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Abstract
Real-time molecular imaging to guide curative cancer surgeries is critical to ensure removal of all tumor cells; however, visua-
lization of microscopic tumor foci remains challenging. Wide variation in both imager instrumentation and molecular labeling
agents demands a common metric conveying the ability of a system to identify tumor cells. Microscopic disease, comprised of a
small number of tumor cells, has a signal on par with the background, making the use of signal (or tumor) to background ratio
inapplicable in this critical regime. Therefore, a metric that incorporates the ability to subtract out background, evaluating the
signal itself relative to the sources of uncertainty, or noise is required. Here we introduce the signal to noise ratio (SNR) to
characterize the ultimate sensitivity of an imaging system and optimize factors such as pixel size. Variation in the background
(noise) is due to electronic sources, optical sources, and spatial sources (heterogeneity in tumor marker expression, fluorophore
binding, and diffusion). Here, we investigate the impact of these noise sources and ways to limit its effect on SNR. We use
empirical tumor and noise measurements to procedurally generate tumor images and run a Monte Carlo simulation of micro-
scopic disease imaging to optimize parameters such as pixel size.
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Introduction

Knowledge of the presence of tumor cells is essential for cancer

surgery. Small numbers of tumor cells, impossible to detect

with the unaided eye or by touch, are often left behind, leading

to positive margins that are strikingly common. Positive mar-

gins occur in 25% to 40% of breast cancer surgeries1,2 and 20%
to 50% of high-risk prostate cancer surgeries.3 Positive mar-

gins, or microscopic residual disease (MRD), are consequen-

tial, significantly increasing the risk that cancer returns across

cancer types, for example, doubling the recurrence in breast

cancer leading to decreased survival.4 Similarly, MRD in pros-

tate cancer increases the risk of recurrence 2 to 4 times5-8

Efforts to address MRD have long centered around physician

judgment through preoperative imaging and intraoperative

sight and touch. However, these techniques are limited to milli-

meter to centimeter scale resolution—equivalent to 104 to 109

cells, orders of magnitude above the needed threshold of detec-

tion to ensure a margin negative outcome. Gold-standard meth-

ods of margin detection rely on pathologic examination of the

excised specimen, and if the specimen surface includes tumor

cells (called a positive margin), additional therapy is performed

at a later date—for example, re-excision for breast cancer and

postoperative radiation for prostate cancer.

Current strategies for intraoperative tumor identification

face challenges when assessing microscopic disease. Intrao-

perative specimen radiography is an established imaging tech-

nique in which the surgical specimen is removed from the

patient and placed inside a self-contained imaging unit in the

operation room for margin detection.9 This technique can

thereby assist with verification of gross tumor removal in
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vitro10 but not for portions of the tumor remaining in the

patient, as the imager cannot access the surgical margin in

vivo.11 Strategies for identifying tumor margin have focused

on frozen section and touch prep analysis. Frozen section anal-

ysis, particularly challenging with the fatty tissue in breast

cancer, is hindered by false negatives,12 requires a pathologist

present at the time of surgery, is limited in the area that can be

evaluated potentially missing disease, and significantly pro-

longs operative time.

Real-time molecular imaging on the other hand offers the

opportunity to visualize MRD intraoperatively, directly in

the tumor bed, enabling treatment of all disease at the time

of the initial operation. Consequently, the need for imaging

microscopic disease has driven the development of highly sen-

sitive intraoperative imagers. Taking advantage of the growing

armamentarium of fluorescently tagged molecular imaging

agents, fluorescence imaging has moved to the forefront of

intraoperative visualization techniques.13 While a wide range

of intraoperative imagers exist, no standardized metric exists to

evaluate their performance, particularly when coupled to a tar-

geted molecular imaging agent. Therefore, a platform-indepen-

dent method is needed to quantify the ability of imagers to

detect microscopic disease intraoperatively.

The default method for identifying residual tumor using

intraoperative imagers has been physician identification from

an image. Efforts to define a common quantification metric for

imaging tools have centered around the signal to background

ratio (SBR).14,15 Implicit in this metric is a tumor signal sig-

nificantly above background—true for larger tumor foci but not

necessarily for microscopic disease that is often just above

background contributed by nonspecific binding, autofluores-

cence, and other optical and electronic sources. However, to

properly identify microscopic tumor foci in an image, the back-

ground must be accurately subtracted—often in software—

using a combination of background subtraction and image rec-

ognition to achieve sensitivities far beyond human visual iden-

tification. This makes accurate determination of background

critical, as any error in background estimation translates

directly into an error in signal.

The background variation in biological systems can be ana-

logized to measurement uncertainty in general, often called

“noise” and for images is quantified as spatial noise. When

combined with signal intensity, this leads to a quantifiable

signal to noise ratio (SNR) for detecting microscopic disease

in an imaging system.

Here we propose SNR as a figure of merit for optical detection

of microscopic disease, which represents the fundamental limit of

electronic and computer-aided detection. While recent literature

increasingly considers SNR,16,17 methods to define signal and

noise vary widely. A standardized quantification of signal and

noise can be used to compare sensitivity across the imaging sys-

tems and define the ultimate limits of detection for a system.

To quantify SNR, we measure both the signal and the back-

ground as well as their variation. The signal is defined as the

number of photons collected from a tumor foci, and this article

addresses the identification and quantification of noise sources

in the imaging system such as electronic noise and spatial

noise. Key to accurate background subtraction (as shown in

Figure 1), these factors are affected by the detector sensitivity,

optical background rejection, properties of the imaging marker

(antibody binding kinetics), antigen expression by the tumor

and normal cells, and pixel size. The latter parameter is critical,

as smaller pixels (higher resolution) are not always “better”—

too small of a pixel may only sample noise with minimal signal,

while too large of a pixel may washout tumor signal by aver-

aging with background. Conversely, a pixel size larger than a

single cell is still capable of single cell detection if the back-

ground is accurately subtracted. Thus, maximum SNR is intrin-

sically linked to pixel size.

