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Computational prediction to screen potential vaccine candidates has been proven to be a
reliable way to provide guarantees for vaccine discovery in infectious diseases. As an
important class of organisms causing infectious diseases, pathogenic eukaryotes (such as
parasitic protozoans) have evolved the ability to colonize a wide range of hosts, including
humans and animals; meanwhile, protective vaccines are urgently needed. Inspired by the
immunological idea that pathogen-derived epitopes are able to mediate the CD8+ T-cell-
related host adaptive immune response and with the available positive and negative CD8+

T-cell epitopes (TCEs), we proposed a novel predictor called CD8TCEI-EukPath to detect
CD8+ TCEs of eukaryotic pathogens. Our method integrated multiple amino acid
sequence-based hybrid features, employed a well-established feature selection
technique, and eventually built an efficient machine learning classifier to differentiate
CD8+ TCEs from non-CD8+ TCEs. Based on the feature selection results, 520 optimal
hybrid features were used for modeling by utilizing the LightGBM algorithm. CD8TCEI-
EukPath achieved impressive performance, with an accuracy of 79.255% in ten-fold
cross-validation and an accuracy of 78.169% in the independent test. Collectively,
CD8TCEI-EukPath will contribute to rapidly screening epitope-based vaccine
candidates, particularly from large peptide-coding datasets. To conduct the prediction
of CD8+ TCEs conveniently, an online web server is freely accessible (http://lab.malab.cn/
~hrs/CD8TCEI-EukPath/).
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INTRODUCTION

Pathogen-derived antigen epitopes displayed on the surface of host antigen-presenting cells can be
presented by major histocompatibility complex (MHC) molecules (also called human leukocyte
antigen in humans) to the different subsets of T cells. Typically, MHC-I molecules present relatively
fixed peptide lengths (usually 8–11 residues) to CD8+ T cells, thereby activating cytotoxic T
lymphocytes to destroy invading pathogens (Trolle et al., 2016), whereas MHC-II molecules
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with an open peptide-binding groove have the ability to recognize
peptides of highly variable lengths (usually 9–22 residues) that
activate CD4+ helper or regulatory T cells (Holland et al., 2013).
Obviously, antigen epitopes that trigger CD8+ T cells or CD4+

T cells bear essential differences during the process of host
adaptive immune responses. Therefore, identifying what
pathogen peptides will be presented to specific T cells is
critical information for understanding infectious etiologies,
developing diagnostic assays, and designing epitope-based
vaccines against infectious agents.

Conventional approaches for T-cell epitope identification have
depended entirely upon experimental technologies and experiences
and are obviously time-consuming and costly. As a result, alternative
computational approaches to implement antigen epitope
identification have become powerful methods in immunology and
vaccinology research and have significantly decreased the
experimental load associated with epitope identification (Brusic
et al., 2004; Zhang et al., 2012). To date, most T-cell epitope
prediction tools have been developed using machine learning
algorithms to train various experimental data, which are generally
available in specialized epitope databases, such as the Immune
Epitope Database (IEDB) (Vita et al., 2019). Since the first
computational approach for epitope prediction was introduced
more than 30 years (Sette et al., 1989), the performance of
prediction methods in recent years has obtained significant
advancement with the accumulation of positive epitope data, the
development of machine learning algorithms, and the reduction of
computational cost. These advancements are seen in the development
of machine learning models to identify T-cell epitopes in various
infectious agents, including pathogenic prokaryotes (such as bacteria)
(Pamer et al., 1991; Nagpal et al., 2018; Zadeh Hosseingholi et al.,
2020), viruses (Bukhari et al., 2021; Sharma et al., 2021; Xu et al.,
2021), and pathogenic eukaryotes (such as parasitic protozoans)
(Goodswen et al., 2014; Goodswen et al., 2021).

