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Introduction: A minimal-resource model for predicting reduced kidney function among people with type 2

diabetes and no diagnosis of chronic kidney disease (CKD) stages 3 to 5 was previously developed in a UK

population to pre-screen for undiagnosed CKD. This study aims to evaluate the performance of the model

on a global population and assess its adequacy with and without regional adjustment.

Methods: A retrospective observational study was performed using data collected from the iCaReMe

global registry (NCT03549754) and the DISCOVER study (NCT02322762 and NCT02226822). Patients were

grouped by their World Health Organization classified region. An estimated glomerular filtration rate

(eGFR) <60 ml/min per 1.73 m2 was the marker of reduced kidney function. A regional-intercept recali-

bration was applied to adjust for regional variation. Discrimination and calibration were evaluated for the

UK-developed and recalibrated models.

Results: A total of 14,180 patients (46 countries, 6 regions) were identified with type 2 diabetes, no pre-

vious diagnosis of CKD stages 3 to 5, and had a serum creatinine measurement or eGFR recorded. The UK

model underestimated risk when applied globally and was deemed inadequate. The model with regional

adjustment achieved the target sensitivity (80.5%; 95% confidence interval [CI]: 78.8%–82.3%) and

demonstrated a relative improvement of 51.5% (95% CI: 48.1%–55.1%) in the positive predictive value

(PPV), compared to a screen-all approach.

Conclusion: The regional-adjusted model demonstrated adequate performance globally. Incorporating the

model within practice could help clinicians to risk-stratify and prioritize patients at high risk. This could

enable improved efficiency via risk-tailored screening, particularly in lower-middle-income countries

(LMICs).
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T
ype 2 diabetes mellitus is a well-known risk factor
for CKD, with over 40% of patients with type 2

diabetes currently presenting with CKD.1 Therefore,
annual CKD screening of people with type 2 diabetes
is recommended.2 However, undiagnosed CKD remains
a problem,3 with particular impact in LMICs.

In LMICs, a lack of testing is a long-standing issue,
despite the disproportionate burden of diabetes
compared with high-income countries.4 The need to
improve CKD screening capacity and access to CKD
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screening in LMICs has been articulated5,6 but solu-
tions are yet to be implemented.

A minimal-resource CKD pre-screening model has
been developed to identify which people with type 2
diabetes (without a diagnosis of CKD stages 3 to 5) are
likely to exhibit an eGFR <60 ml/min per 1.73 m2.2,7

The premise of the model was to pre-screen the pop-
ulation to determine which patients should be priori-
tized for testing. Despite promising performance
during internal validation, the model was developed
using UK primary care data and it remains to be
externally validated in other geographic regions. This
is essential to determine the generalizability of the
model before implementation.

AstraZeneca has been building global data sets
(DISCOVER and iCaReMe) comprising people with type
2047
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2 diabetes. These data sets have collected information
to investigate treatments and complications in a glob-
ally representative sample of people with type 2 dia-
betes.8-11

The aim of this study was to determine whether the
minimal-resource model performs adequately when
applied to external global data or whether regional
adaptations are required.

METHODS

Design and Data Sources

This was a retrospective, observational study using 2
global data sets collected by AstraZeneca in the
DISCOVER study and the iCaReMe global registry.

The DISCOVER study comprises 2 observational
studies (NCT02322762 and NCT02226822) on patients
with type 2 diabetes who were initiating second-line
glucose-lowering therapy.8 Patients were recruited
across 38 countries from 6 regions between December
2014 and June 2016.

The iCaReMe (NCT03549754) global registry had not
completed recruitment at the time of analysis. Conse-
quently, an extract from the registry was provided
covering the start of recruitment in February 2018 until
April 2022. In this extract, 12,606 patients had been
recruited across 21 countries from 6 regions.

