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A B S T R A C T

Trichotillomania (hair-pulling disorder) is characterized by the repetitive pulling out of one's own hair, and is
classified as an Obsessive-Compulsive Related Disorder. Abnormalities of the ventral and dorsal striatum have
been implicated in disease models of trichotillomania, based on translational research, but direct evidence is
lacking. The aim of this study was to elucidate subcortical morphometric abnormalities, including localized
curvature changes, in trichotillomania. De-identified MRI scans were pooled by contacting authors of previous
peer-reviewed studies that examined brain structure in adult patients with trichotillomania, following an ex-
tensive literature search. Group differences on subcortical volumes of interest were explored (t-tests) and lo-
calized differences in subcortical structure morphology were quantified using permutation testing. The pooled
sample comprised N = 68 individuals with trichotillomania and N = 41 healthy controls. Groups were well-
matched in terms of age, gender, and educational levels. Significant volumetric reductions were found in tri-
chotillomania patients versus controls in right amygdala and left putamen. Localized shape deformities were
found in bilateral nucleus accumbens, bilateral amygdala, right caudate and right putamen. Structural ab-
normalities of subcortical regions involved in affect regulation, inhibitory control, and habit generation, play a
key role in the pathophysiology of trichotillomania. Trichotillomania may constitute a useful model through
which to better understand other compulsive symptoms. These findings may account for why certain medica-
tions appear effective for trichotillomania, namely those modulating subcortical dopamine and glutamatergic
function. Future work should study the state versus trait nature of these changes, and the impact of treatment.

1. Introduction

Trichotillomania, also known as hair-pulling disorder, is char-
acterized by the repetitive pulling out of one's own hair, leading to
significant functional impairment (APA, 2013). The condition has life-
time prevalence of 0.5–1% based on surveys, yet is often hidden, un-
diagnosed and untreated (Grant et al., 2016; Woods et al., 2006). Tri-
chotillomania has peak age of onset in adolescence, is more common in
women than in men, and is currently classified as an Obsessive-Com-
pulsive Related Disorder (Grant and Chamberlain, 2016). However, in
contrast to the repetitive compulsive acts observed in obsessive-com-
pulsive disorder (OCD), repetitive behaviors in trichotillomania are not
generally driven by intrusive thoughts. As such, and in view of the
recent development of animal models with good validity (Chamberlain

et al., 2007b; Greer and Capecchi, 2002; Hyman, 2007), trichotillo-
mania constitutes a key model for better understanding compulsive
symptoms more generally. However, surprisingly little is known about
the neurobiological basis of this disorder in humans (Christenson et al.,
1993; Cohen et al., 1995; Mansueto et al., 2007; Odlaug and Grant,
2010).

Reviewing available clinical and imaging studies of trichotillo-
mania, previous work suggested an “ABC” model of trichotillomania
emphasizing the dysfunction of pathways involved in Affect regulation,
Behavioral Control, and Cognition (Stein et al., 2006). This approach
implicates, in turn, the frontal cortices (serving to regulate impulses and
habits), the amygdala (involved in emotional processing) (Canli et al.,
2005), and the striatum (playing key roles in reward processing and
motor outflow) (Ahmari et al., 2013; Knutson et al., 2001). In keeping

https://doi.org/10.1016/j.nicl.2017.12.031
Received 30 October 2017; Received in revised form 19 December 2017; Accepted 20 December 2017

⁎ Corresponding author at: Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0QQ, UK.
E-mail address: src33@cam.ac.uk (S.R. Chamberlain).

NeuroImage: Clinical 17 (2018) 893–898

Available online 22 December 2017
2213-1582/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2017.12.031
https://doi.org/10.1016/j.nicl.2017.12.031
mailto:src33@cam.ac.uk
https://doi.org/10.1016/j.nicl.2017.12.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2017.12.031&domain=pdf


with this, studies have found that trichotillomania is associated with
impairment on response inhibition tests (Chamberlain et al., 2006;
Odlaug et al., 2014), and phenomenological studies have found re-
lationships between emotional states (dysphoria, anxiety) and the se-
verity of the hair-pulling symptoms (Grant et al., 2017).

