working 
memory-DTI developmental studies have been few and likewise incon
sistent. Similar to the inconsistencies within response inhibition litera
ture, researchers have been unable to reach consensus on specific tracts 
that predict mature, adult levels of working memory ability. For 
example, while one cross-sectional study found developmental associ
ations only between visuospatial working memory and FA (Krogsrud 
et al., 2018), another found relationships between manipulation of in
formation within working memory and FA (Bathelt et al., 2018). Finally, 
white matter correlates of set shifting domain abilities have been least 

studied using DTI methods. Although two studies (Seghete et al., 2013; 
Treit et al., 2014) showed positive associations between set shifting 
maturation and DTI-measured FA, the specific tracts differed across 
studies. Neither study had large samples optimal for detecting devel
opmental differences. Overall, Goddings and colleagues’ (2021) review 
suggests that relationships between white matter and EF development 
exist and are quantifiable. However, the mixed and inconsistent findings 
should prompt pause and concern about the direction of this inquiry. 
Investigators so far have not been able to establish one-to-one re
lationships between specific tract development and specific EF skill 
development. The ongoing failure to isolate a single, replicable DTI-EF 
association prompts fresh consideration of what alternative types of 
relationships might exist between white matter development and EF 
maturation from adolescence into adulthood. 

In this study, we turned away from seeking one-to-one associations 
between specific tracts and EF tests to instead investigate whether broad 
profiles of microstructural white matter differences measured across 
early adolescence to young adulthood might better account for changes 
in the overall relationships between response inhibition, working 
memory, and set shifting task performance across adolescent develop
ment. In other words, this study shifted from using univariate analysis 
methods to multivariate methods to learn if normative adolescent EF 
maturation might depend on complex, brain-wide changes in many 
white matter tracts. Such a multivariate analysis may be able to better 
account for the subtle complexities in these brain-behavior relationships 
that might drive inconsistent findings across prior studies. Further, a 
multivariate approach may be better aligned with current theoretical 
frameworks of adolescent brain development that favor distributed 
circuit perspectives on brain changes throughout adolescence (Casey 
et al., 2008; Somerville et al., 2011; Casey, 2015; Casey et al., 2016). 
These frameworks suggest it might be more useful to think about patterns 
in white matter development across distributed systems in conjunction 
with cognitive development when considering changes in whole-brain 
anatomical connectivity. Thus, this project will address the hole in the 
literature regarding how white matter tract FA may underlie protracted 
EF development. Neurotypical participants ages 12–24 in this study 
underwent DTI scans and performed a computerized battery of nine 
executive function tests, with three tasks assessing each EF domain. EF 
and DTI data were examined for complex multivariate associations using 
canonical correlation analysis + joint independent components analysis 
(CCA + jICA) (Sui et al., 2010). This multivariate analysis technique 
ensured we would characterize relationships between DTI and EF fea
tures if any exist. Again, our overarching hypothesis was not focused on 
specific EF/DTI links. We instead predicted that older individuals who 
typically are better at EF tasks would express complex profiles of DTI-EF 
associations differently from younger individuals. However, we also 
thought it most likely that any multivariate relationships between white 
matter and EF abilities would show elements of the results summarized 
in the Goddings et al. (2021) review. For example, despite prior studies’ 
inconsistent findings we expected to see at least some evidence for 
higher frontal lobe tract FA associated with better response inhibition 
ability, higher fronto-parietal and occipito-temporal FA associated with 
better working memory, and a link between FA and set shifting abilities 
even in the absence of no clear prior findings for set shifting (Goddings 
et al., 2021). 

2. Methods 

2.1. Participants 

Participants included 120 healthy adolescents and young adults age 
12–24 recruited from the Hartford County, CT area (M = 18.48, SD =
3.70). This was part of an NIH-funded study (R01 MH081969) of neu
rodevelopment. They were balanced by gender (59 female), and there 
were ten participants in each yearly age group. IQ estimates were ob
tained using the WASI-II, and participants were included in the study if 

J. Anderson et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 64 (2023) 101318

3

their IQ estimate was 80 or above (M = 108.04, SD = 12.21). They also 
completed the WRAT-IV word reading test to ensure they had at least a 
sixth-grade reading level. 

