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Background: There is an unmet need for accurate non-invasive methods to diagnose non-alcoholic 
steatohepatitis (NASH). Since impedance-based measurements of body composition are simple, repeatable 
and have a strong association with non-alcoholic fatty liver disease (NAFLD) severity, we aimed to develop 
a novel and fully automatic machine learning algorithm, consisting of a deep neural network based on 
impedance-based measurements of body composition to identify NASH [the bioeLectrical impEdance 
Analysis foR Nash (LEARN) algorithm].
Methods: A total of 1,259 consecutive subjects with suspected NAFLD were screened from six medical 
centers across China, of which 766 patients with biopsy-proven NAFLD were included in final analysis. 
These patients were randomly subdivided into the training and validation groups, in a ratio of 4:1. The 
LEARN algorithm was developed in the training group to identify NASH, and subsequently, tested in the 
validation group.
Results: The LEARN algorithm utilizing impedance-based measurements of body composition along 
with age, sex, pre-existing hypertension and diabetes, was able to predict the likelihood of having NASH. 
This algorithm showed good discriminatory ability for identifying NASH in both the training and validation 
groups [area under the receiver operating characteristics (AUROC): 0.81, 95% CI: 0.77–0.84 and AUROC: 
0.80, 95% CI: 0.73–0.87, respectively]. This algorithm also performed better than serum cytokeratin-18 
neoepitope M30 (CK-18 M30) level or other non-invasive NASH scores (including HAIR, ION, NICE) 
for identifying NASH (P value <0.001). Additionally, the LEARN algorithm performed well in identifying 
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Introduction

Non-alcoholic steatohepatitis (NASH) is a major public 
health concern worldwide and, compared with hepatic 
steatosis alone, the annual incidence of hepatocellular 
carcinoma in patients with NASH-related cirrhosis is 
as high as 1–2% (1,2). NASH is more likely to lead to 
advanced liver fibrosis, cirrhosis and eventually liver-
related illness and death (3-5). Therefore, due to its high 
prevalence and increased health risks, NASH is a significant 
economic and healthcare burden. The current definitive 
diagnosis of NASH is based not only on hepatocyte fat 
accumulation (steatosis), but also on histological evidence of 
hepatocyte ballooning and lobular inflammation (6). Given 
that the majority of patients with NASH are asymptomatic, 
the acceptability of liver biopsy (i.e., the gold standard) 
is relatively low and, because of liver biopsy-associated 
morbidity and even mortality, developing screening 
strategies to identify those individuals at risk of progressive 
NASH, remains an unmet need. Furthermore, non-invasive 
tests that may accurately predict disease progression (as part 
of the natural history of NASH), or identify regression (in 
response to treatment), are urgently needed to decrease the 
reliance on repeat liver biopsies (7-9).

Machine learning techniques require uploading a large 
amount of data to a computer program, and then selecting 
a model to “fit” these data for computer prediction, which 
creates new possibilities in medicine for diagnosing diseases 
(10-12). In previous studies, machine learning has facilitated 
success in cancer diagnosis and diagnosis of liver fibrosis 
(13,14). Recently, in Sagimet’s NASH FASCINATE-2 
Phase 2b Clinical Trial, stain-free artificial intelligence 
(AI)-based digital pathology was incorporated as secondary 
and exploratory efficacy endpoints. These advances would 
have been unimaginable without machine learning. To 
date, however, there is no a validated, non-invasive, 
simple, machine learning-based algorithm (MLA) for  

diagnosing NASH.
Bioelectrical impedance analysis (BIA) is a simple, 

commonly used, non-invasive and inexpensive method 
for assessing body composition (15). This method can 
provide >20 parameters on different dimensions of body 
composition, such as body fat content, muscle mass, bone 
mineral content and metabolic rate. Interestingly, there is 
evidence that body composition in non-alcoholic fatty liver 
disease (NAFLD) is different from that of non-steatotic 
control subjects (16-19). However, the abundant body 
composition outputs from BIA have not yet been fully 
evaluated and exploited in the diagnosis and treatment of 
NAFLD.

Therefore, the main aim of our multicenter cross-
sectional study was to establish and validate a novel MLA, 
referred to as a deep neural network algorithm for non-
invasively identifying NASH by impedance-based measures 
of body composition [named as the LEARN (bioeLectrical 
impEdance Analysis foR Nash) algorithm]. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://hbsn.amegroups.com/article/
view/10.21037/hbsn-21-523/rc).

Methods

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study has 
been approved by the Institutional Review Board of the 
First Affiliated Hospital of Wenzhou Medical University 
(2016-246). Informed consent was taken from all individual 
participants.