Neuroimaging constitutes a core modality through which to eval-
uate implicated neural regions in patients with trichotillomania.
Structural imaging studies comparing patients with trichotillomania to
controls have yielded mixed results with regards to the basal ganglia.
One study found no volumetric changes in the caudate (Stein et al.,
1997), one found no difference in the global basal ganglia (Roos et al.,
2015), one found reduced left putamen volumes (O'Sullivan et al.,
1997), and another found excess grey matter density in left putamen
and amygdala (Chamberlain et al., 2008). Due to the relatively limited
research scrutiny of this disorder, and limited funding, imaging studies
have typically involved relatively small sample sizes. Small sample sizes
result in limited statistical power and elevate the risk of false positive
findings (Button et al., 2013). Subcortical structures are difficult to
visualize due to poor and variable signal intensity (as compared to
cortex) (Patenaude et al., 2011) and several mainstream imaging ana-
lysis pipelines were designed for analysis of cortex rather than sub-
cortical regions (Dale et al., 1999). More recent pipelines enable the
sensitive measurement not only of volumes of subcortical structures,
but also of local differences in deformations of shape across groups; the
latter has the advantage of not relying on arbitrary smoothing extent or
tissue classification (Patenaude et al., 2011).

Therefore, the current study pooled together raw MRI scans from all
available peer-reviewed case-control studies of trichotillomania, and
evaluated the volume and morphology of select subcortical structures.
Software pipelines, including “vertex analysis” from FMRIB's Software
Library (FSL) were used, these being designed specifically for the sen-
sitive measurement of subcortical structures (Patenaude et al., 2011).
We hypothesized that trichotillomania would be associated with volu-
metric and morphometric abnormalities of the caudate, putamen, nu-
cleus accumbens, and amygdala (Stein et al., 2006).

2. Material and methods

2.1. Data collection of participants

Conventional cortical data for the current sample were reported
previously and the MRI dataset obtained here was the same as that used
by the previous study (Chamberlain et al., 2017). In brief, all structural
MRI studies regarding trichotillomania were identified via PubMed in
February 2017. We contacted the authors of these publications and
invited them to contribute de-identified MRI scans from published
studies, subject to original participants providing appropriate consent
and Institutional Board Approvals. De-identified T1-weighted MRI
images and demographic data were shared for patients and controls.
Demographic data consisted of age, gender, level of education, medi-
cation status, and severity of illness measured with the Massachusetts
General Hospital Hair Pulling Scale (MGH-HPS) (Keuthen et al., 2007),
which is a self-administered questionnaire assessing severity of tricho-
tillomania. We excluded trichotillomania patients who were taking
psychotropic medication at the time of study participation, to avoid
potentially confounding effects of medication on brain structure
(McDonald, 2015). This applied to six patients.

2.2. Data analysis

Group differences in demographic data were explored with in-
dependent sample t-tests (p < 0.05, two-tailed, uncorrected) and chi-
square tests (p < 0.05), using JMP Pro.

Imaging pre-processing and data extractions were undertaken on
the University of Chicago Midway computing system. The T1-weighted
images of each subject were preprocessed. They were automatically

bias-field corrected and non-linearly registered to the MNI 152 standard
space. We employed FMRIB's Integrated Registration and Segmentation
Tool (FIRST) implemented in FSL 5.0.9 to automatically segment sub-
cortical structures (Patenaude et al., 2011). Segmentation was based on
shape models with structural boundaries obtained from 336 manually
segmented images, and resulted in a deformable surface mesh of each
subcortical structure consisting of vertices. The meshes were re-
constructed and filled in MNI space and boundary correction was ap-
plied. Then, the segmented images were transformed into original
space. All segmented images were visually checked for errors in regis-
tration and segmentation and the images of 2 trichotillomania patients
were discarded due to poor quality in segmentation.

