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1  |  INTRODUC TION

Heart disease is the leading cause of death in the United States and 
accounts for nearly one out of every four deaths (Virani et al., 2020). 
Nationwide, an estimated 655,000 people die from heart disease 
each year (Virani et al., 2020). Sudden cardiac death (SCD) accounts 
for 300,000 to 330,000 deaths annually (Stecker et al., 2014), and 
an estimated 379,800 patients who died in 2018 carried a diagnosis 
of heart failure (Virani et al., 2020). Despite a plethora of diagnostic 
tools and therapeutic options developed in recent decades, cardio-
vascular disease continues to account for more deaths in the United 
States than any other cause. The field continues to require enhance-
ment of screening and preventative modalities with the goal of inter-
vening earlier using broadly available risk assessment methodology.

The electrocardiogram (ECG) offers a readily accessible and cost- 
effective method for cardiovascular disease screening. Several ECG 

markers have been associated with underlying heart disease. For 
example, prolonged QRS, QTc, and JTc intervals have individually 
been associated with increased risk of SCD (Algra et al., 1991; Aro 
et al., 2011; Chugh et al., 2009; Straus et al., 2006; Teodorescu et al., 
2011) with more recent development of ECG risk scores to enhance 
clinical risk prediction (Aro et al., 2017).	QRS	duration	≥150	ms	and	
the presence of a left bundle branch block (LBBB) are used to iden-
tify patients with heart failure and reduced ejection fraction (HFrEF) 
who may benefit from cardiac resynchronization therapy (CRT) 
(Tracy et al., 2013). Based on emerging data regarding independent 
associations with left ventricular hypertrophy (LVH), heart failure, 
and SCD (Darouian et al., 2016; O'Neal et al., 2016; Romhilt & Estes, 
1968), there is an active and growing interest in delayed intrinsicoid 
deflection (DID) as an ECG marker of specific heart disease condi-
tions. Utilizing DID as a screening tool may provide an opportunity 
to identify patients with undiagnosed heart disease prior to adverse 
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Abstract
Delayed intrinsicoid deflection (DID) is an emerging electrocardiogram (ECG) marker 
of major clinical significance that is increasingly getting attention. Intrinsicoid deflec-
tion measures ventricular depolarization in the initial portion of the QRS complex, 
and	DID	is	defined	as	an	R	wave	peak	time	of	≥50	ms	in	leads	V5 and V6. Prior studies 
have identified an independent association between DID and cardiovascular condi-
tions such as left ventricular hypertrophy, heart failure, and sudden cardiac death. The 
exact mechanism that results in DID remains unknown. Animal models indicate that 
DID may result from abnormal calcium and potassium conductance as well as extra-
cellular matrix remodeling. DID remains an ECG marker of interest given its potential 
predictive value of underlying cardiovascular pathology and adverse events. This re-
view provides an update on the proposed mechanisms and associations, as well as the 
clinical and research implications of DID.
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clinical outcomes, and thus allow clinicians the ability to maximize 
the benefits of the available cardiac therapies. Given its association 
with cardiovascular pathology and adverse cardiovascular events, 
DID may provide a window to identify patients in advance of these 
cardiovascular sequelae to reduce the mortality burden associated 
with heart disease.

2  |  DEFINITION AND ME A SUREMENT

The term intrinsicoid deflection (ID) is defined as the R wave time to 
peak and was first reported by MacLeod, Wilson, and Barker in 1930 
(Macleod & Barker, 1930). ID represents the initial phase of ventricu-
lar depolarization and is the measurement of the time from the onset 
of the QRS complex to the peak of the R wave just prior to the first 
downward deflection. If there are multiple R wave peaks, such as in a 
right bundle branch block (RBBB) in lead V1, the ID is measured from 
the beginning of the QRS complex to the last R wave peak just prior 
to steepest downward deflection. The normal R wave peak time of 
the left ventricle is <50 ms (Perez- Riera et al., 2016). DID is typically 
defined	as	an	R	wave	peak	time	≥50	ms	in	leads	V5 and V6 (Sokolow 
& Lyon, 1949) and represents a delay in the initial phase of left ven-
tricular (LV) depolarization. Since Leads V5 and V6 are the standard 
for measurement of ID time, incorrect lead placement could poten-
tially affect the accuracy of this measurement.