Study subjects and design

A total of 1,259 consecutive subjects with suspected 

NASH in different patient subgroups, as well as in subjects with partial missing body composition data.
Conclusions: The LEARN algorithm, utilizing simple easily obtained measures, provides a fully 
automated, simple, non-invasive method for identifying NASH.
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NAFLD were initially screened from six medical centers 
across China from September 2016 to April 2021. Inclusion 
criteria were as follows: (I) elevated serum aminotransferase 
concentrations and/or evidence of hepatic steatosis on 
imaging methods (irrespective of serum aminotransferase 
levels); (II) agreement to undergo a liver biopsy; (III) 
agreement to undergo BIA method within 1 month of liver 
biopsy; and (IV) age range from 18 to 75 years. A total of 
493 subjects were excluded due to the following criteria: 
(I) excessive alcohol consumption (more than 20 and 10 
grams per day for men and women, respectively); (II) other 
coexisting chronic liver diseases, such as viral hepatitis, 
autoimmune hepatitis, or drug-induced liver injury; 
(III) absence of hepatic steatosis on histology (steatotic 
hepatocytes ≤5%); and (IV) no BIA measurement. As a 
consequence of these exclusion criteria, 766 Chinese adults 
with biopsy-confirmed NAFLD were included in the final 
analysis (Figure 1). 

Clinical and laboratory data

For every patient, demographic data, anthropometry, 
clinical biochemical parameters and concomitant diseases 
were measured and collected during liver biopsy, at each 
center, within 48 hours from liver biopsy. Hypertension was 
defined as blood pressure ≥130/85 mmHg or current use any 
of anti-hypertensive drugs. Presence of diabetes was defined 
as self-reported physician diagnosis of diabetes, use of anti-
hyperglycemic drugs, fasting glucose levels ≥7 mmol/L  

or hemoglobin A1c (HbA1c) ≥6.5% (≥48 mmol/moL). 
Homeostasis model assessment (HOMA-IR) was used to 
estimate insulin resistance, and body mass index (BMI)  
≥25 kg/m2 was diagnosed as overweight/obese. The specific 
methods for assessing HOMA-IR and BMI have been 
described in our previous study (20).

Measurement of cytokeratin-18 neoepitope M30  
(CK-18 M30)

Serum CK-18 M30 level was measured only in the 
Wenzhou cohort. Serum CK-18 M30 level was determined 
by a commercially ELISA kit (Herui Biomed Company 
Limited, Suzhou, China), according to the manufacturer’s 
recommendation. The specific detection details have been 
described in our previous study (21).

Body composition measurement

Each patient was examined for body composition (within 48 
hours of the liver biopsy) by professionally trained personnel 
at each center in accordance with uniform operating 
instructions. Specifically, BIA (InBody 720; Biospace, 
Seoul, Korea) was employed to measure body composition. 
According to operating instructions, the subjects took off 
their shoes and removed their belongings and coats and 
stood on the designated electrodes. The thumb of both 
hands was placed on the thumb electrode button, and the 
other four fingers were all placed on the electrode, under 

Figure 1 Flowchart of the study. NAFLD, non-alcoholic fatty liver disease. 

1,259 consecutive patients 
suspected NAFLD were screened 

from 6 medical centers across China

884 patients

Exclusion criteria (n=375) 
• �Excessive alcohol consumption (n=127)
• �Viral hepatitis (n=226)
• �Autoimmune hepatitis (n=20)
• �Drug-induced liver injury (n=2)

766 patients were included in the 
final analysis

• �Steatosis ≤5% of liver (n=89)
• �Missing the data of body composition (n=29)
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the handle, with arms straightened. The impedance of left 
arm, right arm, trunk, right leg and left leg were measured 
at six frequencies (1, 5, 50, 250, 500, and 1,000 kHz). 
Based on the aforementioned impedances, the system 
automatically produced information of body composition, 
which included 20 parameters, such as intracellular water, 
extracellular water, total body water, soft lean mass, fat free 
mass, weight, skeletal muscle mass, body fat mass, percent 
body fat, waist-hip ratio, right arm, left arm, trunk, as well 
as right leg, left leg, visceral fat area, body cell mass, bone 
mineral content, basal metabolic rate, arm circumference 
and arm muscle circumference.

Liver biopsy

Liver biopsies were performed using a 16-gauge needle 
under ultrasound guidance as previous described (21). All 
liver biopsy specimens were interpreted by an experienced 
pathologist from each center. Diagnostic criteria for 
NAFLD were the evidence of steatotic hepatocytes >5% 
on histology. NASH was diagnosed only when the NAFLD 
activity score (NAS) was ≥4 and each component of its three 
histological features (i.e., steatosis, ballooning and lobular 
inflammation) was ≥1 (22). Liver fibrosis stage was graded 
from 0 to 4, according to the Brunt’s histologic criteria.

Development of the LEARN algorithm

An experienced AI team used neural network algorithms to 
build a prediction model that provided clinicians with an 
individual’s probability of having NASH. As shown in the 
Figure 2, the data from our 766 patients with biopsy-proven 
NAFLD were first subdivided randomly into a training set 
(613 patients) and a validation set (153 patients), in a 4:1 
ratio. The data included in the LEARN algorithm included 
age, sex, diabetes and hypertension status, as well as 20 body 
composition parameters obtained by BIA. The MLA process 
is currently the subject of a patent application. In particular, 
we normalized processing, and inputted these data to the 
input layer composed of the full connection network. In 
this layer, we further analyzed the 20 body composition 
parameters. Each parameter was automatically assigned to 
a different weight in the neural network model, and the 
best choices of the first six body composition information 
parameters (i.e., arm circumference, body fat percentage, 
bone mineral content, basal metabolic rate, body cell mass 
and visceral fat area) for prediction of NASH were selected 
after the method of exhaustion (as shown in Figure 2). The 

six body composition parameters along with age, sex, and 
prior history of diabetes or hypertension were re-sent into 
the input layer, to extract the feature matrix. The feature 
matrix was then inputted into the residual network layer, 
composed of four residual modules, which can also be called 
the hidden layer. Each fully connected residual module 
consists of three fully connected modules and residual 
structure. The first two fully connected modules include 
the fully connected layer, the batch normalization layer and 
the Tanh activation function, and the last module removes 
the activation function compared with the previous two 
modules. A single fully connected residual module may be 
expressed as:

{ }( )1 2 3, , ,mx F x W W W= 	 [1]

( )( )my Dropout Tanh x x= + 	 [2]

where x is the input feature, y is the output feature, W 
indicates the weight of the fully connected module and 
F indicates the combination of three fully connected 
modules. For the feature x of the input fully connected 
residual module, the module firstly uses three fully 
connected modules to extract feature successively to 
generate intermediate feature xm. Then add x as residuals 
to xm, and use the Dropout function to generate y after 
Tanh activation. Four fully connected residual modules 
can increase the depth of the model while suppressing the 
disappearance of gradient, thus improving the performance 
of the model. Finally, the extracted features are inputted 
into the output layer, composed of the fully connected 
network and softmax activation function, to calculate the 
probability of having NASH.

Other widely used non-invasive NASH scores

As l iver  biopsy can be fraught  with major  acute 
complications, there are some widely used non-invasive 
scores for diagnosing NASH, such as ION, HAIR, NICE 
and model, which are based on combinations of laboratory 
indicators and metabolic factors (23-25). In particular, 
these three non-invasive NASH scores can be calculated as 
follows: 

The index of NASH (ION) = 1.33 waist-to hip ratio + 0.03 
× triglycerides (mg/dL) + 0.18 × alanine aminotransferase 
(ALT) (U/L) + 8.53 × HOMA-IR − 13.93 in men; 0.02 × 
triglycerides (mg/dL) + 0.24 × ALT (U/L) + 9.61 × HOMA-
IR − 13.99 in women.
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The NICE model = −5.654 + 3.780E-02 × ALT (IU/L) + 
2.215E-03 × CK18 fragment (IU/L) + 1.825 × (presence of 
metabolic syndrome =1). 

The HAIR score was calculated by adding hypertension =1, 
ALT >40 U/L =1, and HOMA-IR index >5.0 =1 for each 
patient (0–3).

Statistical analysis

Continuous and categorical data were expressed as means 
± standard deviations, and medians (1st quartile, 3rd 
quartile), or proportions, respectively. For the purpose of 
determining statistical differences between the training 

Figure 2 Flowchart of the deep neural network algorithm for prediction of NASH (namely the LEARN algorithm). Input layer: input 
the normalized data into this layer consisting of four modules. First, a FC layer, to synthesize the features extracted from the previous 
section. Second, a BN layer, to simplify the calculation and make the data retain its original expression ability as far as possible after the 
normalization processing. Third, Tanh function, a nonlinear function to help machines learn complex mappings. Last, the Dropout layer, 
reducing overfitting, extract a matrix containing 1,536 features. Hidden layer: the matrix containing 1,536 features is input into this layer, 
and the data needs to be looped four times through the residual module. Output layer: the output layer is consisted of a FC layer and a 
Softmax function. Through the Softmax function, we can map the output values to the interval (0, 1) for the final classification. FC, full 
connected; BN, batch normalization; NASH, non-alcoholic steatohepatitis; LEARN, bioeLectrical impEdance Analysis foR Nash. 
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and the validation groups, the unpaired Student’s t-test 
(for normally distributed continuous data), the Mann-
Whitney U-test (for non-normally distributed continuous 
data) and the chi-square test (for categorical variables) were 
used. PASS15 was used to estimate the sample size. The 
area under the receiver operator characteristic (AUROC) 
curve was 0.80, α =0.05 (bilateral), β =0.1 (test efficiency 
was 0.9), and the ratio between groups was 3:2. It was found 
that a minimum of 42 subjects, including 25 patients and 
17 controls, needed to be enrolled. A sample size of 776 
is completely sufficient. The process of establishing the 
deep neural network algorithm (the LEARN algorithm) 
was summarized in Figure 2. The AUROC curve was 
calculated to evaluate the discrimination of the machine 
learning intelligent diagnostic model. Cut-off values for the 
diagnosis of NASH were identified in the training group, 
corresponding to 90% sensitivity and 90% specificity, 
respectively. At the same time, the specificity, sensitivity, 
negative predictive value (NPV), positive predictive value 
(PPV) and the gray zone were also calculated corresponding 
to each cut-off value in the training and validation groups. 
Statistical significance was two sided, set at P value less than 
0.05. All statistical tests were performed by R (http://www.
r-project.org) and SPSS version 22.0 (SPSS Inc.).