2.2. Clinical and cognitive assessment 

Following informed consent (and parental consent plus assent, where 
applicable), potential participants were evaluated to ensure they were 
free of Axis-I psychiatric disorders. The KSADS-PL (Kaufman et al., 
1997) was used for those under age 18, and the SCID (First et al., 1996) 
was used for those 18 and older. The presence of any psychiatric illness 
resulted in exclusion from the study. Questionnaires were administered 
for demographic information and exploratory analyses, and examined 
alcohol and other substance use, and family psychiatric history. Partic
ipants lastly completed a battery of three cognitive tasks within each 
domain of executive function. For working memory, tasks included 
Letter-Number Sequencing, Digit Span, and Spatial Span subtests of the 
WISC-IV (Wechsler, 2003). Response inhibition tasks consisted of the 
Conners CPT-II (Conners, 2005), Stop-Signal Reaction Time Task (SSRT) 
(Logan et al., 1997), and the antisaccade task (Luna and Sweeney, 
2004). Set shifting tasks included the CANTAB IE/ED task (Robbins 
et al., 1998), Local/Global task (Miyake et al., 2000), and the Meiran 
Visuospatial Shift task (Meiran, 1996). Task descriptions can be found in 
the supplementary materials. 

2.3. Structural MRI 

All neuroimaging was conducted using a Siemens 3 T Allegra. T1- 
and T2- weighted images were acquired from all participants to ensure 
lack of structural pathology. The T1-weighted scan was a 3D MPRAGE 
pulse sequence with the following imaging parameters: TR/TE/TI=
2300/2.74/900 ms, flip angle= 8◦, FOV= 176 × 256 mm, Matrix= 176 
× 256 × 176, Voxel size= 1 × 1 × 1 mm, Pixel bandwidth= 190 Hz, 
Total scan time= 7:09 min. The T2-weighted scan was a single slab 3D 
variable flip angle turbo spin-echo: TR/TE= 2500/355msec, Echo train 
length= 209, FOV= 208 × 256 mm, Slab thickness= 176 mm, Matrix =
176 × 208 × 256, Voxel size = 1 × 1 × 1 mm, Pixel bandwidth= 675 Hz, 
Total scan time = 7:24 min. The DTI scans were single shot spin echo EPI 
sequences (TR/TE=6300/85msec, FOV=220 mm, 32 directions, 45 
slices with 1.7 ×1.7 ×3.0 mm3 resolution. Three sequences were ac
quired over approximately 11 min and later combined in data 
preparation. 

2.4. Data processing 

The DTI sequences for each participant were concatenated then 
preprocessed for analysis along with the T1-weighted scan using Trac
toFlow 2.21 (Theaud et al., 2020). TractoFlow automatizes FSL-based 
brain extraction (Smith, 2002), MRtrix3 denoising (Veraart et al., 
2016), FSL Eddy current correction (Andersson and Sotiropoulos, 2016) 
with slicewise outlier detection of signal loss from movement and 
correction, and ANT-based N4 bias correction (Tustison et al., 2010) 
steps of DTI processing to produce controlled, reproducible results. The 
resulting DTI metric images were cropped, normalized to a mean value 
of 1000, and resampled to 1 mm isotropic resolution. FSL’s TBSS then 
was used to construct white matter skeletons for each participant, 
normalized to the FMRIB58_FA_1mm template (Smith et al., 2006). 
Skeletonized fractional anisotropy (FA) maps were analyzed for this 
study. TBSS was chosen because it represents the central white matter 
tracts common to the sample, is an improvement on misregistration 
error across participants compared to other voxel-based approaches, 
typically has high reliability, and would facilitate future replication 
through its ease of use (Bach et al., 2014). TBSS represented much of the 
most valuable information about participants’ major and minor tracts, 
which generally conform to tract-labeling atlases despite some inherent 
lack of precision in the case of closely contiguous tracts, crossing fibers, 

or branches. 