3  |  MECHANISMS AND 
PATHOPHYSIOLOGY

Multiple mechanisms have been proposed for the delay in ventricu-
lar depolarization observed in DID. One proposed mechanism is at-
tributed to abnormalities in myocardial action potential related to 
calcium and potassium ion channel function. The action potential 

duration of the ventricular cardiac myocyte is largely determined 
by the plateau phase and repolarization phase. During the plateau 
phase of the action potential, calcium ion influx into the cardiac myo-
cyte via the L- type calcium channel and sodium ion entry via the 
Na/Ca exchanger result in continued depolarization of the myocyte 
(Figure 1) (Bers, 2002), which is balanced by the repolarizing effects 
of potassium ion efflux from the cardiac myocyte via potassium ion 
channels. During the repolarization phase, calcium channels are 
mostly inactive and potassium ion efflux persists resulting in repo-
larization (Spragg et al., 2018).

In female guinea pigs undergoing infrarenal aortic coarctation re-
sulting in mild LVH, action potential durations were prolonged when 
compared to the non- hypertrophied female guinea pig myocytes. 
Hypertrophied guinea pig myocytes displayed increased calcium 
current via increased L- type calcium current density and prolonged 
sodium- calcium exchanger current activation. Prolonged sodium- 
calcium exchanger activation during the plateau phase of the ac-
tion potential results in increased sodium influx and calcium efflux, 
which prolongs the action potential duration (Figure 2) (Bers, 2002). 
In this animal model of a mild pressure- overload system, there was 
no change in potassium current (Ryder et al., 1993). The increase in 
calcium current found in guinea pigs with LVH may reveal a compo-
nent of the electrophysiologic changes that contribute to action po-
tential prolongation via prolonged plateau and repolarization phases 
resulting in DID.

In guinea pigs with severe LVH, an increase in calcium current 
was again identified; however, a reduction in potassium current via 
Ik1 and Ik channels was also observed (Ryder et al., 1991). In rabbits 
with LVH, reduction in potassium current via decreased Ik1 and Ito 
potassium channel currents was also found in hypertrophied myo-
cytes along with action potential prolongation when compared to 
non- hypertrophied rabbit hearts (McIntosh et al., 1998). In cats with 
LVH following aortic banding, action potential durations were pro-
longed, but with increased variability. There was greater dispersion 

F I G U R E  1 Calcium	current	during	the	
plateau phase of the action potential. 
Calcium influx via L- type calcium 
channels (ICa) and sodium influx via the 
sodium- calcium exchanger (NCX) results 
continued myocyte depolarization during 
the plateau phase of the action potential. 
(Reprinted with permission from Bers, 
2002)
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of refractoriness, the difference between the shortest and longest 
refractory periods, among contiguous hypertrophied cardiac myo-
cytes when compared to cats with non- hypertrophied cardiac myo-
cytes. The hypertrophied left ventricles of cats also displayed lower 
excitability thresholds for induction of ventricular fibrillation (VF) 
when compared to non- hypertrophied cat left ventricles (Kowey 

et al., 1991). The increased calcium current and reduced potassium 
current observed in animal models of LVH may produce prolonged 
plateau and repolarization phases resulting in action potential pro-
longation as well as variability in both action potential duration and 
refractory period. These dispersions of action potential duration and 
refractory period may produce the substrate that promotes re- entry 
circuits and arrhythmogenesis in LVH (Wolk, 2000). These findings 
may also play a role in the mechanism by which DID is observed 
clinically in patients with LVH and predisposes patients with LVH to 
ventricular arrhythmias and SCD.

Another proposed mechanism that may contribute to the de-
velopment of DID identified in a prior study is the reduction in 
myocardial cell gap junctions in ischemic and hypertrophied human 
heart tissue (Peters et al., 1993). Gap junctions are important organ-
elles required for intercellular conductance within the myocardium 
(Figure 3) (Stanfield, 2017). In this study, surgical myocardial tissue 
samples from chronically ischemic or hypertrophied ventricular 
myocardial tissue were sampled and compared to normal ventric-
ular myocardium. The chronically ischemic or hypertrophied ven-
tricular myocardial tissue samples displayed a preserved number of 
intercalated discs when compared to normal ventricular myocardial 
tissue. However, both the ischemic and hypertrophied myocardial 
tissue displayed a 40% reduction in gap junction surface area per 
unit volume when compared to normal myocardial tissue (Peters 
et al., 1993). These findings indicate that myocardial remodeling 
in both the ischemic and hypertrophied heart results in decreased 
gap junction density between myocytes, which may contribute to 
the action potential duration prolongation and increased disper-
sion observed in hypertrophied animal left ventricles. These myo-
cardial abnormalities may contribute to the the arrhythmias and 
cardiac conduction abnormalities associated with LVH and isch-
emic heart disease. DID may also manifest electrocardiographically 
via delayed electrochemical communication between contiguous 
myocytes as a result of reduced gap junction availability.

