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Abstract

The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast
cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-
learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was
questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying
biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important
gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis,
controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene
ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which
statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was
well known long before gene expression profiling. We found that the claims reported by others, of wider concordance
between the biological processes captured by the two prognostic signatures studied, were found either to be lacking
statistical rigor or were in fact based on addressing some other question.
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Introduction

Technological advances made during the last decade have

allowed measurement of enormous amounts of molecular data

from a tumor tissue resected from a particular subject. The main

challenge of modern cancer research is bridging the gap between

these data and clinically significant questions that need urgent

answers, such as prognosis and prediction of response to therapy.

The first issue, of prognosis, is highly relevant, since it is used to

decide whether to subject a patient to chemotherapy. This

decision is extremely important for the individual as well as for

society for three main reasons. First, nearly all available

chemotherapy is detrimental to the patient, since it adversely

affects healthy tissue as well as the malignant one, at which it is

aimed. Second, some of the side effects, even if they do not have a

direct impact on the patient’s physical well-being, may cause

considerable psychological damage and hardship. Finally –

chemotherapy is extremely expensive.

It is well known that for many cancers prognosis and the need

for therapy may vary widely; while in some cases surgery and

adjuvant radiotherapy suffice to eradicate the disease, other

tumors are very aggressive, will recur, metastase and kill the

patient. While aggressive tumors call for chemotherapy, overtreat-

ment of ‘‘good outcome’’ patients by administering unneeded

chemotherapy is, unfortunately, very common. This is the case

particularly in breast cancer, where increased awareness has

brought, through regular frequent checkups, a considerable

increase in the number of early discovery cases, of small tumors

of low stage and grade.

It is believed that the currently accepted clinical-pathological

criteria for administering chemotherapy gives rise to overtreat-

ment of a very large fraction of early discovery breast cancer

patients. Therefore, there is an acute need for reliable biomarkers

that can, on the basis of measurements done on the primary tumor

tissue, differentiate poor from good outcome.

A large number of methods have been introduced to generate

biomarkers from available molecular information (in particular

from gene expression microarray data – see [1,2,3,4] for reviews).

Two prognostic platforms based on expression signatures are

commercially available: OncotypeDx, based on a 21-gene

signature measured on paraffin-embedded samples by polymerase

chain reaction (PCR) [5], and Mammaprint, the 70-gene

‘‘Amsterdam signature’’ measured by a microarray [6,7,8,9].

Considerable criticism has been raised about the following

aspects of several proposed signatures: lack of robustness, various

statistical and machine-learning related problems, low success

rates for the cases that are hard to prognosticate by existing

methods, and lack of biological meaning of gene lists, that were

obtained without biological guidance.

The first criticism, concerning the statistical validity and

robustness of the reported gene lists, focuses on the fact that in

many cases the reported signatures were derived and tested in only

one particular way, which was arbitrarily selected out of many

equally legitimate ones. For example, one can split the samples

into a training set and a test set in a combinatorially large number

of ways. Hence the entire analysis, including training, gene

selection and testing, can be repeated many times, using the same

data, but splitting differently the samples into training and test sets.
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Each such split can be viewed as a particular instance of the

analysis, and by performing many such repeats, one can generate

distributions of various quantities of interest. In particular, one can

calculate for each split the success rate, defined as the fraction of

successful predictions of outcome on the test set, and estimate the

distribution of the success rates by repeating the analysis many

times. Once this distribution is known, one can estimate the

probability to find a success rate as good as, or better, than the one

reported in the actual published study (for which the analysis was

repeated). When this was done [10,11], the results of many studies

have been demonstrated to be ‘‘overoptimistic’’ [11]; the success

rate that was actually reported had a much lower than acceptable

probability of being observed. The overoptimistic reported success

rates of many studies were explained by falling into various

statistical pitfalls [2,12]. These include severe overtraining [2], due

mainly to ‘‘information leak’’ which has been explicitly identified

in a number of cases [2,13]. The term information leak refers to

allowing usage of any information about the test set during the

training phase. Another issue concerns the prognostic lists of genes

(which are the ones that are actually placed on a prognostic device

[7]). The genes that appear in the prognostic list of a particular

study were selected by ranking all the tested genes (for example, on

the basis of the correlation of their expression values (measured

over the training samples) with outcome. These lists were shown to

lack robustness [10] for the sample sizes used [14,15]; i.e. the

prognostic gene lists changed almost completely when the

procedure was repeated. It has been shown [14,15] that if a

training set of ,100 early breast cancer samples is used to rank

,10,000 genes (by their correlation with outcome), and the ,100

top genes are selected as the prognostic set, repeating the

procedure (with a different set of training samples) will produce

a new gene list, whose overlap with the first one is typically 2–3%.