2.5. Analyses 

Behavioral performance on each EF task was based on one dependent 
outcome variable from each. For Digit Span, Spatial Span, and Letter- 
Number Sequencing, the total raw score was used for analysis. Proxies 
for performance on the CPT-II, Stop Signal, and Antisaccade Tasks were 
commission errors, Stop Signal Reaction Time, and number of errors, 
respectively. The Local/Global Task outcome measure was response 
latency, and the other two shifting tasks (Meiran and CANTAB) used 
shift cost calculations. For more information on the behavioral tasks, 
please see the Supplementary Material. EF test data from the cognitive 
battery were fused with the DTI data using canonical correlation anal
ysis + joint independent component analysis (CCA + jICA) (Sui et al., 
2010). Essentially, the analysis links the two features (cognitive data 
and DTI data) by identifying where they jointly covary across datasets. 
This is a notable advantage of CCA + jICA, because separating multiple 
patterns exhibiting common covariation among individuals is not 
possible using other multivariate approaches such as multi-voxel pattern 
analysis (MVPA) (Kim et al., 2020). The jICA step assumes that the 
features share the same mixing coefficient matrix and maximize inde
pendence among the joint components. The CCA step maximizes 
inter-subject covariation across the features and generates two linked 
variables, one from each dataset (canonical variants; or CVs). Joint ICA 
is performed on the CVs, decomposing the remaining mixtures into joint 
independent components (ICs). In other words, the jICA explores the 
CVs and provides a loading coefficient representing each subject’s 
expression of the relationships. One strength of CCA + jICA is DTI 
skeletons and EF scores can be used as input without elaborate 
pre-formatting (e.g., using principal component analysis to attempt to 
directly replicate the factor structure seen in Miyake et al., 2000). The 
CCA + jICA method incorporates PCA but uses a different algorithmic 
approach to separate each feature into components. This lends credi
bility to the component structure when results resembles known pat
terns in datasets such as Miyake’s 3-factor EF structure, as well as offers 
a alternative method replication. For instance, if all 3 WM tasks strongly 
load onto one component, one can see that the component is driven by 
WM and reflects Miyake et al.’s factor structure. However, if tasks from 
two different domains both strongly shape a component, it should 
prompt fresh critical consideration of what underlying mechanisms may 
be driving that pattern, and what similarities exist between the outcome 
variables. Another strength of CCA + jICA is its stability for a wide range 
of sample sizes. This stability was demonstrated in its validation paper 
after several simulation studies (Sui et al., 2010). 

The CCA + jICA produced four ICs depicting white matter FA values 
that covaried with test performance. Each IC can be thought of as a 
pattern of task performance that commonly occurred with a pattern of 
FA. The ICs consisted of loading coefficients for both the behavioral data 
and the DTI data. These loading coefficients are z-scores; loading co
efficients with greater magnitudes reflect the feature had a stronger role 
in driving that particular EF-DTI relationship. Pearson correlation ana
lyses were performed with the loading coefficients to analyze how each 
pattern changes with age for each feature (behavioral vs. DTI data) 
within each component. For the behavioral data we used a threshold of 
z ≥ +/− 1 to identify tasks that were driving the relationships. For the 
DTI data, a threshold of z ≥ +/- 1.5 was used to identify significant DTI 
data voxels that formed contiguous clusters. The tbss_fill FSL software 
function visually emphasized the voxels in each IC for depiction. Prob
abilistic localization of DTI clusters was facilitated using the XTRACT 
atlas (Warrington et al., 2020). This atlas provides an extended, 
ROI-based set of 42 tracts applicable to both human and macaque 
brains. The human atlas was created by applying the tractography 
protocols to 1065 subjects from the Human Connectome Project 
(Sotiropoulos et al., 2013; Van Essen et al., 2013) and 1000 subjects 
from the UK biobank (Miller et al., 2016). 
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CCA+jICA output interpretation is different from univariate ana
lyses. Figs. 1–4 depict clusters that were meaningfully related to the EF 
components. The areas of low/high FA do not represent absolutes, but 
rather should be interpreted as relative associations within the linked 
features. For example, if an image shows that low FA in the corpus 
callosum and high FA in the IFOF are related to set shifting, we do not 
conclude that IFOF is responsible for set shifting individual differences. 
Rather, a more accurate interpretation would be that IFOF FA is posi
tively related to set shifting only when the corpus callosum FA is also 
relatively low. It follows that with relatively greater IFOF and lower 
callosum FA comes more of an association with the cognitive feature 
depicted. 