The extracellular matrix of the myocardium also appears to play 
a role in the delayed ventricular depolarization observed in DID 

F I G U R E  2 Sodium-	calcium	exchanger	during	an	action	potential.	
(a) Calcium current [Ca]i increases during the plateau phase of the 
action potential and results in increased sodium- calcium exchanger 
activation (ENa/Ca). (b) Inward current (INa/Ca) via the sodium- calcium 
exchanger (NCX) results from sodium influx and calcium efflux. 
Outward current (INa/Ca) results from sodium efflux and calcium 
influx. (Adapted with permission from Bers, 2002).

F I G U R E  3 Myocardial	gap	junctions.	
(a) An action potential generated in the 
sinoatrial (SA) node and an electrical 
current conducted to adjacent myocytes 
via gap junctions within intercalated 
disks. (b) A gap junction transmitting 
an electrical current between adjacent 
myocytes. (Adapted with permission from 
Stanfield, 2017)
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(Figure 4) (Mewton et al., 2011). Hypertrophied hearts of primates 
with perinephritis and systemic hypertension were found to have in-
creased quantity of collagen deposition between myofibers (Weber 
et al., 1987). A number of studies have also observed that intersti-
tial fibrosis follows collagen deposition in systemic hypertension 
and myocardial hypertrophy among both primate (Abrahams et al., 
1987; Pick et al., 1989; Weber et al., 1988) and rat (Carroll et al., 
1989; Doering et al., 1988; Jalil et al., 1988, 1989; Jalil, Doering, 
et al., 1989; Silver et al., 1990; Weber et al., 1990) models. Myocyte 
size may also contribute to the electrophysiological alterations seen 
in LVH especially since conduction velocity was increased yet QRS 
duration was prolonged in a rabbit model of LVH and heart failure, 
when compared to normal rabbit hearts (Wiegerinck et al., 2006). 
Therefore the pathophysiology of DID appears to be multifactorial. 
In addition to action potential prolongation and increased dispersion 
via altered calcium and potassium ion conductance; reduced gap 
junction density, increased interstitial fibrosis and increased cardiac 
myocyte size may also contribute to DID.

4  |  LEF T VENTRICUL AR HYPERTROPHY

Delayed intrinsicoid deflection appears to represent an ECG marker 
of an underlying conduction defect that has been independently as-
sociated	with	multiple	cardiovascular	disease	processes.	DID	≥50	ms	
in leads V5 and V6 has been associated with LVH and is used in the 
Romhilt- Estes (R- E) ECG criteria for LVH (Noth et al., 1947; Romhilt 
et al., 1969; Sokolow & Lyon, 1949). The Romhilt- Estes (R- E) ECG 
criteria for LVH has also been associated with an increased all- cause 
mortality (Estes et al., 2015). In previous studies, DID was attributed 
to increased left ventricular (LV) mass and displayed a positive cor-
relation with LV mass (Baxley et al., 1968; Grubschmidt & Sokolow, 
1957). Despite the association of DID and the R- E ECG criteria with 
LVH, the association between DID and echocardiographic LVH has 
been inconsistent (Darouian et al., 2016). In fact, the sensitivity of 
the R- E ECG criteria for predicting increased LV mass has been es-
timated at only 60% (Romhilt & Estes, 1968). Previous studies have 
also reported that the R- E ECG score predicts sudden cardiac ar-
rest (SCA) independent of LV mass and ejection fraction (Darouian 
et al., 2017). As such, there appears to be an overlap between the 
association of DID with ECG LVH and anatomic LVH; however, DID 
appears to confer an arrhythmogenic risk independent of anatomic 
LVH as well.

5  |  HE ART FAILURE

Abnormalities in ventricular depolarization as measured by ECG 
markers have been associated with development of heart failure. 
QRS prolongation as well as the presence of left bundle branch block 
(LBBB), as opposed to right bundle branch block (RBBB), have been 
associated with the incidence of heart failure (Ilkhanoff et al., 2012; 
Zhang et al., 2015). A previous study also identified an association 