Among infectious agents, eukaryotic pathogens have evolved
into several distinct phylogenetic lineages and bear resourceful
abilities to affect a wide range of hosts, including humans and
animals, resulting in significant effects on the aspects of global
public health and considerable economic loss to the agricultural
community (Haldar et al., 2006). Since a high level of MHC
polymorphism in infected hosts and a large number of unknown
functional proteins exist in eukaryotic pathogens (Hu et al.,
2022), this undoubtedly produces challenges for T-cell epitope
identification. Although presently some available software
systems for in silico T-cell epitope prediction have been
developed, including the NetCTL server (Larsen et al., 2005),
the NetMHCpan server (Jurtz et al., 2017), and the MHCflurry
server (O’Donnell et al., 2018), there is no guarantee that all these
tools produce good quality predictions (Resende et al., 2012;
Bordbar et al., 2020; Zawawi et al., 2020). Moreover, a general
analysis of MHC-peptide binding prediction, overlooking specific
patterns of MHC-presented peptides recognized by different
types of T-cell receptors, may lead to lower predictive accuracy.

Given the wealth of state-of-the-art machine learning algorithms
available and public experimental data, it is necessary to keep
comparing the performance of different methods reciprocally and
develop effective tools for the identification of T-cell epitopes in

pathogen biology research. In the present study, based on MHC-I
T-cell peptides collected from the IEDB database and experimentally
validated neoantigen epitopes available fromprevious Review articles,
we developed a novel machine learning-based method to identify
CD8+ T-cell immunogenic epitopes in eukaryotic pathogens. Our
method adopted the best hybrid feature descriptor and classifier to
establish a prediction model and finally achieved an accuracy of
79.255% in ten-fold cross-validation and an accuracy of 78.169% in
the independent test. Finally, a user-friendly web server named
CD8TCEI-EukPath was developed, which will be helpful for
scientists to rapidly screen epitope-based vaccine candidates from
a plethora of mass spectrometry peptidome data.

METHODS AND MATERIALS

Dataset Preparation
Eukaryotic pathogens (Eukpaths), such as protozoans and fungi, are
important causative agents that cause serious infectious diseases in
humans and animals; however, there is a lack of systematic collection
of Eukpath-derived antigenic epitopes associated with the host
immune response. Additionally, many previous works have
pointed out that stringent datasets are considered important for
the performance of a predictive model. In particular, peptide
sequences for most T-cell epitopes (TCEs) usually have a short
length, which easily leads to biased estimates if peptide sequences in a
dataset have high similarity.

The present study collected datasets concerning positive
and negative CD8+ TCEs available from the IEDB database
(http://www.iedb.org/), following the search strategy:
Eukaryote T-cell and class I MHC restriction (accessed on
15 October 2021). After data processing, 809 TCEs and
1,715 non-TCEs for Eukpaths were retained as positive and
negative datasets, respectively. A detailed description of
Eukpaths is included in Supplementary Table S1. In
addition, we also obtained 371 experimentally determined
peptide sequences for host CD8+ T cells that are described in
the latest Review articles, in which have gave a detailed list
regarding peptide sequences in three important parasites
[i.e., Plasmodium falciparum (Heide et al., 2019),
Toxoplasma gondii (Javadi Mamaghani et al., 2019), and
Trypanosoma cruzi (Ferragut et al., 2021)] and, eventually,
a total of 1,180 TCEs were reorganized as the positive dataset.

Before dividing the positive and negative datasets into training
and testing sets, we performed data preprocessing, such as
removing repeat sequences and sequences with high sequence
identity. Repeat peptide sequences in the positive sample were
removed using SeqKit software (Shen et al., 2016), and peptide
sequences in positive and negative samples with more than 90%
sequence identity were removed using the CD-HIT Suite server
(Huang et al., 2010). Finally, a total of 706 TCEs from the positive
dataset were retained, and an equal number of non-TCEs were
randomly selected from negative datasets.

Regarding machine learning, training datasets are used to
train a predictive model, and based on evaluation through
testing sets, an optimal classifier was selected. We randomly
selected 80% of datasets from both positive and negative
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samples as training sets and the remaining 20% as testing sets.
Note that the training and testing sets can be downloaded from
http://lab.malab.cn/~hrs/CD8TCEI-EukPath/download.html.