2.6. Secondary analyses 

Although our study focus was on development, we also wanted to 
ensure that any age-dependent effects did not differ between boys and 
girls. Multiple regression analyses analyzed both the main effect of 
biological sex and an age × sex interaction term as predictors of the 
loading coefficients generated by CCA+jICA. 

3. Results 

3.1. Loading coefficients 

CCA+jICA identified 4 linked component pairs (ICs) representing 
relationships between FA of white matter tracts and performance on EF 
tasks. Three of these ICs changed significantly with age (Table 1).  
Table 2 lists the nine cognitive tasks’ loading coefficients (expressed as 
z-scores) with respect to each IC. Z-scores greater than one were 
considered to drive the relationships. The data were oriented so that 
loading coefficients accurately represent good versus poor test perfor
mance (i.e., positive loading values reflected relatively better task per
formance, negative indicated worse). Tabulations of significant clusters 
for each independent component can be found in supplemental mate
rials (Tables S2 – S5). 

3.2. IC 1 

The neuropsychological profile of IC 1 was driven by poor set shifting 
test performance. The EF feature did not change with age (p = 0.7246), 
indicating the youngest adolescents who expressed this pattern were 
already mature in this profile of set shifting abilities and no further 
improvement of the particular test profile would be expected in older 
participants. However, the brain-behavior relationship described by this 
IC did change because the DTI pattern was significantly associated with 
age (p = 0.0008). FA-measured white matter microstructure in several 
ventral brain tracts was more greatly linked to set shifting performance 
in young adults, while several dorsal tracts were more important for task 
performance in adolescents. This joint-component profile suggests that 
as adolescents age, they begin to rely on different tracts to achieve the 
same level of set shifting performance (Fig. 1). 

3.3. IC 2 

Participants who strongly expressed IC 2 generally had strong 
working memory skills along with weak set shifting skills. This cognitive 
profile of relative strengths and weakness was more greatly expressed in 
older participants (p = 0.0005). In contrast, the DTI feature linked to 
this IC (Fig. 2) did not change with age (p = 0.0843). This can be taken 
to mean that the FA values in the implicated tracts did not systematically 
change into young adulthood. Overall, this pattern localizes a large 
number of white matter tracts whose greater or lesser FA collectively is 
linked to a cognitive profile that becomes more pronounced with age. 

3.4. IC 3 

For IC 3, both the behavioral feature (p = 0.0096) and the DTI 
feature (p = 0.0091) were significantly associated with age. Individuals 
who strongly expressed this profile displayed relatively lower response 
inhibition ability coupled with high working memory and set shifting 
abilities. This EF ability profile was expressed less with age – that is, 
adolescents matured out of the expression of this balance of relative 

Fig. 1. Clusters from CCA + jICA analysis reflecting z-score-scaled magnitude of white matter voxels measured by FA. Positive associations between z- score and IC 1 
behavioral expression are presented in warm colors, while negative associations are presented in cool colors. A threshold of z = +/- 1.5 was set to usefully visualize 
only white matter regions that had meaningful relationships with the EF component. The positive and negative relationships (warm and cool colors, respectively) 
depicted refer to how white matter FA is associated with the behavioral profile. 
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strengths and weaknesses. That cognitive change was directly linked to a 
white matter profile (Fig. 3) that also decreased with age. It implicated 
widespread areas of greater/lesser FA. Thus, IC 3 as a whole can be 
characterized as the depiction of developmentally immature brain- 
behavior association that normatively changes into young adulthood. 