between increasing ID time and risk for heart failure events. In this 
study, for each 10 ms increase in ID time, there was a 1.42 greater 
risk of heart failure events, and that risk increased significantly when 
the ID time was >45 ms (O'Neal et al., 2016). Given the stronger as-
sociation between LV conduction defects and heart failure, DID may 
be a better predictor of delayed LV activation, and therefore heart 
failure, compared to QRS duration. DID appears to not only predict 
the risk of heart failure, but also the preferential risk of HFrEF over 
HFpEF. In another study, DID of >50 ms in leads V5 and V6 was a 
strong predictor of heart failure events (HR 2.81). However, only the 
risk of HFrEF (HR 4.90) events was strongly associated with DID, 
with no signficiant association identified between DID and the risk 
of HFpEF (HR 0.94). HFpEF events were instead associated with 
abnormal P- wave axis, QRS- T axis, and higher resting heart rate 
(O'Neal et al., 2017). These findings imply that distinct ECG markers 
arising from likely distinct pathophysiological mechanisms, appear to 
predict HFrEF and HFpEF.

In patients with HFrEF, QRS prolongation and the presence of a 
LBBB are utilized to guide the implementation of CRT (Tracy et al., 
2013). However, up to one- third of HFrEF patients do not respond to 
CRT despite its potential reverse remodeling (RR) and mortality ben-
efits (Auricchio & Prinzen, 2011; Prinzen et al., 2013). QRS duration 
is a measure of both right and left ventricular conduction, which may 
limit its utility in predicting CRT response (Sipahi et al., 2011). DID is 
another ECG marker that has been associated with response to CRT. 
Prolonged time to ID in lateral leads, I and aVL, was found to be a bet-
ter predictor of volumetric RR response to CRT than pre- implantation 
QRS duration or post- implantation QRS reduction (Del- Carpio Munoz 
et al., 2013). DID may identify patients who are at risk for developing 
heart failure, and also improve selection HFrEF patients who are more 
likely to benefit from heart failure therapies such as CRT.

6  |  SUDDEN C ARDIAC DE ATH

ECG markers, including prolonged QRS, QTc, JTc, and elevated 
resting heart rate have been associated with SCD (Algra et al., 
1991; Aro et al., 2011; Chugh et al., 2009; Straus et al., 2006; 
Teodorescu et al., 2011). LVH, by both electrical and anatomic 
measurements, has also been associated with an increased risk of 
SCD (Romhilt & Estes, 1968).	DID	of	≥50	ms	in	leads	V5 and V6 was 
found to be an independent risk factor for SCA with an odds ratio 
of 1.82 when controlled for diabetes, chronic renal insufficiency, 
severe	LV	dysfunction	(LVEF	≤35%),	echocardiographic	LVH,	QRS	
duration, JTc prolongation, and heart rate (Darouian et al., 2016). 
LVEF, as an isolated risk factor, has been associated with an ar-
rhythmic mortality risk of less than 5% over a 2- year span (Buxton 
et al., 2007). Despite the association of SCA with multiple other 
markers such as DID, LVEF continues to be the main parameter 
by which implantable cardioverter- defibrillator (ICD) therapy is 
offered to heart failure patients for primary prevention of SCA 
(Al- Khatib et al., 2018). DID appears to indicate an underlying 
myocardial abnormality that is independent of currently used 
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diagnostic measures, and warrants further evaluation as a clinical 
predictor of SCA.

7  |  CLINIC AL AND RESE ARCH 
IMPLIC ATIONS

Given the association of DID with underlying heart disease, iden-
tifying DID in patients at risk for these cardiovascular pathologies 

may offer clinicians a window to prevent the cardiac complications 
associated with DID or influence the clinical trajectory of patients 
whose pathology has already manifested (Figure 5). In patients with 
coronary artery disease (CAD) and angina without typical ECG or se-
rological findings consistent with ongoing myocardial ischemia, DID 
may potentially indicate increased risk of future clinical events war-
ranting more urgent ischemic evaluation, and should be evaluated 
further. In patients with essential hypertension, the development of 
DID could be an indicator of LVH and the need for more aggressive 

F I G U R E  4 Extracellular	matrix	remodeling.	Myocardial	injury	leads	to	abnormal	extracellular	matrix	remodeling	in	the	form	of	myocyte	
hypertrophy, interstitial fibrosis, and collagen deposition. (Adapted with permission from Mewton et al., 2011)
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lifestyle modifications and antihypertensive medical management as 
well as monitoring for clinical symptoms of impending heart failure. 
In LVH and diastolic heart failure, Q waves in the left lateral precor-
dial leads V5 and V6 result in increased ID time (Perez- Riera et al., 
2016). DID monitoring may also provide the opportunity to iden-
tify currently asymptomatic patients who are at risk for developing 
clinical HFrEF. DID also offers the potential to improve prediction of 
which patients would benefit from CRT.