Ethics

No ethical approval was required; this was secondary
use of data with no intervention. Patients consented to
the use of their anonymized data at recruitment into
the studies, and International Review Board/Interna-
tional Ethics Committee approvals were obtained.

Inclusion and Exclusion Criteria

The inclusion criteria are adults (aged 18 and over)with a
diagnosis of type 2 diabetes. The exclusion criteria were:
a diagnosis of CKD stages 3 to 5, an invalid (outside
clinically plausible range) serum creatinine measure-
ment, missing eGFR, or eGFR not calculable due to
missing age or biological sex assigned at birth.

Prediction Model

We implemented the minimal-resource CKD pre-
screening model developed by Gendius.7 The pre-
dictors were age, sex assigned at birth, duration of type
2 diabetes, body mass index, systolic blood pressure,
and diastolic blood pressure. The cutoff selected in the
model development was used to categorize the pre-
dicted outcome as “high risk” or not. This model is
referred to as the “UK model.”

Primary Outcome

The eGFR was calculated from the serum creatinine
measurements provided in the data, using the 2009
2048
CKD-Epidemiology Collaboration equation.12 The bi-
nary outcome then corresponded to whether the eGFR
was <60 ml/min per 1.73 m2 or not, consistent with the
definition in the minimal-resource CKD pre-screening
model.

Secondary Outcome

Patients with type 2 diabetes and an eGFR between 25
and 75 ml/min per 1.73 m2 may be eligible for initiation
of a sodium-glucose cotransporter 2 inhibitor (NICE
Guideline TA775).13 Therefore, our secondary outcome
corresponds to whether the eGFR was 75 ml/min per
1.73 m2 or less, that is, a composite indicator of follow-
up action required to diagnose and/or review for
initiation of preventative therapy.

Missing Data

When calculating the eGFR from a serum creatinine
measurement, if a patient was missing their ethnicity,
they were assumed not to be black for the CKD-EPI
equation. Missing predictor information was imputed
using single regression imputation, by data set, using
only the variables within the model (age, sex assigned
at birth, body mass index, duration of diabetes, sys-
tolic blood pressure, diastolic blood pressure) and the
patient’s country.

Statistical Methods

Summary statistics were evaluated to compare the
populations across regions and against the original
model development cohort. Continuous variables that
were assumed to be normally distributed were sum-
marized using the mean and SD; skewed continuous
data were summarized using the median and inter-
quartile range. Categorical variables were summarized
as counts and percentages. Chi-square tests were per-
formed to assess the statistical difference between dis-
tributions for categorical variables.

Model Application and Updating

The UK model was applied to the data and the distri-
bution of the predicted risks were visualized by data
set and region. A regional-intercept recalibration of the
model was applied to estimate regional adjustments of
the model using the iCaReMe registry, that is, a new
intercept was estimated such that the recalibrated
linear predictor for patient i in region R is

LPðrecalibratedÞ
i;R ¼ bR þ LPUK

i;R

where LPðrecalibratedÞ
i;R is the recalibrated linear predictor for

patient i in region R, bR is the intercept adjustment for region
R, and LPUK

i;R is the linear predictor for patient i in region R
using the UK model. An external validation of the regionally
recalibrated models was then performed in the DISCOVER
data. Because intercept recalibration is equivalent to a change
Kidney International Reports (2024) 9, 2047–2055
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in cutoff for discrimination, the cutoff was not altered by re-
gion to avoid overfitting and enable the validation the cutoff as
a predetermined threshold.