Of the noise sources, this article focuses on defining and

quantifying spatial noise so that an accurate SNR is defined.

Electronic (eg, time varying) noise can be mitigated with suf-

ficient image averaging (or equivalently, longer integration

times), but spatial noise arising from variations in the underly-

ing tissue and staining conditions cannot, thus driving a need to

study the impact of spatial noise on the SNR for background

subtraction. Analogous to time-varying noise sources, spatial

noise is composed of both high- and low-frequency compo-

nents. Similar in concept to averaging or longer integration

time for time-varying noise, high-frequency spatial noise can

be reduced by imaging a larger area for each pixel (eg, larger

pixel size); however, this comes at the expense of spatial res-

olution and can lead to errors by integrating large fluctuations

in slowly varying background intensity. Therefore, there is an

ideal pixel size to optimize SNR for a given imaging system.

In this article, we outline a general method for evaluating

the SNR of any optical imager in combination with a biologic

labeling of tumor cells, and relate this to optimal pixel size.

Since the analysis is based on the image itself, this method can

be used as a platform independent metric to compare imagers

(and biologics) in the evaluation of microscopic disease, essen-

tial for modern optical surgical navigation. Quantification of

imaging systems using SNR allows single cell imaging, even

with systems whose spatial resolution is below that of a single

cell. We discuss the various contributions to the tumor signal

and the sources of background and their inherent variability,

which contributes noise as shown in Table 1.

To illustrate our methodology, we quantified spatial noise

with immunofluorescence imaging of breast and prostate can-

cer cells, using both in vitro and in vivo molecular staining. For

the purposes of molecular labeling, we used a model system of

HER2-overexpressing (HER2þ) breast cancer cell lines

(SKBR3, HCC1569) compared against HER2-negative

(HER2-) cell lines (S1, MDA-MB-231) with trastuzumab,18

an antibody targeting the HER2 receptor. Similarly, we use

prostate-specific membrane antigen (PSMA)-overexpressing

prostate cancer cell lines (LnCAP) and PSMA-negative

(PC3) with J591, a humanized antibody against PSMA.19-22

As a demonstration of this technique, we quantified the signal

from tumor, and the sources of noise in Table 1, with a fluor-

escence microscope. Figure 1 illustrates these sources of noise,

drawing a distinction between high-frequency spatial noise and
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low-frequency spatial noise. High-frequency spatial noise,

which varies rapidly over the image, consists of variations in

antibody binding per cell and natural tissue (and tumor)

heterogeneity.

Low-frequency spatial noise—which varies slowly over the

entire image—can be a result of gradients in antibody concen-

tration due to diffusion, tumor perfusion, vascularity, or non-

uniform illumination. Noise due to non-uniform illumination

can be reduced using spatial calibration,23 and any variations

that cannot be subtracted out must be accounted as spatial

noise. Using these measured metrics, we then randomly gen-

erate images of clusters of cells of specific size and quantify the

SNR across varying arrangements of cell clusters. We use the

characterization data obtained from real cell samples to make a

simulated model of residual cancer tissue in order to determine

the optimal pixel size for an intraoperative imager. The method

and algorithm can be easily generalized for any cell line and

antibody combination.

Methods

Cell Culture

Breast cancer cell lines. In vitro breast cancer cell cultures

consisted of SKBR3 (HER2-overexpressing) and S1

Figure 1. Sources of signal, background, and noise. A, A simulated image of microscopic disease including background and noise sources that
obfuscate the tumor signal. Both the tumor area and background are procedurally generated. B, Without background subtraction and averaging,
the tumor is hard to identify, while with background subtraction the tumor is more apparent.
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(HER2-negative; from ATCC) cultured in Roswell Park Mem-

orial Institute (RPMI) 1640 Medium with 10% fetal bovine

serum (FBS).

Prostate cancer cell lines. Prostate cell cultures consisted of

LnCAP cells (PSMA overexpressing) and PC3 cells (PSMA

negative; from ATCC, Manassas, VA) cultured in RPMI with

10% FBS.

In Vivo Mouse Models

To determine the in vivo kinetic and spatial distribution of

trastuzumab, we subcutaneously implanted HER2 overexpres-

sing HCC1569 cells and MDA-MB-231 (HER2-negative) cells

as a negative control in nude mice. Tumors were grown for 2 to

3 weeks until they were 1 to 1.5 cm in diameter. Mice were then

injected with 1 mg of trastuzumab via intraperitoneal injection

and sacrificed at 24, 48, and 96 hours, and tumor, kidney,

muscle, and liver were removed and stained for trastuzumab

binding.

Staining

Fixation. Mouse tissue sections were fixed with 2% paraformal-

dehyde in phosphate-buffered saline (PBS) solution for 20 min-

utes at room temperature. Slides are then washed with PBS and

glycine solution.

Blocking. Tissue sections were blocked with 10% goat serum in

immunofluorescence buffer.

Immunostaining. Sections were then further stained with anti-

human FITC and the nuclear stain DAPI to simplify locating

cells using the microscope.

Mounting. Coverslips were then mounted with Vectashield Stor-

age Medium H1000 (Vector Labs, Burlingame, CA).

Imaging Procedure

Images were taken with Leica DMIRB, Wetzlar, Germany with

20� objective and standard FITC filter sets (Chroma) using a

Hamamatsu ORCA-Flash4.0 V2, Bellows Falls, VT camera.