Results

Patient characteristics

A total of 766 Chinese adult patients with biopsy-confirmed 
NAFLD from six hospitals were randomly assigned to 
the training (n=613) and validation groups (n=153) in a 
ratio of 4:1. As shown in Table 1, there were no statistical 
differences in demographic and biochemical measurements, 
body composition data, as well as other widely used non-
invasive NASH scores (ION, HAIR, NICE model) and 
individual features of liver histology between the two 
groups. It is worth noting that a complete body composition 
examination report included 20 parameters, involving also 
skeletal muscle mass and abdominal fat area. However, 
due to the loss of data during the collection process, some 
patient’s body composition examination reports were 
incomplete and reported between 12 and 19 measurements, 
which we referred to as subjects with partial missing data 
on body composition (PMBC). The baseline clinical, 
biochemical and BIA characteristics of patients stratified by 
those without missing BIA data (WMBC) (n=690) and those 
with PMBC (n=76) are summarized in Table S1. Table S2 
shows the baseline characteristics of patients with biopsy-

proven NAFLD, stratified by NASH or non-NASH, both 
in the training and validation groups. Compared with those 
with non-NASH, patients with NASH differed in terms of 
age, BMI, percent body fat, visceral fat area, fasting glucose, 
plasma lipid profile and serum transaminases. Notably, 
LEARN algorithm, ION, HAIR, and NICE model, as well 
as histological stages of fibrosis also significantly differed 
between NASH or non-NASH patients, both in the 
training or validation groups.

LEARN algorithm development

As shown in Figure 2, we have developed a novel and 
automatic machine learning model, called the LEARN 
algorithm, which included age, sex, prior hypertension, 
prior diabetes, as well as six body composition parameters 
(namely arm circumference, percent body fat, bone mineral 
content, basal metabolic rate, body cell mass and visceral 
fat area). Biochemical parameters were not included in 
the LEARN algorithm. The individual probability of 
having NASH was calculated via the LEARN algorithm. 
For example, for a patient who has undergone BIA-based 
measurements of body composition and who provides data 
on age, sex, and prior history of hypertension or diabetes, it 
is possible to calculate her/his probability of having NASH.

Diagnostic performance of LEARN algorithm in the 
training and validation groups (Figure 3)

The AUROC for LEARN algorithm in the training 
and validation groups were 0.81 (95% CI: 0.77–0.84)  
(Figure 3A), and 0.80 (95% CI: 0.73–0.87) (Figure 3C), 
respectively. In both patient groups, the LEARN algorithm 
performed well for diagnosing NASH. To more accurately 
identify NASH, we chose 0.492 (sensitivity =0.90) and 0.531 
(specificity =0.91), as dual cut-off values in the training 
group (Figure 3B). As shown in Table 2, when we chose these 
two cut-off values obtained by the LEARN algorithm, there 
was a NPV of 0.70 to rule out NASH and a PPV of 0.93 to 
rule in NASH in the training group, respectively. Similarly, 
in Figure 3D and Table 2, when we used the same dual cut-
off values in the validation group, the cut-off values of 0.492 
(sensitivity =0.91) and 0.531 (specificity =0.89) gave a NPV 
of 0.71 to rule out NASH and a PPV of 0.90 to rule in 
NASH in the training group, respectively. The diagnostic 
efficiency in the validation group also showed the same 
level of discrimination as that in the training group. Also, 
Figure 4 shows the boxplots of the LEARN algorithm vs. 

http://www.r-project.org
http://www.r-project.org
https://cdn.amegroups.cn/static/public/HBSN-21-523-Supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-21-523-Supplementary.pdf
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Table 1 Baseline characteristics of patients with biopsy-proven NAFLD

Characteristics Training group (n=613) Validation group (n=153) P value

Demographics

Age (years) 41.4±12.6 39.9±12.1 0.213

Male sex, n (%) 440 (71.8) 108 (70.6) 0.770

BMI (kg/m2) 26.9 (24.6, 29.3) 26.8 (24.2, 29.1) 0.618

Type 2 diabetes, n (%) 147 (24.0) 43 (28.1) 0.291

Hypertension, n (%) 137 (22.3) 37 (24.2) 0.628

Biochemical measurements

Albumin (g/L) 46.1±3.9 46.1±4.0 0.999

Platelet count (×109) 243.3±62.0 246.3±62.8 0.595

AST (U/L) 34.0 (25.0, 52.0) 35.0 (24.0, 56.0) 0.614

ALT (U/L) 51.0 (32.0, 88.0) 49.0 (30.0, 100.0) 0.844

ALP (U/L) 82.0 (68.0, 99.0) 79.0 (63.0, 97.0) 0.222

Glucose (mmol/L) 5.3 (4.9, 6.2) 5.3 (4.9, 6.5) 0.485

Total cholesterol (mmol/L) 5.1 (4.3, 5.9) 5.2 (4.5, 5.9) 0.461

Triglycerides (mmol/L) 1.9 (1.4, 2.9) 1.7 (1.3, 2.7) 0.249

HDL-C (mmol/L) 1.0±0.3 1.0±0.2 0.610

LDL-C (mmol/L) 3.0±0.9 3.1±1.0 0.406

CK-18 M30 (U/L) 155.5 (72.8, 337.2) [428] 162.0 (80.0, 414.7) [109] 0.362

Body composition

Body composition analysis

Intracellular water (e) 24.6±4.7 [611] 24.5±4.4 0.815

Extracellular water (e) 15.0±2.6 [611] 14.8±2.5 0.423

Total body water (e) 39.7±7.3 [611] 39.3±6.8 0.590

Soft lean mass (g) 50.9±9.8 [611] 50.5±9.0 0.595

Fat free mass (kg) 54.2±10.3 [611] 53.6±9.4 0.519

Muscle-fat analysis

Weight (kg) 76.9±14.5 75.4±12.9 0.254

Skeletal muscle mass (kg) 30.4±6.5 [588] 29.9±5.8 [149] 0.433

Body fat mass (kg) 22.6±7.7 21.8±7.2 0.235

Obesity diagnosis

Percent body fat (%) 29.1±6.7 28.7±7.0 0.439

Waist-hip ratio 0.93±0.05 [588] 0.92±0.06 [149] 0.644

Table 1 (continued)
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Table 1 (continued)