An Overview of the Established Predictor
A modeling overview of the proposed approach is illustrated in
Figure 1. CD8TCEI-EukPath allows users to utilize a large
volume of peptide sequences, such as peptide-coding datasets
available from mass spectrometry peptidomics, to serve as input
sequences. First, each sequence is subjected to the feature

representation based on the proposed hybrid feature scheme.
Regarding machine learning modeling, hybrid feature
identification is a useful approach for improving prediction
performance and has been extensively applied to the
identification of specific peptide sequences, such as
anticancer T-cell antigen epitopes (Wei et al., 2018; Beltran
Lissabet et al., 2019; Charoenkwan et al., 2020; Jiao et al.,
2021). The detailed hybrid feature representation method can
be seen in the subsequent Section 2.3. Then, hybrid features
for each sequence are transmitted to the well-trained

FIGURE 1 | A technology roadmap of the machine learning model proposed in this study.
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prediction model. In the final evaluation of the models, we
choose the LightGBM (LGBM) classifier as the optimal
training model. Eventually, the LGBM-based model will
give an estimated score in the prediction results to
differentiate TCEs from non-TCEs. If the prediction
possibility of more than 50% is considered to indicate the
true TCE and lower values indicate non-TCEs, the prediction
possibility is calculated with a range from 0 to 100%.

Feature Extraction
Protein or peptide sequences are composed of amino acids. In
the standard amino acid alphabet, 20 different amino acids
can be represented as {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, and Y}. To establish a machine learning model, an
essential step is to extract amino acid features from protein or
peptide sequences, typically regarding structural and
physicochemical properties of amino acids through a
transformation from sequence to numerical vector (Chen
et al., 2018; Chen et al., 2020; Chen et al., 2021). In this
study, the iLearnPlus platform (Chen et al., 2021) was used to
conduct feature extraction of the peptide sequence, as
described below.

1) Amino Acid Composition (AAC). AAC is a commonly used
descriptor that has been successfully applied to protein
classification and anticancer peptide prediction (Bhasin and
Raghava, 2004; Wei et al., 2018; Jiao et al., 2021). AAC is
encoded based on calculating the occurrence frequency of
each amino acid in a peptide sequence. The frequencies of
AAC can be calculated as follows:

where N(i) represents the number of amino acid type i, L
represents the length of a peptide sequence, and f(i) is the
calculated composition frequency for a specific amino acid type i.

2) Adaptive Skip Dinucleotide Composition (ASDC). The ASDC
descriptor is a modified dipeptide composition proposed by
Wei et al., 2017a andWei et al., 2017b. This descriptor has the
advantage that it not only fully considers the relevant
information between adjacent residues but also considers
the intermediate residue. For a given protein or peptide
sequence, this descriptor can generate 400-dimensional
feature vectors (fv) that are presented by:

ASDC � (fv1, fv2, fv3, . . . , fv400)
fvi � ∑M−1

k�1 N
k
i

∑400
i�1∑M−1

k�1 N
k
i

f(i) � N(i)
L , i ∈ {A, C, D. . .Y}

In the formula, fvi indicates the occurrence frequency of all
possible dipeptide pairs with ≤ M−1 intervening amino acids.

3) Combined Composition, Transition, and Distribution
(CCTD). The CCTD features represent a global
description of amino acids’ structural or
physicochemical attributes, such as hydrophobicity,

normalized van der Waals volume, polarity,
polarizability, charge, secondary structures, and solvent
accessibility of a peptide sequence (Dubchak et al., 1995;
Tomii and Kanehisa, 1996; Dubchak et al., 1999). The
CCTD contains three descriptors, namely, composition
(C), transition (T), and distribution (D).

• Composition: The composition descriptor computes the
percentage frequency of polar (RKEDQN), neutral
(GASTPHY), and hydrophobic (CLVIMFW) residues
in a given peptide sequence. It can be calculated as
follows:

C � N(i)
L

, i ∈ {polar, neutral, or hydrophobic residues}

N (i) represents the number of amino acid type i in the
encoded sequence, and L represents the length of the peptide
sequence.