Tissue images, used for in vivo binding quantification, were

taken from the center of tissue samples. Background variation

data were taken by imaging 66 mm� 66 mm areas, then shifting

the slide by 59.4 mm and taking another image. This provided a

10% overlap between images, allowing for image stitching.

The procedure was repeated across the entire tissue slice. The

slide movement was precisely controlled using a Thorlabs XY

Newton, New Jersey Mechanized Stage, and the stage and

camera was controlled by Micro-Manager.24 Individual cells

were identified using CellProfiler,25 and the total fluorescence

intensity was quantified. The number of antibodies correspond-

ing to the fluorescence intensity value was determined by ima-

ging a set of reference dilutions of FITC-conjugated secondary

antibody and comparing fluorescence intensity. A linear fit was

established, defining the relationship between number of anti-

bodies and and fluorescence intensity per pixel using the same

objective and integration time. Using this calibration curve, the

fluorescence intensity of each cell was converted to the number

of antibodies bound as seen in Figures 2 and 3. Diffusion across

tissue was estimated using MATLAB Natick, MA to determine

average differences in intensity across an entire tissue slice as

seen in Figure 4.

Monte Carlo Simulation of SNR

We generated images of cell clusters to estimate the maximal

SNR and optimal pixel size for our imaging sensor. Each image

consists of a randomly generated cell cluster of *100 cells.

The cell images are procedurally generated using Perlin noise26

to create a binary mask to demarcate tumor versus nontumor

areas as seen in Figure 1A (tumor signal). To accurately repli-

cate both the signal and the background intensity, we assign

cell intensity and background on the values found in Figure 3

for HER2-overexpressing and HER2-negative cells,

respectively.

Background is created as a random matrix with the same

average intensity and variation (quantified as the standard devia-

tion) as nonspecifically labeled cells imaged within the MDA-

MB-231 (HER2-negative) tumor stained with trastuzumab. A

5%/mm intensity gradient is added to mimic the gradient mea-

sured in Figure 4. In addition, we simulate nonuniform illumina-

tion as background with a Gaussian radial gradient. Similarly, to

accurately replicate the intensity and spatial noise of the tumor

signal, a random matrix is created with the same average inten-

sity and standard deviation as specifically labeled cells in the

HCC1569 (HER2-overexpressing) tumor stained with trastuzu-

mab. This matrix is then clipped (multiplied) by the binary mask

defined earlier. The background matrix and tumor matrix

are then summed resulting in a simulated image, where the

background has the same variance and average intensity as

Table 1. Signal, Background and Noise Sources in a Fluorescence
Image.

Signal Sources Background Sources Noise Sources

Number tumor cells Dark current Electronic (shot
noise)

Molecular labeling
specificity

Nonspecific binding Cell-to-cell
variability

Molecular label
concentration

Healthy cell antigen
expression

Diffusion

Illumination intensity Optical bleed through Tissue
heterogeneity

Fluorophore quantum
efficiency

Autofluorescence Tissue surface
heterogeneity

Electronic responsivity Illumination
heterogeneity

Pixel size
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HER2-negative tissue, and the tumor areas have the same var-

iance and intensity as HER2-overexpressing tissue.

Receiver–Operator Characteristic

To determine an SNR threshold for detection, we analyzed the

receiver–operator characteristic (ROC) of images at various

spatial resolutions. First, random binary cell cluster images and

noisy images are generated using the method described earlier.

The SNR is calculated for each pixel in the noisy image and

thresholded by SNRs ranging from 0 to 30. Pixels at or above

the threshold are considered positives, while pixels below the

threshold are negatives. The number of true-positive pixels is

divided by the number of positive pixels in the initial binary

tumor matrix to determine the sensitivity. The number of true

negative pixels is divided by the number of negative pixels in

the initial tumor matrix to determine specificity. 1-specificity is

then plotted against the sensitivity for each threshold to create a

ROC curve. We sampled 4 spatial resolutions, corresponding to

pixel sizes of 5, 10, 20, and 50 microns to demonstrate how the

ROC changes with spatial resolution.

Results

Signal to Noise Ratio as a Metric for Intraoperative
Detection of Microscopic Disease

The SNR defines the detection limit of the complete imaging

system and is defined as:

SNR ¼ Signal2=Noise2: ð1Þ
The MRD signal is defined as the total signal or number of

photons, T, received by a pixel (gathered and converted to

electrons by a pixel’s photosensitive element). This consists

of both the photons emitted by the optically labeled tumor cells

(called the signal, S) and the background, B, at that location

(x, y) as seen in Figure 1. We can write this as:

Tðx; yÞ ¼ Sðx; yÞþ Bðx; yÞ: ð2Þ
To estimate background intensity for background subtrac-

tion, we measure the pixel intensity at a location away from the

microscopic tumor (x þ dx, y þ dy), absent of tumor (S(xþdx,

yþdy) ¼ 0), such that:

Tðxþ dx; yþ dyÞ ¼ Bðxþ dx; yþ dyÞ: ð3Þ
The MRD signal alone can then be estimated from these 2

measurements as:

Sðx; yÞ ¼ Tðx; yÞ � Tðxþ dx; yþ dyÞ
¼ Sðx; yÞ þ Bðx; yÞ � Bðxþ dx; yþ dyÞ: ð4Þ

Recognizing that B(x, y) and B(xþdx, yþdy) may differ,

this introduces the spatial noise in the system, and the mini-

mum tumor signal detectable is then equal to this uncertainty,

DB ¼ B(x, y) � B(xþdx, yþdy). Here we have assumed that

there is sufficient averaging to reduce electronic noise to below

the level of the spatial noise and do not quantify its contribu-

tion. In this regime we find:

SNR ¼ Sðx; yÞ2=DB2: ð5Þ
For small clusters of cells, the tumor signal is weak and

is on the same order as the background intensity. We define

the minimum number of detectable cells as that which gives

an SNR >10, a value ensuring we identify tumor cells (true

Figure 2. Quantification of signal and noise in vitro. A, Quantification
of trastuzumab binding to SKBR3 (HER2þ) cells shows average of 30
to 50 000 antibodies/mm2, while S1 (HER2-) cells are �17 less. B, Cell
staining of SKBR3 and (C) cell staining of S1 with trastuzumab (green¼
trastuzumab, blue¼ nucleus) with various concentrations of anti-HER2
antibody. D-F, Similar experiment with prostate cancer cell line LNCaP
(PSMAþ) and PC3 (PSMA-). D, Quantification of J591 binding to LNCaP
cells shows 40 000 antibodies/mm2. (E and F) Cell staining with J591
(green ¼ J591, blue ¼ nucleus) with various concentrations of J591
with LNCaP and PC3, respectively.
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positives) without mistakenly identifying noise as tumor

cells (false positives) across varying pixel sizes. This is

supported by an ROC curve analysis (in the supplementary

materials), wherein an SNR >10 does not result in false

positives.

Quantification of Tumor Signal

The goal of intraoperative MRD imaging is to identify, and

quantify, the number of tumor cells amidst a background of

physiologically similar normal tissue cells. The signal from the

tumor cells is proportional to

1. the number cells to be detected (Ncell);

2. the number of molecules labeled or bound to each cell

(abound);

3. the illumination (excitation) photon flux; and

4. the fluorophore efficiency of converting those illumina-

tion photons to Stokes shifted emitted photons.

The number of antibodies labeled per cell (abound) is a func-

tion of the tumor biomarker binding affinity, biomarker expres-

sion level, and the labeling molecules exposure time to cells.

The ratio of bound biomarker to tumor cells relative to healthy

tissue cells is called the tumor to background ratio (TBR), used

interchangeably here with SBR, and together the 2 quantities

(TBR and abound) can be used to quantitatively describe the

biologics role in determining signal and therefore SNR. To

demonstrate how to apply this technique, we have performed

the following experiments determining TBR in vitro in both

example breast (SKBR3, S1, HCC1569, MDA231) and pros-

tate (LNCaP and PC3) cell lines and in vivo in the breast tumor

model.

In vitro determination of TBR and abound. Labeling tumor cells in

vivo using a molecularly targeted imaging agent is the first

step27 in translating the cell identifying procedures from the

pathology laboratory into the real-time operating room envi-

ronment. Identification of small foci (<200 cells) of fluores-

cently labeled MRD requires (1) accurate detection of the

tumor focus and (2) differentiation of the tumor from the sur-

rounding background, which can overwhelm and mask the

small MRD signal. Here we quantify the binding of trastuzu-

mab to HER2 overexpressing cell lines and J591 to PSMA

overexpressing cell lines as model systems.

We quantify the number of fluorophore-labeled antibodies

bound per tumor cell (abound) and the relative background

Figure 3. Quantification of signal and noise in vivo. A, binding of 1 mg of trastuzumab to HER2þ (HCC1569) and HER2� (triple negative, MDA-
MB-231) tumors in nude mice versus time (24, 48, and 96 hours), stained with anti-human FITC (green) and DAPI (blue) nuclear counterstain.
Binding to HER2þ cells increases with time. B, Tumor to background ratio is 4, 30, and 21 at 24, 48, and 96 hours post-injection. C,
Representative images of tumor tissue are shown at 24, 48, and 96 hours in inset (i-iii).

Figure 4. Low-frequency spatial variations in a tumor slice. A section
of HER2þ (HCC1569) tumor alongside line scans at various spatial
resolutions demonstrates the heterogeneities that make determining
background difficult. The 5-mm pixel information demonstrates high-
frequency variation between cells, the 50-mm pixel information
demonstrates the background variation due to tissue physiology and
the linear portion of the 500-mm pixel information between 3 mm and
7 mm demonstrates a 5%/mm gradient likely due to diffusion
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signal with the tumor to background ratio, TBR. Figure 2

illustrates in vitro quantification of HER2 labeling with

increasing concentrations of trastuzumab. At 10 mg/mL of

trastuzumab, SKBR3 cells bind *30,000 antibodies/mm2

(abound¼3.6 � 106/cell), while only 1700 antibodies/mm2

(8.5 � 103/cell) bind to S1 cells, for a TBR of 17. Higher

concentrations of Trastuzumab saturate binding at 5 � 104

antibodies/mm2, although TBR is reduced due to increased

background. Similar analysis on PSMA overexpressing pros-

tate cancer cells demonstrates an abound¼ 3.7 � 104/cell with

a TBR of 28, consistent with the lower expression level of

PSMA28 versus HER2.29

In vivo determination of TBR and abound. To drive maximal signal

for in vivo imaging, it is important to determine the optimal

timing and concentration of a systemically injected imaging

agent to maximize tumor binding (abound). Studies30-34 demon-

strate maximal TBR 24 to 72 hours after injection. To deter-

mine the in vivo kinetic and spatial distribution of trastuzumab,

we subcutaneously implanted HER2 overexpressing HCC1569

cells and MDA-MB-231 (HER2-negative) cells as a negative

control in nude mice and injected increasing amounts of tras-

tuzumab via intraperitoneal injection.

Figure 3 shows selective binding of trastuzumab to

HCC1569 cells in vivo (*40 000 antibodies/mm2, abound ¼ 5

� 106/cell), with optimal TBR (30) at 48 hours post-injection.