Performance Metrics

The sensitivity and relative improvement in the PPV at
the prespecified cutoff (identified during the model
development) compared to a screen-all approach were
the target performance metrics. The relative improve-
ment in the PPV is defined as:

PPVrel impðqÞ ¼ PPVðqÞ
Prevalence

� 1

where q is the cutoff for categorizing the outcome as “high
risk” or not, that is, if the predicted probability is $ q, the
patient is predicted to be high risk, and PPVðqÞ is the
proportion of high risk patients (defined using q) that had an
eGFR <60 ml/min per 1.73 m2. The screen-all approach is
equivalent to PPVð0Þ ¼ Prevalence, thus, PPVrel impð0Þ ¼
0. The estimates and their bootstrapped 95% CIs were
evaluated overall and by region. The original target profile
of the model was an increased PPV over a screen-all
approach and a sensitivity of 80% (95% CI: 70%–100%)
in alignment with the acceptable criteria proposed by the
Medicines and Healthcare products Regulatory Agency for a
comparable pre-screening tool.14 The probability cutoff
identified in the model development was selected at a level
that achieves the target profile. Bayesian probabilities and
confidence intervals of the sensitivity (a) were evaluated by
region, where the posterior distribution of the sensitivity
was defined as

aw BetaðTPþ 1; FNþ 1Þ
where TP is the number of true positives and FN is the
number of false negatives identified for a given model. The
posterior distribution was used to determine the probability
that the sensitivity was at least 80% (corresponding to the
target performance point estimate). Similarly, the probability
that the sensitivity was >70% was evaluated, corresponding
to the chance of acceptable model performance with respect to
the lower threshold of sensitivity in the target product profile.

Calibration and discrimination were assessed using
calibration plots and the C-statistic, respectively.
Linear predictors from the UK model and the recali-
brated model were calculated and visualized. The linear
predictor represents the estimated risk score on the log-
odds scale, before transformation to a probability be-
tween 0 and 1.

A subgroup analysis was performed based upon
World Health Organization region, determining the
variation between the regional performances.

Sample Size Requirements

The minimum sample size for external validation of
the minimal-resource model was calculated as 3306
Kidney International Reports (2024) 9, 2047–2055
patients.15 For evaluating the sensitivity, the literature
suggests that a sample size of 160 positive cases (i.e.,
patients with an eGFR <60 ml/min per 1.73 m2) is
sufficient for a target product profile of 80% sensitivity
(95% CI: 70%–100%).16

All analyses were performed in R version 4.1.2 (R
Foundation for Statistical Computing, Vienna, Austria).

RESULTS

There were 5612 and 8568 patients identified as having
type 2 diabetes, a valid serum creatinine measurement
or eGFR recorded, and no previous diagnosis of CKD
stages 3 to 5 in the iCaReMe and DISCOVER data sets,
respectively (Supplementary Figure S1, Table 1, and
Supplementary Table S1). In total, 1940 (13.7%) had an
eGFR <60 ml/min per 1.73 m2.

Although both data sets covered the same regions,
the majority of the patients in the iCaReMe population
were from South-East Asia, whereas the DISCOVER
population was more evenly distributed across the re-
gions (Table 1). Regardless, age, body mass index, and
blood pressure measurements were clinically similar
between the data sets. The iCaReMe patients had on
average a longer duration of diabetes (iCaReMe: 8 years
vs. DISCOVER: 4.1 years; P < 0.001) and a higher
proportion of patients with an eGFR <60 ml/min per
1.73 m2 (iCaReMe: 19.4% vs. DISCOVER: 10.0%; P <
0.001). Despite this, the prevalence of CKD stage 5 in
DISCOVER was double that in iCaReMe (DISCOVER:
1.8% vs. iCaReMe: 0.9%) and the distribution across
stages 3 to 5 was significantly different (P < 0.001).
Further, regional variation between the distributions of
eGFR stage was observed within both data sets
(Supplementary Table S2).

Overall Performance

The discrimination remained adequate in both data sets
when applying the original model; the C-statistic was
estimated as 0.737 (95% CI: 0.725–0.748) (iCaReMe:
0.744. 95% CI: 0.729–0.757; DISCOVER: 0.720, 95% CI:
0.705–0.737). However, the cutoff identified in the
original model led to an overall sensitivity of 0.405
(95% CI: 0.380–0.425) which was lower than the pre-
specified acceptable threshold of 80%. This was
consistent between the data sets (iCaReMe: 0.425, 95%
CI: 0.398–0.451; DISCOVER: 0.378, 95% CI: 0.352–
0.415) (Table 2).