While additional prospective studies are warranted, there is 
likely enough evidence in the existing literature to prompt a car-
diac evaluation in patients who are found to have DID on the 12- 
lead ECG. Given that for each 10 ms increase in ID time there is a 
1.42 greater risk of heart failure events (O'Neal et al., 2016), we 
suggest consideration of clinical evaluation in patients with DID of 
50 ms or greater. Even if the finding is incidental, it is reasonable to 
assess cardiovascular risk factors, but need for a coronary disease 
evaluation and assessment of cardiac structure and function with an 
echocardiogram is warranted. Depending on the nature and severity 
of symptoms as well as the clinical presentation, this workup could 
be escalated and/or broadened due to an increased pre- test prob-
ability of coronary artery disease and heart failure. Specifically for 
sudden cardiac death risk stratification, this marker has significant 
potential, but larger prospective studies are needed prior to clinical 
adoption.

Since intrinsicoid deflection is a “component” of the QRS inter-
val, there is likely a relationship between these two measurements 
although there is limited data in the literature specifically evaluating 
this relationship. However, as best as we can tell, the two markers 
may also have distinct associations depending on the disease con-
dition being evaluated. In the context of sudden cardiac death, DID 
appears to be a better predictor than QRS duration alone. DID has 
been independently associated with SCA when controlling for heart 

rate, QRS duration, severe LV dysfunction, echocardiographic LVH, 
diabetes mellitus, and chronic renal insufficiency. QRS duration was 
not independently associated with SCA in the same multivariate 
analysis (Darouian et al., 2016). In heart failure, there appears to be 
more of an overlap with both DID (HR 2.81) and prolonged QRS (HR 
1.70) appearing to predict heart failure events. DID also confers a 
stronger association with HFrEF (HR 4.90) as opposed to HFpEF (HR 
0.94) (O'Neal et al., 2017). In the context of selecting candidates 
for CRT, the vast majority of studies suggest that QRS duration is a 
clinically effective marker. However, prolonged time to ID in lateral 
leads, I and aVL, was found to be a better predictor of volumetric RR 
response to CRT than pre- implantation QRS duration (Del- Carpio 
Munoz et al., 2013). Overall, this is likely a complex relationship be-
tween DID and QRS duration, and future studies should make the 
effort to evaluate both markers.

The nationwide mortality burden attributed to SCD remains 
high despite efforts at primary prevention with ICD therapy. This 
disparity	may	be	due	to	the	use	of	severely	reduced	LVEF	≤35%	as	
the main parameter by which ICD therapy is offered for primary 
prevention in heart failure, since there is estimated to only be a 
2–	5%	annual	risk	of	SCD	among	patients	with	an	LVEF	≤35%	and	
only	one-	third	of	 SCD	cases	having	 an	LVEF	≤35%	 (Bardy	et	 al.,	
2005; Moss et al., 2002; Stecker et al., 2006). Extending beyond 
LVEF as the sole marker by which ICD therapy is offered for pri-
mary prevention in heart failure, and utilizing other markers, such 
as DID, could result in improved candidate selection for the pri-
mary prevention ICD.

More research is needed to further elucidate the mechanisms 
by which DID reflects evolving myocardial conduction disease 
that places patients at risk for adverse cardiovascular events. 
Large, detailed studies that evaluate the association of DID with 
LVH, heart failure, and SCA should improve the predictive value 

F I G U R E  5 Clinical	examples	of	
delayed and normal intrinsicoid deflection 
linked to specific clinical conditions. 
Delayed intrinsicoid deflection (DID) is an 
electrocardiographic (ECG) manifestation 
of underlying cardiovascular disease 
including left ventricular hypertrophy 
(LVH), coronary artery disease (CAD), 
heart failure (in this case HFrEF, heart 
failure with reduced ejection fraction), and 
sudden cardiac death (SCD)
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of DID for these manifestations of heart disease. This could lead 
to development of enhanced screening strategies that facilitate 
preemptive interventions for overall reduction of cardiovascular 
morbidity and mortality.

8  |  PERSPEC TIVES

• DID is an emerging ECG marker associated with multiple adverse 
cardiovascular events including SCD.

• DID manifests phenotypically in LVH, CAD, and HFrEF patients.
• DID may reflect abnormal calcium and potassium conductance 

and extracellular matrix remodeling.
• Further research is needed to incorporate DID in risk stratifica-

tion strategies that enhance prevention of adverse cardiovascular 
events.
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