3.5. IC 4 

IC 4 was heavily driven by relatively poor performance on two of the 
three set-shifting tasks. This was linked to microstructure of numerous 
tracts, including the corticospinal tract, superior longitudinal fasciculus 

Fig. 2. Clusters from CCA + jICA analysis reflecting z-score-scaled magnitude of white matter voxels measured by FA. Positive associations between z- score and IC 2 
behavioral expression are presented in warm colors, while negative associations are presented in cool colors. A threshold of z = +/- 1.5 was set to usefully visualize 
only white matter regions that had meaningful relationships with the EF component. The positive and negative relationships (warm and cool colors, respectively) 
depicted refer to how white matter FA is associated with the behavioral profile. 

Fig. 3. Clusters from CCA + jICA analysis reflecting z-score-scaled magnitude of white matter voxels measured by FA. Positive associations between z- score and IC 3 
behavioral expression are presented in warm colors, while negative associations are presented in cool colors. A threshold of z = +/- 1.5 was set to usefully visualize 
only white matter regions that had meaningful relationships with the EF component. The positive and negative relationships (warm and cool colors, respectively) 
depicted refer to how white matter FA is associated with the behavioral profile. 
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2, and the inferior fronto-occipital fasciculus (Fig. 4). Neither the 
behavioral (p = 0.2976) nor the DTI feature (p = 0.1557) was associated 
with age. The absence of age-related associations makes this the simplest 
joint component to interpret. The IC likely represents a single profile of 
individual differences where set shifting ability is linked to specific 
tracts which appears already mature for even the youngest participants 
in the study. 

3.6. Sex differences 

The secondary multiple regression that explored possible biological 
sex effects found no significant age × sex interaction for any DTI or 
cognitive component loading coefficient. This indicates that the 
maturation-related differences from ages 12–24 described in this study 
generally did not differ between males and females. Several significant 
main sex effects were observed. These are summarized in the supple
mentary materials (Table S6). 

4. Discussion 

This study utilized a multivariate data-driven analysis approach to 
characterize examples of how the relationships between FA-measured 
white matter and EF cognitive test performance evolve from adoles
cence to young adulthood in complex, highly distributed ways. It offers 
two findings that represent interesting challenges to our theoretical 
expectations for how white matter development may reflect EF matu
ration. First, consistent with investigators’ prior failure to reliably 
localize response inhibition, working memory, and set shifting to one or 
more specific white matter tracts (Goddings et al., 2021), none of our 
results emphasized one-to-one relationships between specific white 
matter tracts and specific executive skills. In contrast, we observed 
broad and diverse profiles of developmental change – numerous white 
matter tracts were linked to either specific EF domains or blends of 
different abilities. Because such strongly age-related observations are 
difficult to explain within a strict functional specialization framework, it 
should open the door to more thoughtful consideration of distributed 
network models of white matter development. But if specific tract 
characteristics might not be the most important driver of specific EF 
cognitive gains, an interesting question is raised as to what property of 
these widely-distributed white matter changes accounts for the cogni
tive refinements seen into early adulthood? One possibility is simply 
aggregate change in white matter across many tracts. Perhaps it might 
be useful to further develop and deploy an analytic framework that 
quantifies the aggregate changes to DTI-measured white matter micro
structure themselves for developmental analysis. Alternatively, perhaps 

Fig. 4. Clusters from CCA + jICA analysis reflecting z-score-scaled magnitude of white matter voxels measured by FA. Positive associations between z- score and IC 4 
behavioral expression are presented in warm colors, while negative associations are presented in cool colors. A threshold of z = +/- 1.5 was set to usefully visualize 
only white matter regions that had meaningful relationships with the EF component. The positive and negative relationships (warm and cool colors, respectively) 
depicted refer to how white matter FA is associated with the behavioral profile. 