• Transition: The transition descriptor indicates the
percentage frequency of amino acids that transition
between the three groups, i.e., polar, neutral, and
hydrophobic groups. The formula can be defined as follows:

T(i, j) � N(i, j) +N(j, i)
L − 1

i, j ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}
whereN(i, j) andN(j, i) represent the number of dipeptides that
appeared in ‘i, j’ and ‘j, i’, respectively, and L represents the length
of a peptide sequence.

• Distribution: The distribution descriptor describes the
distribution of amino acids for each of the three groups
(polar, neutral, and hydrophobic) in the sequence. There
are five descriptor values for each group, and they are the
corresponding position fractions in the entire sequence
concerning first residues, 25% residues, 50% residues, 70%
residues, and 100% residues.

4) Grouped Di-Peptide/Tri-Peptide Composition (GDTPC).
The 20 different amino acids can be categorized into five
classes, including aliphatic group–g1 (GAVLMI), aromatic
group–g2 (FYW), positively charged group–g3 (KRH),
negatively charged group–g4 (DE), and uncharged
group–g5 (STCPNQ), according to their
physicochemical properties, such as hydrophobicity,
charge and molecular size of amino acids in a peptide
sequence (Lee et al., 2011). In this study, the grouped di-
peptide composition (GDPC) and the grouped tri-peptide
composition (GTPC) are combined to present the feature
vector in the peptide sequence. The GDPC is a variation of
the di-peptide composition descriptor and can generate 25
descriptors (Chen et al., 2018; Chen et al., 2021). It is
defined as follows:

f(i, j) � Nij

L − 1
, i, j ∈ {g1, g2, g3, g4, g5}

where Nij is the number of dipeptides coded by amino acid type
groups i and j, and L represents the length of a peptide sequence.
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The GTPC is also a variation of the tri-peptide composition
descriptor, and a total of 125 descriptors can be generated for a
given peptide sequence (Chen et al., 2018; Chen et al., 2021). It is
defined as follows:

f(i, j, s) � Nijs

L − 1
, i, j, s ∈ {g1, g2, g3, g4, g5}

where Nijs is the number of tripeptides coded by amino acid type
groups i, j, and s, and L represents the length of a peptide sequence.

Feature Selection
Feature selection is an important process that can effectively
reduce the number of redundant variables and the computational
cost as well as solve overfitting problems in machine learning
modeling. A variety of feature selection tools have been developed
and applied to the identification of peptide sequences (Wang
et al., 2013; Zou et al., 2016; Jung et al., 2019; He et al., 2020; Meng
et al., 2020; Mostafa et al., 2020). For the first method applied to
the optimal feature selection, we decided to utilize the MRMD

FIGURE 2 | Analysis of amino acid sequence features. (A) Length distribution of the positive CD8+ T-cell epitopes. The horizontal axis represents the length of
amino acids, and the vertical axis represents the number of epitopes in positive samples. (B) Distribution features of amino acid types with respect to the positive and
negative CD8+ T-cell epitopes. The horizontal axis represents the twenty amino acids, and the vertical axis represents the occurrence frequency of an amino acid in all
sequences.
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tool (http://lab.malab.cn/soft/MRMD3.0/index.html) (Zou et al.,
2016; He et al., 2020) following the PageRank strategy. MRMD is
a feature ranking method based on function distance calculated
by Pearson’s correlation coefficient to measure the independence
of every feature and generates a sub-feature set with a low
redundancy but strong relevance with the target class. The
second method was the LGBM algorithm (Ke et al., 2017),
which was used to select the best feature subsets based on the
ranking of feature significance calculated by the LGBM classifier.
Finally, the features selected by the MRMD and LGBM methods
were used for modeling.