Tumor to background ratio in vivo exceeds in vitro due to

receptor-mediated endocytosis of trastuzumab.35

These experiments show how to quantify TBR, capturing

both the ratio of the biological labels (eg, antibodies) per tumor

and normal tissue cell and the amount of labeling per cell.

Tumor signal is the difference between the intensity of the

tumor cells and background cells. The ratio between the tumor

signal and the background (TBR), computed from the image, is

the key driver of detection sensitivity, representing both the

signal intensity and the background intensity. The TBR is a

function of the biological system, relying on antibody-

binding specificity and tumor receptor expression level. This

quantitative description of biologic performance is agnostic to

the imaging instrument itself (relying only on the final image).

As such, we can analyze imager performance for a tumor-

antibody system of a particular TBR and predict imager

response for other TBRs. This allows us to predict (or simulate)

sensitivity of the same imager across different biological (anti-

body cell) systems based on imaging just 1 biological system.

Additional determinants of the tumor signal include factors

such as illumination intensity, fluorophore quantum efficiency,

photon gathering, and elements of electronic detection, such as

pixel responsivity, pixel capacity, and integration time. Here,

we qualitatively describe their impact on the signal.

Illumination intensity. Illumination intensity proportionally

increases the intensity of the fluorescence signal and the optical

sources of background. However, given a fixed total imaging

time to evaluate SNR, increasing illumination decreases elec-

tronic noise, as multiple images can be averaged in the same

period due to the increased number of photons reaching the

sensor per unit time (decreasing the integration time for each

image). While illumination intensity cannot reduce spatial

noise (since it is not varying with time), the illumination inten-

sity must be increased to the level at which the net tumor signal

is above the electronic noise of the detector. However, illumi-

nation intensity cannot be arbitrarily increased, as limits exist

either due to safety requirements or photobleaching of organic

fluorophores, representing an upper limit to illumination inten-

sity and duration with estimates that each fluorophore can

repeat the excitation–emission cycle 10,000 to 40,000 times

before permanently photobleaching.36

Fluorophore quantum efficiency. Photons incident on a labeled

cell interact with the bound fluorophore to produce a lower

energy, stokes-shifted, fluorescently emitted photon. The effi-

ciency of this process is directly proportional to the optical

signal intensity. However, the relative low efficiency of this

process requires illumination intensities 3 to 6 orders of mag-

nitude larger than the fluorescence emission. This is driven by

the small fluorophore absorption cross section, of the order of

10-16 cm2,37 which defines the area in which a photon can

interact with a fluorophore, and the fluorescence quantum

yield, which quantifies the probability that a photon interacting

with a fluorophore will produce an emitted photon. The quan-

tum yield is typically between 3% and 10% 38,39 for organic

fluorophores used in in vivo applications.

Electronic detection (responsivity). Each pixel converts incident

photons to electrons, which in turn are converted to a voltage

for electronic readout. Each pixel’s total capacity for integrated

electrons is the sum of the signal and total background with

electronic noise. Pixel responsivity quantifies the efficiency of

converting received photons into electrons, which can then be

converted to a voltage for electronic readout.

Pixel size. The maximal signal in a pixel can be obtained by

matching the area imaged to the area subtended by the tumor

cells being imaged. This optimizes signal detection as pixel

capacity is not consumed by background photons from neigh-

boring normal tissue. As an example, with a goal of imaging

100 cells, this area is approximately 10,000 mm2 or roughly a

120 mm� 120 mm for a 10 mm� 10 mm� 10 mm cell. However,

maximizing signal in this manner comes with the sharp trade-off

of resolution, which can compromise performance of automated

image recognition and machine learning algorithms.

Quantification of Background

The background is comprised of electrons integrated by the

pixel from sources other than the labeled tumor cells. Given

all electrons are identical at the pixel level, electrons generated

from signal and background are indistinguishable. Therefore,

background must be accurately subtracted from the total pixel

signal to yield the tumor signal. Here we describe the elec-

tronic, optical, and biological sources of background: dark

Gharia et al 7



current, optical bleed through, autofluorescence, on-target off

tumor binding as well as nonspecific binding.

Dark current. Electronic sources of background are primarily

due to the dark current.40-42 The magnitude of the dark current

is dependent on the process used to manufacture the sensor and

the sensor operating temperature. While assumed to be con-

stant across pixels, fabrication mismatch between pixels and

subtle integrated circuit fabrication process variations result in

pixel-to-pixel variation, and this value is best measured per

pixel (in darkness) and subtracted from the final readout. The

relative contribution of this source of noise can be decreased

through longer integration times or averaging multiple images.

Optical bleed through. Poor fluorophore efficiency necessitates

illumination intensities orders of magnitude greater than the

emitted light. Identifying fluorescently labeled cells thereby

requires high performance optical filters that can reject light

differing by *50 nm by 4 to 6 orders of magnitude. These

filters inevitably allow some light through contributing to back-

ground, consuming pixel capacity, and increasing shot noise

contributions.

Autofluorescence. Autofluorescence results from a broad-

spectrum optical emission of higher wavelength light by mole-

cules in tissue when excited by light. A portion of this emission

falls within the emission band of the fluorophore (and therefore

the selected optical filter) and, as such, is imaged along with the

tumor signal. While autofluorescence is reduced using near

infrared (NIR) illumination light, it represents a significant

source of background, as each cell (both tumor and normal

tissue) contributes to this background signal.

On-target, off tumor labeling. Healthy (eg, non-cancerous) tissue

cells often express a baseline amount of biomarker which binds

to the optical label and contributes directly to the background

signal. This background is particularly problematic because it

appears identical to the tumor signal, as both emit at the same

wavelength and cannot be blocked by the filter.