Table 1 
Correlations between component loadings and age for both features.  

IC DTI feature Behavioral feature  

t-score p -value t-score p-value 
IC 1 3.45 * 0.0008 * -0.35 0.7246 
IC 2 1.74 0.0843 3.59 * 0.0005 * 
IC 3 -2.65 * 0.0091 * -2.63 * 0.0097 * 
IC 4 1.43 0.1557 1.43 0.2976 

* - significant at a = 0.001 

Table 2 
Loading coefficientsa for the nine test scores.  

Cognitive Test IC 1 IC 2 IC 3 IC 4 

Letter-Number Sequencing  0.06  1.40  0.53  -0.30 
Digit Span  0.30  1.55  0.91  0.22 
Spatial Span  0.18  -0.11  1.05  -0.81 
SSRT  0.31  -0.63  -1.52  -0.17 
CPT Commissions  0.21  0.15  -1.02  0.83 
Antisaccade  0.30  -0.30  -0.46  -0.55 
IE/ED Shift  -1.35  -1.40  0.26  -0.27 
Local/Global  -1.70  -0.34  0.91  -2.19 
Meiran Shift  -1.71  -1.02  1.15  -1.14  

a Loading coefficients are represented as z-scores which denote the relative 
importance of the variability of that specific test score to the IC. The sign of the 
coefficient matters in terms of interpretive direction. 
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EF individual differences can be predicted by aggregate DTI profile 
across separate canonical networks, implying greater inter-system 
communication among the important functionally-defined networks 
engaged for each ability. The latter idea is intriguing, because it again 
offers the possibility of ultimately finding at least some specificity in 
which canonical functional networks might drive maturation in discrete 
EF domains. However, that possibility seems less likely because the 
broadly distributed DTI profiles found to normatively change here do 
not appear – at least to visual inspection – to generally correspond with 
canonical functionally defined circuits (Figley et al., 2015). Certainly 
the snapshots found here were more diverse and broadly distributed 
than what fMRI functional connectivity analyses have suggested might 
represent canonical “cold” networks for cognition (Metcalfe and Mic
schel, 1999; Casey, 2015). This incidentally suggests neuro
developmental models that have usefully described the staged 
maturation of “hot vs. cold” systems (i.e., one system prevailing over 
another) based largely on observations from functional neuroimaging 
(Casey, 2015) might be too simplistic when considered in the context of 
white matter/EF development. This is not a new idea, as some theorists 
already have begun to speculate in this direction (Casey et al., 2016). 
However, it might be interesting to attempt a similar multivariate data 
fusion analysis that asks what correspondence exists between white 
matter tract structure and different aspects of “hot” information pro
cessing, e.g., emotion, motivation or reward driven choices, or even 
thrill-seeking – all of which are well-known to normatively change be
tween puberty and early adult years. 