Classifier Selection
In this study, eight popular machine learning algorithms were
used, including Bagging, decision tree (DT), neighbors
(KNN), light gradient boosting machine (LGBM), logistic
regression (LR), GaussianNB (NB), random forest (RF) and
support vector machines (SVM), to select a suitable algorithm
for machine learning modeling. These algorithms are built
into the scikit-learn toolkit package (Pedregosa et al., 2011),
which can run in the Python program. Based on the feature
selection matrix generated from the MRMD program, with
regard to the eight algorithms, default hyperparameters were
used for the initial evaluation during the process of
classification performance. Additionally, we optimized the
hyperparameters and selected the three most suitable
classifiers, namely, RF, LGBM, and Bagging, for further
comparative analysis. The best parameters were determined
by grid search techniques, and the detailed settings are
compiled in Supplementary Table S2.

Performance Evaluation and Methods
For each predictive model, the quality was evaluated by
measurement metrics for ten-fold cross-validation and an
independent test method. In terms of measurement metrics,
we used four standard evaluation metrics, namely, sensitivity
(Se), specificity (Sp), accuracy (Acc), and Matthew correlation

coefficient (MCC), to evaluate a model’s performance. These
metrics were formulated as follows:

Se � TP

TP + FN
× 100%

Sp � TN

TN + FP
× 100%

Acc � TP + TN

TP + TN + FN + FP
× 100%

MCC � TP × TN − FP × FN��������������������������������������������(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)√

where TP, TN, FP, and FN indicate the sample numbers of
true positives, true negatives, false-positives, and false
negatives, respectively. The Se of a test is also called the
true positive rate and refers to the proportion of samples
that are correctly classified as positive samples in the dataset
among all real positive samples. The Sp of a test is also called
the true negative rate and is the proportion of samples that are
correctly classified as negative samples in the dataset among
all real negative samples. Another two metrics, Acc and MCC,
can comprehensively evaluate the performance of a predictor
on balanced data. The Acc metric represents the ratio of a
sample number of correct predictions to all numbers of input
samples, but the MCC metric takes the ratio of positive and
negative elements into account. Therefore, for unbalanced
data, MCC would display a better predictive quality than Acc
(Chicco and Jurman, 2020).

Additionally, the area under the receiver operating
characteristic (auROC, or AUC) curve was introduced to
evaluate the performance of a predictor. The auROC curve
is plotted with a true positive rate on the Y-axis and the false-
positive rate on the X-axis, with values ranging from 0 to 1.
Having the auROC curve near the upper left or an auROC
curve value = 1 reflects perfect prediction, while having an
auROC curve value of 0.5 suggests random prediction of
a model.

TABLE 1 | The accuracy (Acc) results of a single feature descriptor classified by different machine learning algorithms.

Feature descriptors Classifiers and Acc values (%)

Bagging DT KNN LGBM LR NB RF SVM

Ten-fold cross-validation AAC 71.454 66.667 68.174 73.670 65.160 65.603 73.670 67.730
ASDC 72.252 65.160 67.642 75.443 66.223 66.755 74.468 74.291
CTDC 67.199 62.145 66.933 68.528 64.628 61.259 68.351 68.351
CTDT 66.667 60.638 64.805 67.996 63.032 60.372 67.908 66.401
CTDD 71.986 64.982 69.326 75.089 66.312 66.401 72.606 68.883
GDPC 64.894 59.309 60.638 65.514 59.929 57.624 66.223 63.209
GTPC 67.287 62.057 63.564 68.174 60.284 59.663 68.528 65.071

Independent test AAC 76.408 67.606 73.592 76.056 66.901 65.493 74.648 67.606
ASDC 75.352 65.845 69.366 76.761 67.254 69.014 75.704 74.296
CTDC 72.535 63.028 66.197 70.070 67.254 63.380 73.944 71.479
CTDT 65.493 60.915 65.141 65.141 66.197 60.211 68.662 64.085
CTDD 69.014 62.324 66.197 72.183 68.662 66.901 72.887 70.775
GDPC 63.028 50.704 59.859 64.789 61.268 61.972 67.254 65.141
GTPC 66.197 59.859 65.141 72.887 63.380 63.028 68.662 66.197

The best Acc values to reflect the performance of different classifiers were highlighted in bold font.
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RESULTS AND DISCUSSION

Analysis of Peptide Sequence Features
In terms of peptide length, antigen epitopes that are presented to
CD8+ T cells by MHC-I molecules are typical peptides between 8
and 11 amino acids in length, and occasionally a few
noncanonical lengths overstep this range (Trolle et al., 2016).