Characteristics Training group (n=613) Validation group (n=153) P value

Lean balance

Right arm (kg) 3.1±0.7 3.1±0.7 0.636

Left arm (kg) 3.0±0.7 3.0±0.7 0.701

Trunk (kg) 24.6±4.5 24.4±4.3 0.608

Right leg (kg) 8.3±1.9 8.1±1.6 0.366

Left leg (kg) 8.2±1.9 8.1±1.6 0.386

Visceral fat area

Visceral fat area (cm2) 102.3±27.9 [583] 101.4±27.9 [149] 0.705

Additional data

Body cell mass (kg) 35.4±6.6 [558] 35.2±6.4 [143] 0.744

Bone mineral content (kg) 3.0±0.6 [583] 3.0±0.5 [147] 0.638

Basal metabolic rate (kcal) 1,541.5±249.3 1,527.7±213.4 0.527

Arm circumference (cm) 33.5±3.2 [557] 33.3±3.0 [142] 0.525

Arm muscle circumference (cm) 27.3±2.5 [557] 27.2±2.6 [142] 0.600

Non-invasive NASH scores 

ION 37.7 (22.8, 63.4) [521] 38.6 (20.9, 72.2) [130] 0.833

HAIR 1.0 (1.0, 2.0) [586] 1.0 (1.0, 2.0) [145] 0.545

NICE −2.6 (−3.9, −0.8) [428] −2.4 (−4.1, 0.1) [109] 0.653

Liver histology, n (%)

Steatosis 0.354

1 236 (38.5) 64 (41.8)

2 259 (42.3) 55 (35.9)

3 118 (19.2) 34 (22.2)

Hepatocyte ballooning 0.131

0 63 (10.3) 23 (15.0)

1 339 (55.3) 73 (47.7)

2 211 (34.4) 57 (37.3)

Lobular inflammation 0.716

0 53 (8.6) 16 (10.5)

1 358 (58.4) 89 (58.2)

2 192 (31.3) 44 (28.8)

3 10 (1.6) 4 (2.6) 

Table 1 (continued)
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Table 1 (continued)

Characteristics Training group (n=613) Validation group (n=153) P value

Fibrosis stage 0.833

0 184 (30.0) 45 (29.4)

1 290 (47.3) 71 (46.4)

2 112 (18.3) 32 (20.9)

3/4 27 (4.4) 5 (3.3)

NAS score 4.0 (3.0, 5.0) 4.0 (3.0, 5.0) 0.857

Definite NASH, n (%) 418 (68.2) 98 (64.1) 0.329

Data are presented as means and SD; medians and IQR; or proportions. [n]: the numbers of data available. NAFLD, non-alcoholic fatty 
liver disease; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; CK-18 M30, cytokeratine-18 neoepitope M30; NAS, 
NAFLD activity score; NASH, nonalcoholic steatohepatitis. 

Figure 3 Diagnostic performance of LEARN algorithm and sensitivity, specificity of the dual cut-off values in the training and validation 
groups. (A,B) Training group. (C,D) Validation group. AUC, area under the curve; LEARN algorithm: deep neural network model for 
identifying non-alcoholic steatohepatitis; LEARN, bioeLectrical impEdance Analysis foR Nash. 
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histopathological severity of NAFLD in the training group. 
We observed that the prediction probability, as calculated 
by the LEARN algorithm, increased progressively with the 
histological severity of lobular inflammation, ballooning, 
steatosis and presence of definite NASH.

Subgroup analyses

We tested the diagnostic performance of the LEARN 
algorithm in different patient subgroups, in both training 
and validation groups. As shown in Table 3, the LEARN 
algorithm performed well in all subgroups both in the 
training group and in the validation group, regardless of 
sex, age, serum ALT levels and the presence or absence of 
liver fibrosis, hypertension, diabetes, or obesity (AUROCs 
ranging from 0.77 to 0.82). In particular, it should be noted 
that the LEARN algorithm performed well among patients 
with or without liver fibrosis (AUROCs ranging from 0.77 
to 0.83), in both the training and validation groups. 

Diagnostic performance of the LEARN algorithm vs. other 
widely used non-invasive scores or biomarkers for NASH

As shown in Table 4, the LEARN algorithm showed a better 
diagnostic performance for identifying NASH (AUROC: 
0.80, 95% CI: 0.77–0.84) compared with other non-
invasive NASH scores and the biomarker CK-18 M30. The 
AUROCs of these non-invasive scores or biomarkers were 
all less than 0.75 in the whole cohort; in particular, serum 
CK-18 M30 had an AUROC 0.73 (95% CI: 0.69–0.77); 
HAIR, 0.63 (95% CI: 0.59–0.67); ION, 0.67 (95% CI: 
0.63–0.72); and the NICE model, 0.73 (95% CI: 0.69–0.77). 