When the UK model was recalibrated, the sensitivity
at the cutoff increased to 0.843 (95% CI: 0.822–0.860)
within the iCaReMe data. A relative improvement of
46.8% (95% CI: 42.6%–50.8%) in the PPV, compared
to a screen-all approach (prevalence: 0.194; 95% CI:
0.182–0.207), was observed at the cutoff (PPV: 0.284;
2049



Table 1. Patient baseline demographics

Patient characteristics

Development External validation

UK primary care (n [ 9297) iCaReMe (n [ 5612) DISCOVER (n [ 8568) Overall (N [ 14,180)

Region, n (%)

Africa 0 (0.0) 134 (2.4) 309 (3.6) 443 (3.1)

Americas 0 (0.0) 497 (8.9) 933 (10.9) 1430 (10.1)

Eastern Mediterranean 0 (0.0) 293 (5.2) 1249 (14.6) 1542 (10.9)

Europe 9297 (100.0) 994 (17.7) 2135 (24.9) 3129 (22.1)

South-East Asia 0 (0.0) 2889 (51.5) 1317 (15.4) 4206 (29.7)

Western Pacific 0 (0.0) 805 (14.3) 2625 (30.6) 3430 (24.2)

Sex assigned at birth, n (%)

Female 3919 (42.2) 2571 (45.8) 3680 (43) 6251 (44.1)

Male 5378 (57.8) 3041 (54.2) 4888 (57) 7929 (55.9)

Missing 0 (0) 0 (0) 0 (0) 0 (0)

Age (yr)

Mean (SD) 65.5 (13.1) 57.3 (12.2) 57.4 (11.9) 57.4 (12.0)

Missing, n (%) 0 (0) 5 (0.1) 0 (0) 5 (0)

Body mass index (kg/m2)

Median (LQ–UQ) 30.0 (26.5–34.5) 28.5 (25.5–32.1) 28.2 (25.0–32.4) 28.3 (25.2–32.3)

Missing, n (%) 435 (4.7) 582 (10.4) 478 (5.6) 1060 (7.5)

Duration of type 2 diabetes (yr)

Median (LQ–UQ) 6.6 (2.9–11.4) 8.0 (3.1–14.1) 4.1 (1.8–7.9) 5 (2.0–10.0)

Missing, n (%) 0 (0) 1240 (22.1) 2 (0) 1242 (8.8)

Systolic blood pressure (mm Hg)

Mean (SD) 133.2 (15.1) 129.1 (17.7) 132.5 (16.6) 131.2 (17.1)

Missing, n (%) 1847 (19.9) 587 (10.5) 291 (3.4) 878 (6.2)

Diastolic Blood Pressure (mm Hg)

Mean (SD) 75.9 (9.9) 77.9 (10.5) 79.9 (10.0) 79.1 (10.2)

Missing, n (%) 1849 (19.9) 593 (10.6) 297 (3.5) 890 (6.3)

CKD stage from eGFR, n (%)

Stage G0–1 (eGFR $ 90) 3576 (38.5) 2307 (41.1) 4597 (53.7) 6904 (48.7)

Stage G2 (60 # eGFR < 90) 4316 (46.4) 2219 (39.5) 3117 (36.4) 5336 (37.6)

Stage G3a (45 # eGFR <60) 917 (9.9) 593 (10.6) 522 (6.1) 1115 (7.9)

Stage G3b (30 # eGFR < 45) 372 (4.0) 316 (5.6) 147 (1.7) 463 (3.3)

Stage G4 (15 # eGFR < 30) 101 (1.1) 127 (2.3) 31 (0.4) 158 (1.1)

Stage G5 (eGFR < 15) 15 (0.2) 50 (0.9) 154 (1.8) 204 (1.4)

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; LQ, lower quartile, UQ, upper quartile.