Additionally, the sequence characteristics of T-cell epitopes
should largely reflect the specific binding ability to the MHC
allele in the process of eliciting immune responses induced by
pathogen infection. Motivated by these observations, we first
investigated the length distribution of positive T-cell epitope
sequences. The results are illustrated in Figure 2A, which
shows the main distribution of sequence length is 9-mer

TABLE 2 | The classification results of different hybrid feature combinations detected by the LGBM classifier.

Hybrid features Ten-fold cross-validation Independent test

Acc (%) MCC Se (%) Sp (%) Acc (%) MCC Se (%) Sp (%)

AAC + ASDC + CCTD + GDTPC 79.255 0.585 77.837 80.674 78.169 0.563 78.873 77.465
ASDC + CCTD + GDTPC 78.103 0.562 76.596 79.610 76.056 0.521 77.465 74.648
AAC + ASDC + CCTD 77.660 0.553 76.064 79.255 77.113 0.542 76.056 78.169
AAC + CCTD + GDTPC 77.305 0.546 76.596 78.014 75.352 0.507 74.648 76.056
ASDC + CCTD 77.482 0.550 76.950 78.014 76.761 0.535 78.169 75.352
AAC + CCTD 76.684 0.534 75.887 77.482 75.352 0.507 76.056 74.648
ASDC + GDTPC 76.152 0.523 74.468 77.837 75.704 0.515 72.535 78.873
CCTD + GDTPC 76.064 0.522 74.468 77.660 77.465 0.550 78.873 76.056
AAC + ASDC 75.621 0.512 75.000 76.241 72.535 0.451 70.423 74.648
AAC + GDTPC 74.911 0.499 73.227 76.596 77.817 0.556 76.761 78.873
CCTD 75.621 0.513 74.645 76.596 74.648 0.495 78.873 70.423
GDTPC 69.592 0.392 68.262 70.922 72.535 0.451 71.831 73.239

The best metric values were highlighted in bold font.

TABLE 3 | A comparison of classification results by a pairwise combination of two feature selection techniques (MRMD and LGBM) and three optimal classifiers (LGBM, RF,
and Bagging).

Method Ten-fold cross-validation Independent test

Acc (%) MCC Se (%) Sp (%) Acc (%) MCC Se (%) Sp (%)

MRMD + LGBM 79.255 0.585 77.837 80.674 78.169 0.563 78.873 77.465
LGBM + LGBM 78.457 0.569 78.014 78.901 77.113 0.542 77.465 76.761
MRMD + RF 75.887 0.518 73.404 78.369 74.648 0.493 72.535 76.761
LGBM + RF 75.355 0.507 74.645 76.064 74.648 0.493 73.944 75.352
MRMD + Bagging 73.316 0.466 72.163 74.468 75.352 0.507 73.239 77.465
LGBM + Bagging 74.202 0.484 72.695 75.709 75.704 0.514 76.056 75.352

The best metric values were highlighted in bold font.

FIGURE 3 | A comparison of the AUC curve in ten-fold cross-validation (A) and independent test (B). Results were by a pairwise combination of two feature
selection techniques (MRMD and LGBM) and three optimal classifiers (LGBM, RF, and Bagging).
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peptides and that much longer peptides reach a length of up to 35
aa. As shown in Figure 2B, we also observed significant
preferences in terms of amino acid appearance frequency
between TCEs and non-TCEs, especially for leucine (L).
Previous evidence has demonstrated that L is an important
amino acid to mediate the adaptive immune response;
specifically, L can play a role in T-cell activation and
proliferation of immune cells (Ananieva et al., 2016). This
implies that the preference of L in positive TCEs is essential
feature information, in which the role of L not only serves as a
biological activator of T-cell immunity but also may contribute to
discriminating TCEs from non-TCEs.