2.2.1. Volumetric analysis
Subcortical volumes of the bilateral nucleus accumbens, amygdala,

caudate, and putamen were extracted. These regions of interest were
selected based on extant models of the pathophysiology of trichotillo-
mania (Stein et al., 2006). We calculated total intracranial volume
(ICV) as the sum volumes of grey matter, white matter and cere-
brospinal fluid using FMRIB's Automated Segmentation Tool (FAST)
(Zhang et al., 2001). Each subject's brain scan was skull-stripped with
the Brain Extraction Tool and linearly aligned to the MNI152 space, and
the inverse of the determinant of the affine transformation matrix
computed by the software was multiplied by the ICV size of the tem-
plate. We adjusted the subcortical volumes by the ICV of each patient
(Buckner et al., 2004). The adjusted volumes of each participant were
exported into JMP Pro Version 13.1.0. Group differences in ICV-cor-
rected subcortical volumes were explored using independent sample t-
tests. Statistical significance was defined as p < 0.05 two-tailed,
Bonferroni corrected. Correlations between MGH-HPS scores and sub-
cortical volumes were analyzed in trichotillomania participants, using
Spearman's rho. For correlation analyses, significance was defined as
p < 0.05 two-tailed uncorrected.

2.2.2. Vertex analysis
Vertex analysis, implemented in FIRST, (FSL), was employed to

compare the shapes of the subcortical structures between groups
(Patenaude et al., 2011). The vertex locations of each participant were
projected onto the surface normal of the average shape template of the
336 training subjects provided by FSL, and the perpendicular distance
from the average surface was calculated. Negative value of the vertex
represented deformation in the inward direction and positive value of a
vertex indicated deformation in the outward direction. These values
were compared between groups using ‘Randomise’, a permutation-
based non-parametric testing method implemented in FSL with 5000
iterations (Winkler et al., 2014). The statistical images were produced
with Threshold-Free Cluster Enhancement (TFCE) for multiple com-
parisons (Smith and Nichols, 2009), in which threshold was set at
p < 0.05.

3. Results

3.1. Demographics

The final study sample comprised 68 individuals with trichotillo-
mania and 41 healthy controls. The mean total Massachusetts General
Hospital Hair Pulling Scale severity score in the trichotillomania group
was 15.6 (standard deviation 4.7), consistent with, on average, mild-
moderate illness. There were no significant differences in age, gender,
education level, total grey and white matter volumes, or total in-
tracranial volume, between the groups (Table 1).

3.2. Volumetric analysis

Absolute volumetric data of subcortical grey matter regions were
listed and results of group comparisons are shown in Table 2. With
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correction for multiple comparisons, patients had significantly smaller
ICV-corrected subcortical volumes compared to controls in the right
amydala (t =−2.84, uncorrected p = 0.005, corrected p = 0.04) and
in the left putamen (t = −2.99, uncorrected p = 0.004, corrected
p = 0.032). There were trends toward volumetric reductions in other
subcortical regions, but these did not withstand correction for multiple
comparisons (Table 2). Volumes of subcortical regions did not correlate
significantly with symptom severity in the trichotillomania cases (all
p > 0.05 uncorrected).

3.3. Vertex analysis

The results of vertex-wise shape analysis are shown in Fig. 1. The
analysis revealed localized shape deformities in trichotillomania pa-
tients versus controls in the right putamen, right caudate, bilateral
nucleus accumbens, and bilateral amygdala.

4. Discussion

This study elucidated subcortical structural characteristics in tri-
chotillomania, using pooled MRI data from available peer-reviewed
imaging studies, coupled with statistical pipelines designed to over-
come problems in visualizing such non-cortical structures. The main
findings were that, compared to matched healthy volunteers, tricho-
tillomania patients had (i) significant volume reductions of the right

amygdala and left putamen; and (ii) localized morphometric (curva-
ture) abnormalities of the putamen, caudate, nucleus and amygdala.