Since the different gene lists obtained even from the same

particular study are very unstable against repeating the analysis,

one clearly expects even less overlap between lists produced by

different studies (in which different patients, different microarray

facilities and even different platforms were used). In response to

this criticism it was stated that if two divergent lists provide

concordant prognostication and acceptable success rates, one

should not care about their lack of robustness [16]. This response

was countered, however, by criticism raised against the criteria

that were used to assess the success rates of several expression-

based classifiers [17], and various publications questioned whether

they actually performed better than either a single-gene based

classifier [18] or one that uses classical clinical and pathological

indicators [19,20]. The issue of concordance [21] or lack thereof

[17,22] between different prognostic signatures was also debated.

The points of criticism described above address either technical

issues that concern the standard machine-learning approaches

taken by most derivations of prognostic signatures, or the clinical

utility of the resulting classifiers. In the present study we focus on a

third type of criticism, directed at the lack of biological meaning of

various prognostic signatures. Some signatures [5,23,24,25,26,27]

did use biological and clinical knowledge to assemble their

predictive genes. We did not consider the Oncotype DX

recurrence signature [28], which was constructed by carefully

picking genes from relevant pathways (and therefore indeed,

capture many pathways); the P53 signature [24], BMI1 signature

[27] and wound response signature [23,29], each of which was

constructed to capture a specific pathway, as their names suggest

(and therefore indeed mainly capture the desired pathway); or the

genomic grade signature [30] that was constructed specifically to

capture histological grade (and was found to include mostly

proliferation-related genes [31]). Our focus is on prognostic gene

lists which were derived using the ‘‘top-down’’ approach as defined

in [32], that is, either using no biological guidance at all for feature

selection and training – e.g. the Amsterdam signature [7], or using

very minimal biological input, such as for the 76-gene Rotterdam

signature [33], which treated ER+ and ER2 breast cancers

separately.

According to the critics, these prognostic gene lists lack clear

biological interpretation and probably contain no biologically

relevant discovery. In response to this criticism it was claimed by

some [34] that the biological processes that were represented by

the activities of the genes on such divergent lists did, in fact, exhibit

considerable similarity. If correct, this claim gives one more reason

why one should not worry about the fact that the gene lists of

different studies had no overlap; furthermore, this would also

answer the criticism regarding biological meaning.

The claim that divergent gene lists from different studies do

reflect the activities of similar cancer-related pathways and

biological processes seems to be advocated and accepted by many

[1,9,15,21,34,35,36]. Only a few studies [37,38,39,40] have,

however, actually tried to substantiate these claims in a

quantitative manner. The aim of our study is to test the validity

of these claims in a way which we believe is conceptually and

statistically sound.

In what follows, we first present the guiding principles that must

be adhered to in order to test properly these claims, and then we

review critically the studies mentioned above. Next we present our

results obtained when the analysis is carried out for two important

signatures [7,33] according to our guiding principles. We conclude

that the only biological processes and pathways that are

significantly represented by both these signatures are cell

proliferation and its variants.

The guiding principles of the present study
Our aim here was to test critically the claims that two different

machine-learning based prognostic gene lists capture similar

biological processes. To this end we examined the two most

established outcome prediction signatures, the 70 gene list of van’t

Veer et al. [7] and the lists defined by Wang et al. [33], both the 60

gene ER+ signature and the complete 76-gene list. We have

chosen these two signatures as they were learned independently

and without forcing specific biological pathway-based knowledge.

We adopted the following guiding principles in designing our

test:

1. Use only the genes that actually appear in the prognostic lists.

2. Identify over-represented biological processes by means of

enrichment analysis.

3. Address the problem of false discoveries generated by multiple

comparisons that are made, but take into account all the

dependencies and nested structures present in the ontologies

used.

4. Use more than one gene ontology, to minimize dependence on

incomplete or deficient class assignments.

The rationale for the first principle is the following. As stated

above, our aim is to test, in a statistically correct way, the claim

that was voiced by proponents of the proposed prognostic lists,

that different lists do capture the same biological processes. To test

this claim, one is not supposed to use larger gene lists, which could

have been derived from the same experiment by some other

means. We are neither claiming that gene expression cannot

possibly capture important and biologically relevant prognostic

information, nor are we attempting to demonstrate how one could,

in principle, capture such information.