Initial Evaluation of a Single Feature
Descriptor on Different Classifiers
In our scheme on feature learning, we evaluated the performance
of individual feature descriptors by the utilization of eight
extensively used machine learning classifiers, i.e., Bagging, DT,
KNN, LGBM, LR, NB, RF, and SVM. These models were
evaluated thoroughly by ten-fold cross-validation, and their
performances were compared reciprocally. A detailed
summary of these evaluation results is compiled in
Supplementary Table S3, and the Acc values of all classifiers
are shown in Table 1. Given that each descriptor has a fair
comparison with the eight classifiers, as shown in Table 1, we
noticed that in each feature descriptor, there were three classifiers,
namely, Bagging, LGBM, and RF, that had better performances
than other classifiers (the best Acc values are highlighted in bold
font). In the results of ten-fold cross-validation, the LGBM
classifier had the best performance on five feature descriptors
(AAC, ASDC, CTDC, CTDT, and CTDD), followed by the RF
classifier on three feature descriptors (AAC, GDPC, and GTPC);
however, in the individual test result, there were four feature
descriptors (CTDC, CTDT, CTDD, and GDPC) on the RF

classifier that had the best performance, followed by two
feature descriptors (ASDC and GTPC) on the LGBM classifier
and one feature descriptor (AAC) on the Bagging classifier.
Remarkably, the feature descriptor ASDC worked on the
LGBM classifier and was able to obtain the best prediction
results in both ten-fold cross-validation and the independent
test, with Acc values of 75.443% and 76.761%, respectively.
Therefore, the LGBM classifier can be chosen as the most
suitable classifier for model deployment, if only a single
feature descriptor is being considered.

Comparison of Hybrid Multisource Features
on Different Classifiers
Compared to machine learning techniques, in general, the
sequence feature is a more critical element to achieve high
accuracy in biological sequence classification, especially for the
extensive applications of combining hybrid multisource features
in machine learning modeling (Zhang et al., 2016; Mohan et al.,
2019; Charoenkwan et al., 2020; Ao et al., 2021; Jiao et al., 2021).
Based on the feature descriptors mentioned in Section 3.2, we
combined similar feature types as a hybrid group, including
CTDC + CTDT + CTDD (CCTD) and GDPC + GTPC
(GDTPC), and the performances of four groups (AAC, ASDC,
CCTD, and GDTPC) were compared thoroughly on the eight
classifiers using ten-fold cross-validation. The detailed prediction
results are summarized in Supplementary Table S2, and we
reconfirmed that LGBM is a satisfactory classifier to differentiate
TCEs from non-TCEs. To compare the performances of various
hybrid features, as shown in Table 2, the prediction results of the
LGBM classifier were generated based on the ten-fold cross-
validation and independent test. Strikingly, the majority of
prediction results of LGBM using hybrid features had an Acc
value of more than 75%, which indicated that the prediction
ability was greatly improved when compared to the single

FIGURE 4 | The optimal feature sets selected by LGBM feature importance ranking (A) and a well-established MRMD strategy (B). The horizontal axis represents
the number of selected features, and the vertical axis represents the accuracy value calculated by the LGBM classifier.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9359898

Hu et al. Detecting T-Cell Epitopes of Eukpaths

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


features. We also observed from Table 2 that the ten-fold cross-
validation results of the AAC + ASDC + CCTD + GDTPC
combination in particular, with metric values of 79.255% Acc,
0.585 MCC, 77.837% Se, and 80.674% Sp outperformed all the
single or hybrid features, and therefore, this combination feature
was selected for the subsequent analyses.

MRMD Serves as a Powerful Feature
Selection Technology That Determines the
Optimal Feature Space
Various feature selection technologies can be used for
representation learning features. In the present study, we
compared two feature selection technologies (MRMD and
LGBM) by calculating the feature importance values,
including the PageRank-based value for MRMD and Gini-
based feature importance value for LGBM. Among the feature
list results obtained by the two methods, we selected the top
520 features and employed the incremental feature selection
(IFS) strategy to determine the optimal feature vector spaces,
which are subsequently predicted on LGBM, RF, and Bagging
classifiers.