The putamen is the key component in motor control and is involved
in habit learning and response suppression across species (Morris et al.,
2016). While the caudate plays a role in directed-learning (such as
during complex planning or high-level flexible learning tasks), the pu-
tamen is more involved in lower-level stimulus-response habit learning
(Grahn et al., 2008). The macroscopic changes in putamen but not
caudate volume associated with trichotillomania may help to account
for why co-morbidity free patients with trichotillomania manifest re-
sponse inhibition deficits (involving simple stimulus-response mappings
(Odlaug et al., 2014)) while other cognitive domains are relatively
spared (e.g. executive planning, set-shifting (Chamberlain et al.,
2007a)). We suggest that the more pronounced changes in the putamen
are also in keeping with trichotillomania being a disorder of motor
habit, rather than the symptoms being primarily driven by cognitions or
more complex sequencing (Grahn et al., 2008). Abnormalities of the
putamen have also been implicated in tic spectrum disorders including
Tourette's syndrome (Singer et al., 1993). In a recent study of patients
with tics, un-medicated patients relied on not goal-directed but rather
on habitual behavioral control, and showed stronger structural con-
nectivity between the supplementary motor cortex and putamen
(Delorme et al., 2016). Healthy volunteer studies support a role for
dopamine D2 receptors in the putamen in regulating response inhibi-
tion (Ghahremani et al., 2012), which may in turn support a role for
dorsal striatum dopamine receptors in the pathophysiology of tricho-
tillomania, with potential treatment implications.

In addition to macroscopic volume changes in the left putamen, we
also found here that the right amygdala was abnormally small in pa-
tients with trichotillomania compared to healthy controls. The amyg-
dala was traditionally held to be important in fear-processing (Ohman
and Mineka, 2001), but more recent work highlights its involvement in
a broader range of processes, including arousal, attention, value re-
presentation and decision-making (Koen et al., 2016; Pessoa, 2010).
Negative affective states can directly contribute to and trigger hair-
pulling symptoms (Christenson et al., 1993), and individuals with tri-
chotillomania showed decreased functional connectivity of amygdala
within the reward network (White et al., 2013). It has also been sug-
gested that hair-pulling may serve to regulate arousal levels: for some
individuals, hair-pulling may be undertaken during times of boredom or
low activity (e.g. watching television); while for others, hair-pulling
may be soothing and undertaken during times of stress and arousal (e.g.
work stress (Stein et al., 2006)).

Using an imaging pipeline that generated a mesh, representing the
curvature (three-dimensional morphology) of subcortical structures,
there was evidence for localized abnormalities in the curvature of the
amygdala, putamen, caudate, and nucleus accumbens, in trichotillo-
mania patients compared to the controls. This is the first study to ex-
amine localized structural changes in this disorder. These findings
should be viewed as being more subtle than the macroscopic differences
described above, and thus warrant replication in future work.

Table 1
Comparison of demographics and clinical characteristics in the trichotillomania and
healthy control groups. Groups did not differ significantly on these measures (all
p > 0.10).

Trichotillomania Healthy
controls

Statistic p-Value

(N = 68) (N = 41)

Age (mean, SD) 33.49 (11.78) 32.42 (10.76) 0.48a 0.64
Gender (N, %)
Male 6 (8.8%) 5 (12.2%) 0.32b 0.57
Female 62 (91.2%) 36 (87.8%)

Education (N, %)
High school or less 6 (8.8%) 5 (12.5%) 0.40b 0.82
College/lower
degree

15 (22.1%) 9 (22.5%)

Graduate/higher
degree

47 (69.1%) 26 (65.0%)

Total grey matter
volume, mm3

571,505 (54517) 565,064
(45568)

0.63a 0.53

Total white matter
volume, mm3

507,156 (49080) 498,500
(43328)

0.93a 0.35

Total intracranial
volume, mm3

1,343,947 (107840) 1,330,783
(103409)

0.63a 0.53

Abbreviations: SD = standard deviation.
a Independent sample t-tests.
b Chi-square tests.

Table 2
Comparison of subcortical volumes among individuals with trichotillomania and healthy controls. *p < 0.05, **p < 0.01 significantly smaller volumes in patients compared to controls
with Bonferroni correction.