Diagnostic performance of the LEARN algorithm in the 
PMBC group

As shown in Table S1, there were 76 NAFLD patients 
with PMBC in the whole cohort. In order to improve the 
applicability of the LEARN algorithm in the real world 
where incomplete BIA data may occur, we adopted the 
strategy of replacing partially missing data of BIA values 
by mean values for the group. Table S3 shows that the 
diagnostic performance of the LEARN algorithm in the 
PMBC group, and the AUROC was 0.82 (95% CI: 0.72–
0.92). As shown in Figure S1, in the PMBC group, the 
LEARN algorithm showed a greater AUROC compared 
with ION and HAIR for predicting NASH. The diagnostic 
performance of the LEARN algorithm in the PMBC group 
also performed well despite partially missing data.

Discussion

In this large cross-sectional multicenter study, we have 
developed a novel, fully automatic MLA, referred to as the 
LEARN algorithm (patent-pending, 2021110501603) to 
non-invasively diagnose NASH. For patients with biopsy-
proven NAFLD who undergo impedance-based measures 
of body composition and provide simple information on 
age, sex, diabetes status and hypertension, it is possible to 
predict their probability of having NASH on histology 
with acceptable certainty. Our newly developed LEARN 
algorithm performed well in both the training and 
validation groups, and across a range of clinically relevant 
subgroups of patients. To our knowledge, this is the first 
multicenter study to develop a prediction model based on 
body composition, for non-invasively identifying NASH.

Table 2 Diagnostic performance of the LEARN algorithm

Grouping
AUROC 
(95% CI)

NASH 
prevalence 

(%, n)

Rule-out zone (≤0.492) Gray zone 
(0.492, 
0.536)

Rule-in zone (≥0.536)

n (%) Sensitivity Specificity NPV n (%) Sensitivity Specificity PPV

Training 
group

0.81  
(0.77, 0.84)

68.2 
(418/613)

143 (23.3) 0.90 0.51 0.70 239 (39.0) 231 (37.7) 0.51 0.91 0.93

Validation 
group

0.80  
(0.73, 0.87)

64.1 
(98/153)

32 (20.9) 0.91 0.40 0.71 59 (38.6) 62 (40.5) 0.57 0.89 0.90

LEARN, bioeLectrical impEdance Analysis foR Nash; AUROC, area under the receiver operating characteristics; CI, confidence interval; 
NASH, non-alcoholic steatohepatitis; NPV, negative predictive value; PPV, positive predictive value. 

https://cdn.amegroups.cn/static/public/HBSN-21-523-Supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-21-523-Supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-21-523-Supplementary.pdf
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Figure 4 Boxplot of the LEARN algorithm versus histopathological severity of NAFLD in the training group: (A) steatosis grade,  
(B) ballooning grade, (C) lobular inflammation grade, and (D) presence of definite NASH. NASH, non-alcoholic steatohepatitis; LEARN 
algorithm: deep neural network model for identifying non-alcoholic steatohepatitis; LEARN, bioeLectrical impEdance Analysis foR Nash; 
NAFLD, non-alcoholic fatty liver disease.

Besides clinical features of the metabolic syndrome 
(including hypertension and diabetes), there are other risk 
factors for a faster progression of NAFLD to NASH. A 
large number of studies suggested that body composition 
may be different in NAFLD from that in people without 
NAFLD, and that there is metabolic dysfunction in NAFLD 
(16-19). Increased dietary calorie intake and lack of physical 
exercise may increase the amount of adipose tissue, and 
accumulation of fat mass may induce insulin resistance and 
exacerbate liver damage in NAFLD (26-28). Otgonsuren  
et al. (29) showed that anthropometric measures, such as arm 
circumference and body fat percentage, were significantly 
higher in NAFLD than in non-steatotic controls. Ko 
et al. (30) found that ultrasound-detected NAFLD was 
associated with higher BMI, larger waist circumference, 
and greater body fat mass, through a large sample analysis 

involving 2,759 participants. Idilman et al. (31) showed that 
visceral adipose tissue alone could be a modest risk factor 
for predicting NASH (AUROC: 0.64). In addition, arm 
circumference, percent body fat, BMI, waist circumference, 
visceral adipose tissue, skeletal muscle mass (sarcopenia) 
may be also risk factors for greater NAFLD severity (32). 
Filip et al. (33) reported that osteoporosis (as measured 
by bone mineral content) may also increase the risk of 
NAFLD. In our study, the LEARN algorithm highlights 
the utility of body composition measurements for the 
diagnosis of NASH and this algorithm may help in reducing 
the number of unnecessary liver biopsies for diagnosing 
NASH. The value of impedance-based measurements of 
body composition may also be even greater if the full cost 
of liver biopsies is to be taken into account (allowing for 
biopsy-associated complications).
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Prediction models lacking transparency and predictability 
have the potential to cause harm. Our research overcomes 
this shortcoming. Choosing machine-learning models 
with high transparency rather than black box models, with 
high decision-making risk is preferred. Our study uses 
the classical algorithm of deep learning to develop a new 
deep neural network for processing big data that includes 
impedance-based measurements of body composition. 
In the LEARN algorithm, residual networks were used 
to prevent gradient disappearance and strengthen the 
ability of the deep neural network to extract features, thus 
improving the classification performance of the deep neural 
network; the dropout method was used to address the over-