As shown in Table 3, the ten-fold cross-validation results
suggested that the MRMD + LGBM combination yielded the best
prediction capability, with 79.255% Acc, 0.585 MCC, and 80.674%
Sp, compared to the other five models (LGBM + LGBM, MRMD +
RF, LGBM + RF, MRMD + Bagging, and LGBM + Bagging), except
that the Se ofMRMD+LGBMof 77.837%was lower than that of the
LGBM+ LGBMmodel; however, an independent test indicated that
the MRMD + LGBM model was better than the other five
combinations in all metrics. Furthermore, a separate AUC curve
analysis is shown in Figure 3 and further illustrated that theMRMD
+ LGBM model with an AUC value of 0.840 in ten-fold cross-
validation and an AUC value of 0.836 in the independent test
outperformed the other five models.

The optimal feature vector spaces detected by the IFS
strategy suggested that the maximum accuracy of the LGBM
+ LGBM model was 78.457% with 89 features, which was less
than the maximum accuracy of the MRMD + LGBM model of
79.255% with 420 features Figure 4. In the case of evaluating
the computational cost of both models and considering the
stability and robustness of the models, the MRMD + LGMB
combination was finally selected as the best strategy for
modeling and webserver development.

User Guide of the Established Webserver
A user-friendly web server called CD8TCEI-EukPath was
developed, and the users can freely enter the homepage via the
link http://lab.malab.cn/~hrs/CD8TCEI-EukPath/. The prediction
interface can be accessed by clicking the “Prediction” or
“CD8TCEI-EukPath” hyperlink, where the users can utilize
amino acid sequences (FASTA format) to identify whether the
input sequences are CD8TCEs or non-CD8TCEs. Briefly, the users
should use short peptide sequences (generally 8–11 aa in length),
paste the FASTA sequences in the left box, and click the “Submit”
button for calculation. Immediately, the prediction results will be
shown in the right box, which includes the protein name, predicted

epitope (yes or no), and probability of belonging to CD8+ TCEs. If
starting a new task, the users can click the “Resubmit” button and/
or click the “Clear” button and paste new sequences to conduct
computational predictions. Note that the computing resources of
the webserver are limited for high-volume predictions, and the
maximum number of sequences should be 1,000 at a time. In
addition, using the established model, we also provided the
prediction results of five important pathogen species
(Plasmodium, Toxoplasma, Trypanosoma, Leishmania, and
Giardia) based on the available mass spectrometry peptidome
data obtained from the ProteomeXchange database (http://www.
proteomexchange.org/). These prediction results can be
downloaded freely from our web server and need to be further
evaluated by MHC-peptide binding predictions and biological
experiments.

Conclusion
By comparing the performances of various single feature
descriptors and hybrid feature descriptors using eight
different classifiers, we selected a set of best features (AAC
+ ASDC + CCTD + GDTPC) and a satisfactory classifier
(LGBM) for machine learning modeling. Following the
state-of-the-art feature selection strategy of MRMD 3.0, we
developed an effective sequence-based predictor named
CD8TCEI-EukPath, capable of rapidly identifying
eukaryotic pathogen-derived antigen epitopes for host CD8+

T cells from large peptide-coding datasets. As a first sequence-
based predictor to identify T-cell epitopes in eukaryotic
pathogens, CD8TCEI-EukPath achieved 79.255% Acc in
ten-fold cross-validation and 78.169% Acc, 0.563 MCC,
78.873% Se and 77.465% Sp in the independent test.
Meanwhile, a user-friendly web server was developed in the
present work. We believe that this tool is helpful for scientists
to evaluate the immunogenicity of a given peptide sequence
before performing biological experiments. The current tool
only applies to the identification of CD8+ T-cell epitopes in
eukaryotic pathogens. In future works, we will apply deep
representation learning features and state-of-the-art
classification algorithms for CD4+ T-cell epitope and B-cell
epitope prediction. By leveraging machine learning models to
develop auxiliary tools, their combinations will assist in the
development of peptide-based vaccines.
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