The second neurodevelopmentally-interesting finding that emerged 
from this study is a richer appreciation that adolescent white matter 
development should not be thought of as solely dependent on a simple 
linear process where gradual, normative, FA-measured increases in 
white matter conjointly produce more mature EF, presumably reliant on 
greater anatomical connectivity of distal brain regions (as seen for some 
general cognitive abilities, e.g., Wendelken et al., 2017). It is remarkable 
that few theories comment extensively or specifically on the role white 
matter changes play in the maturation of cognition. Most often, theo
retical models of neurodevelopment simply presume some type of cau
sality after noting how executive cognitive ability maturation roughly 
parallels the robustly-observed linear and nonlinear increases in 
FA-quantified cingulum, uncinate, and the superior longitudinal and 
superior fronto-occiptal fasciculi tract microstructure white matter 
across adolescence (Lebel et al., 2019). This study did not specifically set 
out to evaluate if a simple “white matter myelination = EF gain” model 
satisfactorily explains the period of adolescence to young adulthood. 
However, this straightforward possibility was not reflected in any of the 
multivariate profiles we observed. In contrast, we saw CCA + jICA 
capture immature DTI/EF relationships that diminished across adoles
cence into adulthood, ongoing changes in the white matter correlates for 
already-mature EF abilities, and age-related EF changes in the face of 
profiles of unchanged white matter. For instance, we observed patterns 
(IC 1 and IC 2) in which only one feature changed with age, but not the 
other. The lack of age-related EF differences in IC 1 suggests that all 
participants had already reached mature set shifting performance. But 
because FA in those IC 1-identified tracts continued to differ in various 
systematic ways in young adulthood participants, it can be interpreted 
that the same presumably mature level of cognition is actually main
tained while its white matter correlates shift with age. IC 1 also showed a 
particularly striking profile where adolescents relied more on dorsal 
tracts for set shifting performance, while white matter microstructure of 
ventral tracts was more important for young adults. Conversely, in IC 2 
only the behavioral performance changed with age, while FA in the 
implicated tracts remained constant from adolescence to adulthood. 
These illustrations are reminiscent of how some theoretical models 
characterize development as the fine-tuning of connections throughout 
adolescence to shift and optimize the flow of information throughout the 
brain (Casey, 2016). What this study adds to this idea is an emerging 
appreciation that this fine-tuning might be surprisingly complex – not 

simply nonlinear, but also a complicated mix of different progressive 
and regressive shifts in the relationship between whole brain white 
matter structure and cognitive performance. 

Study strengths include the stringent efforts to ensure lack of psy
chiatric dysfunction in this sample of neurotypical adolescents and 
adults, the relative novelty of the CCA + jICA technique being applied to 
the question of DTI/EF normative developmental changes, and the boost 
to credibility from finding some correspondence between the multi
variate result sets in this study with the piecemeal findings in prior 
studies that sought to learn if specific white matter tracts might covary 
with specific EF individual differences. For instance, Takahashi et al. 
(2010) conducted a study on 38 healthy volunteers and found that FA of 
the right cingulum was positively correlated with CPT performance. 
Similarly, in our IC 3, we found lower cingulum bundle FA associated 
with lower response inhibition ability. In Chiang et al. (2016) sample of 
45 healthy youths, EF performance was associated with higher FA in the 
cingulum bundle, mirroring our findings of several cingulum subsection 
clusters driving IC 2′s profile of strong working memory performance. 
There are also some important study limitations. Foremost of these is a 
need for replication. Cross-sectional datasets cannot depict true devel
opmental trajectories with the causal certainty of longitudinal studies. 
This study’s results can, however, help build models and expectations 
that later can be tested in larger, prospectively-studied cohorts. In other 
words, we can only speculate on how the components evolve develop
mentally within individuals until comparable analyses using a longitu
dinal dataset can be done. We emphasize that firm conclusions about the 
nature of intra-individual development, maturation, behavioral gains 
necessarily awaits further investigation into white matter and EF 
maturation using a prospective study design. In addition, our sample 
size was not as large as some of the archival data resources that in
vestigators recently have become accustomed to using for neuro
developmental research. The sample size raises useful questions about 
the generalizability of the results and emphasizes the need for replica
tion. Replication studies should attempt to obtain larger samples with 
more than 120 individuals spread across age 12–24. Moreover, repli
cation also would partially address known limitations to TBSS, such as 
dataset-specific anatomical inaccuracies or bias in skeleton projection. 
Future use of Q-Ball or HARDI sequences that were not as commonplace 
when this study’s DTI data were collected might also increase certainty 
of any replication. Another limitation is that it is inherently difficult to 
faithfully isolate each theoretical domain of executive functioning 
because they are all correlated in some way, and many tasks inadver
tently tap into multiple domains at once (Miyake et al., 2000; Chung 
et al., 2013). Miyake and colleagues (2000) aptly describe these domains 
as having both ‘unity’ and ‘diversity.’ There was clear evidence of this in 
our CCA + jICA solution set, which at times depicted blends of different 
EF domains. Thus, this analysis could be repeated using an even wider 
battery of EF tasks for a more detailed understanding of the complex
ities. Finally, we did not formally examine processing speed in this 
study, which is a potential source of variation in participant perfor
mance. Peters and associates (2014) found that after controlling for 
processing speed, IFOF FA was no longer associated with cognitive 
functioning. Processing speed analysis was outside the scope of our main 
question, but replication studies could consider this and compare find
ings with those of Peters et al. (2014). 