fitting issue and improve the generalization ability of the 
deep neural network; fully connected layers were added to 
analyze the relationship between features more clearly and 
intuitively, and reduce the influence of feature position on 
classification. Finally, we re-cycled the residual network 
to further improve the non-linear expression ability and 
complexity of the deep neural network. By following this 
design approach, the LEARN algorithm was optimized.

It is important to underline that in our study we included 
not only NAFLD patients with elevated serum transaminase 
levels, but also those without normal serum transaminases 
who had evidence of hepatic steatosis at recruitment 
as diagnosed by imaging techniques. For the LEARN 

Table 3 Diagnostic performance of LEARN algorithm in different patient subgroups

Subgroup
Training group Validation group

n AUROC (95% CI) n AUROC (95% CI)

Sex 

Men 440 0.82 (0.78, 0.86) 108 0.80 (0.72, 0.88)

Women 173 0.82 (0.75, 0.88) 45 0.72 (0.51, 0.92)

Age

≥50 years 166 0.83 (0.75, 0.91) 35 0.80 (0.65, 0.96)

<50 years 447 0.79 (0.75, 0.83) 118 0.81 (0.73, 089)

Hypertension

Yes 137 0.87 (0.81, 0.93) 37 0.72 (0.54, 0.90)

No 476 0.79 (0.75, 0.83) 116 0.83 (0.75, 0.90)

ALT level*

Normal 223 0.79 (0.73, 0.85) 63 0.82 (0.71, 0.93)

Abnormal 390 0.80 (0.76, 0.85) 90 0.77 (0.67, 0.87)

Obesity**

Yes 209 0.84 (0.79, 0.89) 58 0.79 (0.66, 0.93)

No 404 0.80 (0.76, 0.85) 95 0.77 (0.67, 0.86)

Diabetes

Yes 147 0.83 (0.76, 0.89) 43 0.79 (0.65, 0.93)

No 466 0.80 (0.76, 0.84) 110 0.80 (0.71, 0.89)

With or without liver fibrosis

Without fibrosis 184 0.83 (0.78, 0.89) 45 0.82 (0.67, 0.96)

With fibrosis 429 0.78 (0.73, 0.84) 108 0.77 (0.67, 0.86)

*, normal ALT (<40 IU/L); **, obesity (BMI ≥28 kg/m2). LEARN, bioeLectrical impEdance Analysis foR Nash. NASH, non-alcoholic 
steatohepatitis; AUROC, area under the receiver operating characteristics; CI, confidence interval; ALT, alanine aminotransferase; BMI, 
body mass index. 
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algorithm, we used double cut-off points to identify 
NASH, as shown in Figure 3 and Table 2. For the purpose 
of excluding NASH, a lower cut-off value was chosen. For 
diagnosing NASH, a higher cut-off point was selected. For 
the LEARN algorithm, the lower cut-off value of 0.492 
showed a high sensitivity (90%) and a NPV of 0.70, while 
the upper cut-off value of 0.536 showed similar specificity 
(90%) and a PPV of 0.93 in the training and validation 
groups. 

The choice of cut-off values conducive to optimum 
sensitivity or specificity depends on the purpose of 
detection. Shown in Table 2, there is a gray zone of 39% 
when dual cut-offs were used to identify NASH. However, 
it should be noted that there is always a “gray zone” for all 
non-invasive tests that use two cutoff thresholds (34). On 
the other hand, approximately 60% of NAFLD patients 
were able to avoid liver biopsies using our LEARN 
algorithm when dual cut-offs were chosen.

Currently, treatment of NASH is a major focus of 
drug development worldwide (35,36). Early, non-invasive 
identification of NASH for possible drug treatment will 
be an important medical challenge in the next few years. 
However, patients with NAFLD, especially those with 
normal serum ALT levels, and those who are nonobese 
or do not have diabetes are often ignored in further 
assessment of NAFLD severity. Therefore, we have also 
analyzed the diagnostic performance of our newly proposed 
LEARN algorithm in identifying NASH in different 
patient subgroups, stratified by obesity, diabetes or serum 
ALT levels (Table 3). Interestingly, our LEARN algorithm 
performed well in the non-obese, non-diabetic, or serum 

normal or abnormal ALT (ALT >40 U/L) subgroups, in 
both the training and validation groups. Importantly, NASH 
patients with or without fibrosis did not influence the 
diagnostic performance of the “LEARN” algorithm. Both 
in the training and the validation groups, the diagnostic 
performance of the “LEARN” algorithm was above 0.75 
among patients with or without liver fibrosis. In the whole 
cohort, we also compared the diagnostic performance of 
LEARN algorithm, serum CK-18 M30 level, HAIR, ION 
and NICE models in identifying NASH, and found that 
these latter non-invasive scores had moderate accuracy in 
our cohort, although this finding might be partially affected 
by differences in the prevalence of NASH among different 
study populations (24,25,37,38). As shown in Table 4,  
the diagnostic performance of the LEARN algorithm 
in identifying NASH had an AUROC of 0.80, which is 
significantly better than other non-invasive NASH scores 
mentioned above. 