Nonspecific binding. Imaging agent adhering to cells that do not

express the surface marker or are not eliminated from the

patient directly contribute to background. This nonspecific

binding limits pixel capacity for signal and is a major hindrance

for optical imaging of microscopic disease. This is addressed

through increased pixel capacity to accommodate the addi-

tional background light. The penetration of light into tissue

(as with NIR illumination) further adds to this as nonspecific

binding to cells below the surface also contributes to back-

ground. This background can be reduced with a lower wave-

length fluorophore, although this sacrifices penetration of

superficial, overlying layers of blood that may be found intrao-

peratively. Some techniques, such as spatial frequency domain

imaging, can reduce background by controlling illumination to

calculate reflectance and scatter using both amplitude and

phase information.43

Noise

Various sources of biochemical, physical, optical, and elec-

tronic features contribute to variation in the background, obfus-

cating the appropriate signal for background subtraction.

Broadly speaking, electronic noise varies over time and there-

fore can be reduced by averaging multiple images. However,

spatial noise is a function of the tissue itself and does not

change with time (at least within the short interval of intrao-

perative imaging) and therefore cannot be reduced with aver-

aging. Here, we describe biochemical and physical sources of

noise as forms of spatial noise.

Time-varying electronic noise. Shot noise represents the funda-

mental physical limit of detection of counting electrons (gen-

erated from incident photons), including all sources of

electrons such as optical background and dark current. Conse-

quently, in the presence of a significant background signal,

even if accurate background subtraction can be ensured, the

noise from a large background signal (but not necessarily the

background signal itself) can mask a small signal due to this

noise source alone.

Spatial noise. The relative ease of subtracting a constant back-

ground would obviate the need for SNR considerations. How-

ever, background cannot be measured to an arbitrary precision,

and variation can inhibit our ability to identify the signal of

interest. This background variation can occur over a wide fre-

quency scale. Notably, variations in antibody distribution and

binding cannot be predicted a priori, prohibiting the use of a

global threshold for MRD and current efforts at background

subtraction are limited to centimeter-scale tumor foci.15 For

example, the standard deviation for antibody binding per

square micron in tissue labeled with an antibody in vivo (Fig-

ure 2) ranged from 1259 antibodies/mm2 in an HER2-negative

tumor (eg, background variation) to 21 807 antibodies/mm2 in

HER2-overexpressing cells (eg, tumor variation and heteroge-

neity). This drives the need for more accurate, patient (and

tumor)-specific background measurements.

Spatial noise is divided into high-frequency (eg, rapidly

varying) spatial noise and low-frequency spatial (eg, slowly

varying) noise, wherein the high-frequency component is com-

posed of cell-to-cell binding variations or tissue heterogeneity,

and the low-frequency component is composed of gradients in

the signal due to diffusion of the antibody. Both high- and low-

frequency variations inhibit the ability to identify an accurate

background to subtract and drive the need to quantify the opti-

cal pixel size for background subtraction.

High-frequency spatial noise can be addressed through aver-

aging a larger area, driving the need for a larger pixel size,

while low-frequency spatial noise precludes too large a pixel

size to avoid integrating slowly varying intensity changes over

the tissue surface. Thus, there is an optimal pixel size to mini-

mize noise and maximize signal.

Noise quantification. To quantify both the high- and the low-

frequency noise, we measured the variability of antibody
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staining across a tissue slice as a function of position on the

slide. This tissue slice of an 8-mm HER2þ tumor, shown at the

bottom of Figure 4, was resampled at various simulated pixel

sizes to demonstrate the impact of noise at different resolutions.

At a small pixel size (5 mm; Figure 4, dotted blue trace), high-

frequency spatial noise fluctuations render local background

identification impossible. At large pixel sizes (500 mm; Fig-

ure 4, yellow trace), low-frequency drift also impairs back-

ground identification in a focal area.

Electronic noise. In this example, we assume that both low-noise

imager design (such as a cooled charge coupled device (CCD))

adequate averaging (or increased integration time) reduces

electronic noise (relative to the signal) to below the noise level

of the spatial noise and therefore disregard it. For example, the

tissue free portions of Figure 4 have low variation with a small

pixel size because the electronic noise contribution is very

small relative to the spatial noise of the tissue.

Low-frequency spatial noise. When sampling background at large

distances from the tumor, the background changes as a function

of the distance from the tumor cluster being imaged and can be

thought of as “low-frequency” spatial noise. For example, in

Figure 4 (yellow trace), this can be as large as 5%/mm when

sampling with a 500-mm pixel. This drives the need for high-

spatial resolution so that a background measurement can be

taken from a pixel close to the pixel imaging microscopic

tumor, reducing this noise component.

High-frequency spatial noise. However, high-frequency variation

puts an upper limit on the spatial resolution: As seen in Figure 4

(blue dashed trace), sampling using 5-mm pixels shows marked

pixel-to-pixel variation due to cell-to-cell variations that can be

quantified as the standard deviation in background. Hence, the

optimal spatial resolution must sufficiently average the cell-to-

cell variation without merely detecting the drift in intensity due

to low-frequency noise effects such as antibody diffusion, jus-

tifying measurement of these variables for imaging of micro-

scopic disease.