CLINICAL RESEARCH C Sammut-Powell et al.: Global Validation of a CKD Pre-screening Model
95% CI: 0.267–0.302). Similarly, when this recalibrated
model was applied to the DISCOVER data, the sensi-
tivity at the cutoff increased to 0.758 (95% CI: 0.732–
0.785) compared to the UK model, and the relative
improvement in the PPV was 50.5% (95% CI: 44.3%–
55.6%). On average, 41.3% of the high risk patients
were considered actionable (iCaReMe: 51.0%,
DISCOVER: 34.2%; Table 2).

The regional-intercept recalibration improved the
calibration in both data sets for predicted probabilities of
an eGFR <60 ml/min per 1.73 m2 that were below 0.1
(Figure 1). All regional-intercepts were positive, indi-
cating that the UK model underestimates the risk when
applied to global data. Within the iCaReMe data, the
smallest adjustment was in the Americas (median risk
adjustment: 0.048, interquartile range: 0.025–0.100; 92/
497 changed risk group) and the largest was in the
Eastern Mediterranean region (median risk adjustment:
0.154, interquartile range: 0.074–0.260; 137/293 changed
risk group; Supplementary Figure S2; Table 3).
2050
Regional Variation

Differences were observed across the regions and be-
tween data sets (Supplementary Tables S3 and S4); the
prevalence of patients with an eGFR <60 ml/min per
1.73 m2 was lowest in the Americas (0.171; 95% CI:
0.135–0.201) and highest in the Eastern Mediterranean
(0.263; 95% CI: 0.208–0.324) in iCaReMe. However, the
regions with the higher prevalences in iCaReMe had
the lower prevalences within DISCOVER.

The C-statistic was acceptable across all regions
within iCaReMe (range: 0.695–0.783) but decreased to
0.646 in the Eastern Mediterranean region within
DISCOVER (Supplementary Table S4). Despite this, the
sensitivity remained satisfactory at the cutoff with a
relative increase of 31.9% in the PPV. The model
performed best in the Americas within iCaReMe
(sensitivity: 0.824, 95% CI: 0.747–0.912; relative
improvement in PPV: 72.7%, 95% CI: 56.1%–94.0%)
but the sensitivity decreased in this region within
DISCOVER (sensitivity: 0.674, 95% CI: 0.610–0.756).
Kidney International Reports (2024) 9, 2047–2055
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The lowest acceptable level of sensitivity (70%) was
within the 95% Bayesian CIs of sensitivity across all
regions (Supplementary Table S5). Africa was the only
region that did not meet the sample size requirement (at
least 160 positive cases). All remaining regions had a
high probability that the sensitivity was 70% or higher
(regional probability range: 0.841–1.000). For the Eu-
ropean and Western Pacific regions, the probability
that the sensitivity was 80% or higher remained high
(1.000 and 0.940, respectively).
DISCUSSION

Within this study, we have utilized large global data
sets to demonstrate that the minimal-resource model
adequately identifies patients at high risk of currently
experiencing reduced kidney function (eGFR <60 ml/
min per 1.73 m2), globally, when regional adjustments
are applied. The minimal-resource model reduced the
screening population by over 50% to a subgroup of
patients who were likely to be experiencing reduced
kidney function. This subgroup contained over 80% of
those with an eGFR <60 ml/min per 1.73 m2 and
therefore corresponded to a significant increase in the
efficiency of eGFR screening to detect patients with an
eGFR <60 ml/min per 1.73 m2.

In addition, this validation has demonstrated the
feasibility of applying the model globally into practice;
overall, the level of missing data across the input var-
iables was low. The most poorly recorded variable was
the duration of diabetes; however, most missing cases
were in the iCaReMe data. This is likely due to the
DISCOVER studies capturing data only on patients with
type 2 diabetes, and consequently this may have been
perceived to be of greater importance to collect across
all patients, whereas iCaReMe studies patients with
type 2 diabetes, hypertension, heart failure or CKD.