In our study, PASS15 was used to estimate the sample 
size. Each patient was examined for body composition 
by professionally trained personnel at each center in 
accordance with uniform operating instructions, and 
the data were extracted at each of the 6 participating 
sites by trained data collectors and compiled into spread 
sheets. Then an experienced AI team used neural network 
algorithms to build a prediction model that provided 
clinicians with an individual’s probability of having NASH 
as described above.

Our BIA data were extracted at each of the 6 participating 
sites by trained data collectors and compiled into spread 
sheets. The data collection process was checked repeatedly, 

Table 4 Pairwise comparisons between AUROCs for the LEARN algorithm and other non-invasive NASH scores or biomarkers for identifying 
NASH

Variable(s) n AUROC 95% CI P value

LEARN 766 0.80 0.77–0.84 Reference

CK-18 M30 537 0.73 0.69–0.77 <0.001

HAIR 731 0.63 0.59–0.67 <0.001

ION 651 0.67 0.63–0.72 <0.001

NICE 537 0.73 0.69–0.77 <0.001

The HAIR score for each patient (0–3) was calculated by adding hypertension =1, ALT >40 U/L =1, and HOMA-IR index >5.0 =1. The 
index of NASH (ION) was calculated as follows: 1.33 waist-to hip ratio + 0.03 × triglycerides (mg/dL) + 0.18 × ALT (U/L) + 8.53 × HOMA-
IR − 13.93 in men; 0.02 × triglycerides (mg/dL) + 0.24 × ALT (U/L) + 9.61 × HOMA-IR − 13.99 in women. The NICE model was calculated 
according to the following equation: −5.654 + 3.780E-02 × ALT (IU/L) + 2.215E-03 × CK18 fragment (IU/L) + 1.825 × (presence of 
metabolic syndrome =1). AUROC, area under the receiver operating characteristics; LEARN, bioeLectrical impEdance Analysis foR Nash; 
NASH, non-alcoholic steatohepatitis; CI, confidence interval; CK-18 M30, cytokeratine-18 neoepitope M30; ALT, alanine aminotransferase; 
HOMA-IR, homeostasis model assessment was used to estimate insulin resistance. 
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to reduce the chance of document errors. However, some 
of our patient’s body composition examination reports were 
incomplete and reported between 12 and 19 measurements, 
which we referred to as subjects with ‘partial missing BIA 
data’. We did not exclude these subjects from the analysis 
in order to improve the utility of our LEARN algorithm 
in the real world. In the process of building the LEARN 
algorithm, the AI algorithm has used an average value to 
replace missing data for those patients who had ‘partial 
missing BIA data’. Specially, we adopted the strategy of 
replacing PBMC group values by mean values, as this can 
improve the utility of the LEARN algorithm in the real 
world where missing data is relatively common. In the 
PMBC group, the diagnostic performance for identifying 
NASH performed well with an AUROC of 0.82.

There are some important limitations that should be 
mentioned. Firstly, the participants were all Chinese of 
Han ethnicity, so our results might not be applicable to 
other ethnic groups. Secondly, when comparing results 
from our cohort with other published studies that used 
non-invasive scores or biomarkers for diagnosing NASH, 
the heterogeneity between studies might at least in part 
contribute to the different diagnostic performances of these 
non-invasive tests for NASH (e.g., serum CK-18 M30 
level, HAIR, ION, NICE models). Specially, the HAIR 
score system is a non-invasive score for predicting NASH 
based on hypertension, ALT levels and insulin resistance. 
When the score is ≥2, the AUROC for predicting NASH 
is 0.9, and the sensitivity and specificity are 80% and 
89%, respectively. However, this model is currently only 
applicable to patients with BMI >35 kg/m2 (23). So the 
applicability is not widespread. In our study, the Han-
population was mainly included, and BMI generally 
concentrated in 24–29 kg/m2. Therefore, HAIR had a low 
AUROC in this study. Finally, there was a “gray zone” and 
39% patients couldn’t be identified with NASH or NAFL. 
This latter problem is a common limitation for all non-
invasive tests where two cut-off thresholds are used (39). 
In addition, a two-step approach has been also recently 
reported. By using this two-step approach, patients in 
the “gray zone” were re-evaluated in combination with 
other non-invasive diagnostic tests and the need for liver 
biopsy was reduced significantly without much effect on 
the percentage of misclassifications (40). In future studies, 
we will evaluate whether the combination of our LEARN 
algorithm with other non-invasive NASH scores contributes 
to the improved stratification of severity of NAFLD.

In conclusion, we have developed a fully automatic 

LEARN algorithm utilizing impedance-based measurements 
of body composition along with age, sex, and prior history 
of hypertension or diabetes, which shows good predictive 
ability for non-invasively identifying NASH in a large 
multi-center study across China. Our results suggest 
that routine measurement of body composition for the 
assessment of patients with NAFLD may be helpful in 
staging severity of liver disease and identification of NASH. 
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