Calculation of SNR

To calculate the spatial noise as a function of pixel size, we find

the variance across the pixels in the image by finding the mean

of the square of differences between neighboring pixels as

follows. If Px, y is the intensity of pixel at position x, y and

Npixel is the number of pixels on the sensor, then noise DB is as

follows

DB2¼ Variance ¼
X

x

X
y

h
ðPx; y�Px�1; yÞ2þðPx; y�Px; y�1Þ2

i
= Npixel

ð6Þ
Variance is the more relevant measure of noise to determine

SNR. To demonstrate this, we compute the variance using our

metric at various spatial resolutions for the image in Figure 1

and plot the results in Figure 5. Below this plot, we show the

image as it appears at given spatial resolutions (A-E). Variance

across the image changes as a function of pixel size with the

expected behavior of decreasing variance, as high-frequency

noise components are reduced with increasing spatial aver-

aging, until low-frequency noise dominates, and the variance

begins to increase again. Thus, an intermediate pixel size (“C”)

provides the optimal SNR for this system.

Monte Carlo Simulation of Maximal SNR and
Optimal Pixel Size

To ensure that our results are generalizable and not simply

driven by our chosen sample, we ran a Monte Carlo simulation

of 50 computer-generated cell images. Each image consists of

randomly generated cell clusters with an average of 100 cells,

with signal, background, and spatial noise derived from mea-

sured image data from the HER2 model as described. The

simulation can represent any tumor model system by simply

substituting the signal, background, and spatial noise obtained

from an in vivo experiment of that system. Here we have cho-

sen to use HER2þ breast cancer as the model system, given its

relatively higher TBR.

In Figure 6, we plot the SNR over spatial resolutions corre-

sponding to pixel sizes ranging from 0.61 to 200 mm for 50

random cell clusters. One of these random clusters is shown at

select resolutions to illustrate how optimized SNR can enhance

micro-tumor identification. In this instance, the optimal pixel

size is in the range of 10 to 35 mm with a maximum SNR of 25.

Figure 5. Variance in the image from Figure 1 at varying spatial
resolutions. A, Represents the original image, (B) illustrates a reduc-
tion in high-frequency noise without significant loss in resolution. The
minimum variance across the image occurs at point (C) at a pixel size
that averages the high-frequency noise component without being
dominated by low-frequency noise. Point (D) has increased variance
due to averaging of low frequency noise components and in point (E),
this low-frequency noise is the only feature visible.
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Single-Cell Imaging with Relatively Large Pixels

Assuming a sparse distribution of tumor cells, a single cell

with sufficient SNR can be detected by pixels much larger

than the size of the cell. We simulated a 10-mm cell with TBRs

from 1 to 30 to cover the real-world range we found in in vivo

staining data shown in Figure 3. In Figure 7, we present an

instance of this simulation with images of a single cancer cell

at the center of a background of healthy tissue. This cell has a

TBR of 10.4, while the healthy cells have random intensity

with the same mean intensity and distribution as empirically

determined. Even pixels an order of magnitude larger than the

cell can uniquely locate a single cancerous cell; however,

there is an upper bound to pixel sizes used to locate single

cells. With an SNR below 10, there is an increasing chance

that other pixels yield a greater intensity than the pixel over

the tumor cell, rendering unique identification impossible.

Establishing that the maximum size of the pixel that can reli-

ably detect a single cell occurs when the SNR is greater than

10, we plot the SNR at various spatial resolutions for the

example TBR of 10.4. In addition, we plot the largest pixel

size that achieves an SNR of 10 for the full range of TBRs.

Figure 7 illustrates that single-cell imaging is achievable even

in an optical imaging system with resolution lower than that

of a single cell. In Figure 7, panel B, the calculated SNR using

the known cell location degenerates once the SNR is less than

10, demonstrating how detection becomes contingent on the

initial distribution of noise in the image. However, the single

cell is reliably detectable at higher SNRs. Figure 7, panel C,

illustrates the effect of TBR on the ability to identify single

cells. A greater TBR corresponds to a higher tumor signal, and

as the signal intensity increasingly outweighs the integrated

low-frequency noise (as larger pixels average out and lower

the contribution of high frequency noise), relatively large

Figure 6. Monte Carlo simulation of procedurally generated tumor images. A, Example of randomly generated tumor followed by images at
various spatial resolutions with simulated noise. The average background and noise are modeled after empirically determined distributions. The
top and bottom row illustrate a linear and radial low-frequency noise gradient, respectively. B, Plot of signal to noise ratio (SNR) at various pixel
sizes over 20 randomly generated tumors. Ten were simulated with linear low-frequency noise, where the blue squares indicate the data for the
images in the top row of part (A). Ten were simulated with radial low-frequency noise, where the red circles indicate data for the bottom row in
part (A). C, Variance across an image at various pixel sizes. Variance decreases as high-frequency noise is averaged away and then increases as
low-frequency noise dominates.
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pixels (multiple times the size of single cells) can adequately

identify even single cells.

Discussion

In this study, we have outlined and demonstrated a method to

characterize the ability of optical imagers and targeted mole-

cular imaging agents (TMIAs) to identify microscopic tumor

foci, including single-cell residual disease. These small areas of

tumor often exhibit intensity on the order of background,

necessitating a metric beyond signal to background ratio.

Furthermore, the advent of machine learning and automated

image recognition algorithms lend themselves to a more quan-

titative evaluation of imaging system performance.

Through characterization of the signal intensity per cell,

background intensity per cell, and the variation in background,

the ultimate level of sensitivity for a given foci of tumor cells

can be calculated. Furthermore, we demonstrate a methodology

for simulating imaging of microscopic disease using computer-

generated images, allowing evaluation of the sensitivity of an

imaging system and companion TMIAs.

We can use this analysis to optimize the design parameters

such as pixel size for future intraoperative imagers. The current

paradigm is to pursue small pixels for high-resolution images.