A key strength of this study was the use of large,
global data sets; the model performance was evaluated
in patients from 46 countries, with significant repre-
sentation from LMICs. The data were collected during
routine care and are therefore representative of data
collected within practice. The model performance
across the data sets was similar, indicating that these
results are generalizable. In total, 5 of 6 regions were
adequately represented to assess the performance
metrics; only Africa did not have a sufficient sample
size to reliably estimate the performance.

Differences between the patient characteristics from
iCaReMe and DISCOVER can be explained by several
factors. The DISCOVER recruitment targeted patients
with type 2 diabetes moving from a first-line to second-
line therapy, likely contributing to the difference
observed in the duration of diabetes between the data
2051



Figure 1. Performance plots for the (left:) iCaReMe and (right:) DISCOVER data, demonstrating (a) the distribution of the linear predictor,
indicating the population that were high risk (dark purple shading); (b) the calibration of the UK model (purple) and recalibrated model (pink);
and (c) the proportion of patients within G-staged CKD groups that were identified as being high risk evaluated under the UK model (purple) and
the recalibrated model (pink). CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.

CLINICAL RESEARCH C Sammut-Powell et al.: Global Validation of a CKD Pre-screening Model
sets. In addition, some of the data provided to the
DISCOVER study was extracted from patients’ elec-
tronic health record and predated their recruitment.
Lastly, the dates of recruitment vary between the data
sets; the data captured within iCaReMe coincides with
the COVID-19 pandemic which may have biased pa-
tient recruitment.

The minimal-resource model focuses only on pre-
dicting that a patient’s current eGFR is <60 ml/min per
1.73 m2; however, an increased urine albumin-to-
creatinine ratio can also be an early indicator of CKD.
Using our model does not guarantee accuracy of
2052
predicting those with an increased urine albumin-to-
creatinine ratio as high risk, but urine albumin-to-
creatinine ratio measurement and recording have
been reported to be poor;9 thus, an eGFR-focused
outcome is more aligned with current CKD screening
practices. Similarly, for a CKD diagnosis, a patient is
required to a have evidence of a sustained reduction in
kidney function; therefore, patients who are high risk
and have a resulting eGFR <60 ml/min per 1.73 m2 may
not be diagnosed with CKD if their eGFR recovers.

The CKD-Epidemiology Collaboration equation used
to estimate the eGFR in the modeling may not be the
Kidney International Reports (2024) 9, 2047–2055



Table 3. Recalibration adjustments to the estimated probability of an eGFR less than 60 ml/min per 1.73 m2 and the proportion patients that
changed risk category

Region Data Number

Risk adjustment Change in prediction category

Median Lower quartile Upper quartile
Number changed to

high risk
Number changed to

not high risk
Proportion

changed (%)

Africa iCaReMe 134 0.096 0.044 0.166 49 0 36.6

DISCOVER 309 0.070 0.038 0.132 108 0 35.0

Americas iCaReMe 497 0.048 0.025 0.100 92 0 18.5

DISCOVER 933 0.036 0.018 0.066 160 0 17.1

Eastern Mediterranean iCaReMe 293 0.155 0.074 0.259 138 0 47.1

DISCOVER 1249 0.095 0.052 0.166 551 0 44.1

Europe iCaReMe 994 0.086 0.045 0.150 319 0 32.1

DISCOVER 2135 0.076 0.041 0.132 686 0 32.1

South-East Asia iCaReMe 2889 0.099 0.046 0.178 1178 0 40.8

DISCOVER 1317 0.059 0.033 0.113 426 0 32.3

Western Pacific iCaReMe 805 0.120 0.056 0.202 351 0 43.6

DISCOVER 2625 0.107 0.052 0.201 1078 0 41.1

eGFR, estimated glomerular filtration rate.
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same as the eGFR calculation used in clinic, because a
new version of the CKD-Epidemiology Collaboration
formula has been released17 and alternative equations
such as the Modification of Diet in Renal Disease for-
mula exist.18 However, we do not expect that varia-
tions in calculations would significantly affect the
performance due to the categorization of the outcome.