Subcortical structures t-test Uncorrected p-value Raw volume of subcortical structures (SD), mm3

Trichotillomania (N = 68) Healthy controls (N = 41)

Lt. Amygdala −2.31 0.024 1183.97 (293.59) 1308.31 (289.79)
Rt. Amygdala −2.84 0.005* 1159.68 (294.21) 1309.58 (272.03)
Lt. Putamen −2.99 0.004* 5034.06 (737.89) 5366.68 (664.66)
Rt. Putamen −2.71 0.008 4996.79 (597.69) 5222.66 (547.46)
Lt. Caudate −1.80 0.075 3458.6 (482.0) 3575.0 (430.0)
Rt. Caudate −1.25 0.216 3640.5 (443.9) 3712.2 (429.2)
Lt. Nuc. Accumbens −1.91 0.059 553.0 (139.4) 594.0 (109.9)
Rt. Nuc. Accumbens −1.75 0.084 434.0 (118.6) 470.8 (115.0)
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Interestingly, the nucleus accumbens plays a role in impulsivity (Dalley
et al., 2011) including in temporal reward discounting (Cardinal et al.,
2001) and premature responding (Christakou et al., 2004). In a pre-
vious functional neuroimaging study, individuals with trichotillomania
showed decreased activation of nucleus accumbens during reward an-
ticipation (White et al., 2013). It has also been suggested that caudate
and the subthalamic nucleus have important roles in response inhibi-
tion performance (Eagle and Robbins, 2003), as well as the putamen.

Several limitations in the present study should be considered. First,
demographic and clinical data were limited to a few key measures,
because the study pooled data from different research programs. It
would be valuable to explore relationships between the structural ab-
normalities found here and other measures (such as cognitive func-
tioning, and questionnaires pertaining to affect dysregulation). Second,
the current study did not evaluate any effects of psychotropic medica-
tion on brain structure in trichotillomania –we excluded patients taking
medications. There is no widely accepted pharmacological ‘standard of
care’ for this disorder (Rothbart et al., 2013), which means that eva-
luation of medication effects would likely be a moot point in the ab-
sence of large data using evidence-based pharmacological treatments.
Third, the findings here differ from those we reported previously in an
overlapping sample (Chamberlain et al., 2017). In this previous work,
we focused on cortical structure but also reported select subcortical
volumes extracted using the Freesurfer pipeline, and group differences
were not significant. The current study used the FIRST algorithm, which
appears superior to Freesurfer for analysis of at least some subcortical
structures (notably putamen) in terms of accuracy (Perlaki et al., 2017).
Thus viewed together, the findings suggest that FIRST may be more
sensitive to subcortical changes in trichotillomania. It is also interesting
to note that the variability (standard deviations) were somewhat larger
in the Freesurfer study for subcortical regions, which may again suggest
lower precision for this alternative imaging pipeline as pertains to
subcortical structures. Finally, by pooling scans from multiple sites, we
were able to achieve a larger sample size; however, the sample size was
still relatively small compared to mega-analyses available for other
related disorders (e.g. OCD) (Boedhoe et al., 2017).

5. Conclusion

In summary, this analysis found subcortical brain abnormalities in
trichotillomania: reduced putamen and amygdala volumes coupled
with more subtle localized changes in the curvature of the putamen,
caudate, accumbens, and amygdala. Thus, abnormalities of neural
nodes mediating affect regulation, reward-processing, and habit gen-
eration, all appear to be involved in the pathophysiology of tricho-
tillomania. Future work should examine the temporal course of these
changes and their genetic underpinnings (potential heritability): it may
be that some changes constitute vulnerability markers but others are
secondary to the symptoms (or reflect compensatory changes during
brain development). From a treatment perspective, it is interesting that
n-acetyl cysteine (an amino-acid precursor), a glutamatergic medica-
tion, has efficacy in the treatment of trichotillomania. N-acetyl cysteine
is an amino acid precursor that restores extracellular levels of glutamate
in the nucleus accumbens in animal models of substance use. Given the
role of D2 dopamine receptors in mediating response inhibition in the
striatum (Ghahremani et al., 2012), and beneficial effects seen in tri-
chotillomania with olanzapine, the current results may hint at why only
certain medications appear to have efficacy in treating this neglected
disorder.
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