However, while higher resolution images can be binned to

create a larger pixel size in postprocessing software, higher

pixel density has intrinsic costs: Smaller pixels have relatively

more temporal nose (as they integrate less signal), requiring

longer averages; the fill factor is reduced (eg, CMOS-based

imagers often include in-pixel electronics); and longer readout

times are necessary to obtain the data from more pixels. There-

fore, it is advantageous to have the optimal sized pixel within

the system itself.

Pixels cannot be arbitrarily large either, both to retain reso-

lution for accurate location data, and to prevent capturing low

frequency spatial noise across the image. To image a micro-

tumor with *100 mm diameter and background noise consis-

tent with trastuzumab or J591 labeling, pixel sizes between

Figure 7. Detecting a single cell at various spatial resolutions. In (A) we see the results of imaging a 10-micron diameter cell in healthy tissue
with some noise and a tumor to background ratio of 10.4. We can still determine the location of the cell at the center of the imager as long as the
signal to noise ratio (SNR) is greater than 10. Detecting a single cell does not require subcellular resolution contingent on the notion that the
single cells are sparsely distributed and have a large tumor to background ratio. In (B) we see the SNR over a range of pixel sizes for 10 randomly
generated samples given a tumor to background ratio (TBR) of 10.4. In (C) we plot the largest pixel that can detect a single cell at a given TBR
with SNR greater than 10. The plot is not smooth because it is based on randomly generated samples with arbitrary noise.
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10 mm and 35 mm yielded optimal results (Figure 6). As pixel

size increases up to 10 mm, the variance across the image

decreases, while pixels over the tumor capture a greater portion

of the signal, causing an increase in SNR. As pixel size con-

tinues to increase past the optimal range, the image comes to be

dominated by any underlying antibody diffusion or tissue pat-

terns that mask the tumor location.

In Figure 6, we see tumor location is not readily visible due

to high-frequency noise with a small pixel size of 0.61 mm.

Spatial averaging by increasing pixel size to 2.34 mm results

in improved SNR, and tumor areas are better defined. How-

ever, there is still large variance across the image that may limit

automatic detection. Peak SNR with sampling at 13.3 mm pixel

size yields clear identification of microtumor areas. Tumor

areas are still identifiable even at low resolution with a pixel

size of 57.1 mm. High-frequency spatial noise is reduced until

low-frequency spatial noise dominates at larger pixels such as

200 mm, where only the gradient is visible. Of particular note, a

low pixel size may result in easily identifiable tumor areas,

such is the case at a pixel size of 2.34 mm. However, thresh-

olding for automatic tumor detection would not work well, as

there are many background pixels with high intensities outside

tumor areas, likely to generate false positives. Increased spatial

averaging, either in postprocessing or at a hardware level with

larger pixels, reduces this high-frequency noise at the expense

of integrating (and therefore increasing) more low-frequency

noise. We extend our technique to simulate varying patterns of

low-frequency noise, such as a radial pattern—characteristic of

non-uniform illumination sources. We also observe differences

in SNR at various spatial resolutions between the linear low-

frequency noise simulations and radial low-frequency noise

simulations. In Figure 6, panel B, the SNR from the linear

gradient simulations (marked with a blue square) is greater than

the radial gradient simulations at optimal pixel sizes. This is an

artifact of our cell cluster generation within the frame of the

image. High background in the center of the image during

radial gradient simulations reduces the signal. However, peak

SNR remains consistent between these 2 low-frequency ima-

ging conditions.

In the extreme condition of detecting a single tumor cell

among a background of noncancerous tissue, detectors with

pixels ranging from 10 mm to 250 mm can be used correspond-

ing to TBRs ranging from 1 to 30 (Figure 7c). If a detector has

pixels that are too large, then background areas distant from the

tumor cell may have average intensities that appear to be

tumor, as seen in Figure 7A, with a 210 mm pixel size. This

results in a degeneration of SNR, where the area with a tumor

cell cannot be uniquely identified.

While the metrics incorporated here address the image qual-

ity and ability to identify microscopic disease with optical

imagers, they do not address other key metrics of intraoperative

imagers, including imager size, mobility, and ability to fit

within hard-to-access areas allowing visualization of all sides

of a tumor cavity and within lymph node basins. For example,

fiber optics has a fundamental trade-off between fiber diameter

(which directly relates to the area visualized with each image)

and flexibility, with a 1-cm bending radius achievable only

with optical fibers of roughly 100-mm diameter. Similarly, ima-

ging speed is important, as the entire surface area must be

imaged rapidly to enable seamless integration into surgery and

prevent the image from being degraded with hand motion.

Imaging small numbers of tumor cells with very low fluor-

escence levels has a large impact for guiding cancer surgery

and requires the assistance of image processing algorithms.44

These techniques can be used synergistically with intraopera-

tive imagers designed to image broad areas45 and guide gross

resection. Following initial removal, tools adept at quantifica-

tion and characterization of MRD can assist in the decision to

further resect with the goal of achieving negative margins.

Conclusion

Detecting and removing microscopic disease in margins during

tumor resection has significant impact on patient care and out-

comes. A growing array of sensors, imagers, and optical labels

address this problem of intraoperative imaging and are largely

characterized by the TBR they can detect as a proxy for human

detection. Here, we show that the spatial SNR is a fundamental

limit of electronic image detection and describe techniques to

quantify signal and noise in image systems as well as optimiza-

tions to improve SNR for the most accurate detection. We

demonstrate our results using a Monte Carlo simulation of SNR

in procedurally generated tumor images based on parameters of

signal, background, and noise that we quantified from imaging

HER2-overexpressing and HER2-negative cell lines with

fluorescently labeled trastuzumab and PSMA-positive and

PSMA-negative cell lines with fluorescently labeled J591 anti-

body. We extend this SNR analysis to optical imaging systems

for single cell detection.
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