Existing models for CKD risk stratification within
patients with type 2 diabetes have focused on risk of
future development of CKD.19-24 Although this is
important to assess, such models often rely on the
availability of test results obtained via CKD screening.
Consequently, when screening is not routinely per-
formed, these risk models remain unusable. Therefore,
when patients are determined to be high risk by our
model but do not have an eGFR <60 ml/min per 1.73
m2, they can still benefit from their eGFR result being
fed into other models, which may highlight their
future risk of developing CKD.

Lifestyle modifications and pharmaceutical therapies
are common interventions for managing CKD and risk
of complications. Recent clinical trials studying the
efficacy of sodium-glucose cotransporter 2 inhibitors
have demonstrated that CKD progression can be slowed
in its early stages and CKD complications can be pre-
vented.25-28 Therefore, early identification of CKD
within primary care is important to initiate these
therapies when they can have the greatest benefit.
Consequently, we believe that implementing our model
within primary care could support clinicians and
nurses to provide more timely and targeted in-
terventions, particularly when they may not have
specialist knowledge of CKD. In LMICS where sodium-
glucose cotransporter 2 inhibitors may not be afford-
able, early identification can still support CKD
Kidney International Reports (2024) 9, 2047–2055
management through emphasizing the need for blood
pressure control to prevent poor outcomes.

Prioritization tools are not a new concept; during the
COVID-19 pandemic, the provision of routine services
in UK primary care was severely disrupted.29 A risk
stratification tool was proposed by National Health
Service England to prioritize patients for delivering
diabetes care,30 but it did not encompass the patient’s
risk of undiagnosed CKD. When CKD screening
resource is limited, the minimal-resource model offers a
practical and globally equitable solution to identify a
subgroup of patients with type 2 diabetes who should
be prioritized for screening. Where data from elec-
tronic health records is available, recent data can be
extracted and fed into the model to risk-stratify the
patients at little to no burden. Integrating these risk
scores back into health systems could trigger proactive
review and management of patients that are at high
risk, ultimately improving the quality of care and
prognosis for patients31 and supporting more efficient
use of health care resources.

In countries where CKD screening is performed
regularly, as per guidelines, CKD diagnosis remains
imperfect.32,33 For example, an audit of CKD diagnosis
coding performed across 1039 general practitioner
practices in the UK indicated that 30% of patients that
qualified for a CKD stages 3 to 5 diagnosis did not have
a corresponding diagnosis code within their record.32

We expect that our model would identify such pa-
tients as high risk and highlighting this to clinicians
could facilitate targeted clinical review and improved
CKD identification.34 Given that a patient’s awareness
of having CKD is associated with having a diagnosis,33

improvements in diagnosis could empower earlier
lifestyle intervention.
2053



CLINICAL RESEARCH C Sammut-Powell et al.: Global Validation of a CKD Pre-screening Model
Although this study has highlighted the potential
opportunity of implementing the model within prac-
tice, further investigation is needed to determine its
impact on the identification and management of CKD,
and patient outcomes.

CONCLUSION

We have demonstrated that a model using only easily
collectible information can be used globally to effec-
tively risk-stratify patients with type 2 diabetes for
reduced kidney function. Applying the model offers a
simple way for clinicians to understand their patient
population and help them to prioritize patients who are
most in need. This could enable improved efficiency in
screening programs via targeted screening, particularly
in LMICs, and act as a reminder to clinicians of the
importance of CKD screening and diagnosis in patients
with type 2 diabetes.
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