The results of the present study suggest many interesting new pos
sibilities for future research. This study could be taken as proof-of- 
concept that justifies conducting similar multivariate analyses on 
archival datasets such as the Human Connectome Project (Sotiropoulos 
et al., 2013; Van Essen et al., 2013) and the ABCD dataset (Casey et al., 
2018; Garavan et al., 2018) to identify even richer profiles of white 
matter development in ways that consider multiple cognitive abilities. In 
particular, the ABCD dataset’s focus on development makes it a viable 
candidate for replication studies. Although they do not administer the 
exact same cognitive battery used here, partial replication would be 
possible because they do employ certain EF tasks, as well as DTI scans. 
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The patterns observed here could be studied longitudinally with this 
dataset as well, as the effort is intended to last ten years. It also should be 
possible to construct a detailed normative framework for these kinds of 
multivariate associations. By using emerging and popular brain decoder 
approaches to detect these “biosignatures” in individual datasets (Kelly 
et al., 2021; Molina et al., 2022; Stevens et al., 2021), it also should be 
possible to predict whether an individual’s “brain age” with respect to 
these complex multivariate profiles meets developmental expectations; 
or alternatively, to ask questions about the nature of DTI/cognitive 
abnormalities in neuropsychiatric disorders that emerge in childhood or 
adolescence. A possible developmental disability or psychiatric risk 
factor might present itself as the immature IC 3 profile that persists into 
adulthood long after it would be expected. As one possible illustration, a 
recent meta-analysis of FA in adolescents and young adults with Major 
depressive disorder (MDD) (Zhou et al., 2022) identified significantly 
lower FA in the corpus callosum, left anterior thalamic projections, and 
left corticospinal projections, as well as reductions in the right frontal 
orbitopolar tract (FOPT) extending to the right IFOF. The results of that 
review, among other studies (Wu et al., 2020; Tymofiyeva et al., 2017), 
suggest that white matter microstructure may be a viable biomarker for 
risk of psychopathology in the developing brain. Aghajani et al. (2014) 
exhibited that white matter abnormalities were present early on in the 
course of MDD in their DTI study of 25 adolescents with MDD and 21 
healthy controls, highlighting the importance of a developmental lens 
and the potential for early intervention. Utilizing a multivariate 
data-driven approach in these populations may uncover profiles of 
psychopathological risk that build upon those findings to link mood 
disorders, their brain structure correlates, and their presumed cognitive 
or clinical consequences in informative ways. Other multivariate 
methods, such as multi-voxel pattern analysis (MVPA) are likely to be 
informative as well. MVPA methods have already begun to uncover 
multivariate profiles for different cognitive and emotional processes 
(Kim et al., 2020; Taschereau-Dumouchel et al., 2020) and have been 
demonstrably useful for understanding psychopathology, successfully 
identifying potential biomarkers based on brain activity for MDD 
(Gärtner et al., 2018) and conduct disorder (Zhang et al., 2019). Tech
niques like MVPA have the capacity to discriminate healthy controls 
from individuals displaying psychopathology or neural dysfunction. For 
example, the cross-sectional components presented in this study can be 
applied to disorders involving executive dysfunction. It would be 
possible to quantify the degrees to which these profiles are expressed in 
individuals with ADHD, schizophrenia, and other neurologically-based 
disorders. These brain decoding and machine learning approaches 
already are sufficiently developed and accessible enough to permit 
substantial, informative scientific gains to be made if investigators shift 
their focus to more often consider multivariate approaches that go 
beyond one-to-one brain-behavior mappings to study structural and 
functional relationships. 
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