Pathway Overlap of Breast Cancer Prognostic Lists
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In fact it is likely that the full data gathered in these studies do

reflect similar deregulation of a few common relevant pathways, but

it remains to be proven that this similarity is captured in the actual

proposed gene lists. In that regard it is worth mentioning that when

standard machine-learning methods are used to select features

(genes) for a classifier, the number of selected features cannot exceed

significantly the number of samples that happened to be available

for training [41] (at the time when the study was first performed and

the gene lists were selected). Otherwise the classifier is trained to

recognize the noise in the particular training set used, and will fail

on any test set (since while the true ‘‘signal’’ is the same in the

training and test sets, the noise is completely independent). This

limitation might restrict the selected number of genes and produce

lists of selected genes that are too short to capture the necessary

biological processes. Two possible ways to overcome this are

producing much longer gene lists (for which much more training

samples must become available), or use biologically relevant

knowledge based considerations to select the predictive genes.

The second principle states that a generally accepted method

[42] be used to assess enrichment of a pathway or biological

process by the prognostic list.

The third principle – the necessity for taking into consideration

the false discoveries [43,44] that arise when multiple comparisons

are made - cannot be overemphasized [41]. A problem arises

when one performs enrichment analysis of GO (gene ontology)

terms [45], such as Biological Processes (GOBP). When the

number of GO terms is taken as the number of independent tests,

it is likely that not a single term will pass any of the available

procedures [46] that control the FDR. The reason is that because

of the nested and overlapping structure of the ontology, the many

terms tested are not independent and hence the standard methods

that control the FDR are much too stringent [47,48] (to

understand this point, imagine that in fact we have one single

term which for some reason is repeated 1000 times – while only a

single test was performed, naively we may think that 1000

hypotheses were tested). The trivial resolution of this problem, of

ignoring multiple testing altogether and make no attempt to

control the FDR, goes to the opposite extreme and is way too

permissive, generating a very large number of false positive

apparently enriched GO terms.

We present and compare three ways to deal with the problem of

multiple comparisons. The first is to apply the standard Benjamini-

Hochberg procedure [43] to control the FDR, ignoring the nested

structure of the ontologies. We show that this procedure, which is

probably too stringent, finds almost no commonly enriched

biological processes or pathways. The second and third are two

different ways, explained in detail in the Methods section, designed

to deal with multiple comparisons while taking the dependencies

and nested structure of the ontologies into account.

The fourth principle stems from the known fact that ontologies

are far from being perfect, and probably contain some incorrectly

assigned genes; testing a claimed enrichment for more than one

ontology or database is prudent.

The manner in which each of these points is implemented is

explained in detail in the Methods section below.

Brief review of previous work
The abstract of Yu et al. [40] states that ‘‘We show that

divergent gene sets classifying patients for the same clinical

endpoint represent similar biological processes …’’. They

addressed this issue indirectly by using expression data of 344

early discovery breast cancer patients; the same analysis was done

separately for the ER+ and ER2 cases. 80 samples were selected

at random as training set; Cox regression analysis was performed

to identify the 100 genes whose expression was most correlated

with distant metastasis-free survival time. These ‘‘top 100’’ genes

were analyzed for enrichment of 304 GOBP (selected, using some

arbitrary thresholds, from the total list of GOBP). The enrichment

analysis was done as follows: hypergeometric p-values were

calculated (Fisher’s exact test) for over-representation of the genes

that belong to a GOBP among the 100 ‘‘top genes’’, and if the

number of genes exceeded one and the p-value was less than 0.05,

the GOBP was declared enriched. No correction for multiple

comparisons (of either genes or GOPB) was used, and no special

treatment to the GOBP dependence (due genes that appear in

several GOBPs) was offered. This analysis was repeated 500 times,

yielding 500 lists of enriched GOBP. The 20 GOBP that had the

highest number of appearances were assembled, for ER+ and

ER2, yielding 36 ‘‘core pathways’’ (4 appeared on both lists).

Finally, several published prognostic gene lists were analyzed for

enrichment among the 304 GOBP and among the 36 core

pathways, and using the hypergeometric distribution, significant

overrepresentation of the core pathways was reported.

This analysis is too permissive mainly because no FDR

correction for multiple comparisons was used at all. Moreover,

several arbitrary and unjustified thresholds were used for selection

of GOBP to be tested and for identification of enriched GOBP; the

sets of enriched GOBPs obtained for each pair of prognostic gene

lists were not compared directly, but each was compared to the list

of core pathways defined above; only one database of biological

pathways and processes was used for the study.

Shen et al. [38] have followed similar guidelines to those we

suggest. They actually don’t find a statistically significant number

of pathways common to the Wang and van’t Veer lists (this fact is

not emphasized, but see Figure 1 of their paper). Moreover, the

statistical significance of the overlaps they report is due to an

unusual definition of the p-value. Namely, if they find that the

tested prognostic list contains k genes from a pathway, they

estimate the p-value as the probability that a random gene list will

contain more than k genes from the pathway- p(x.k), instead of

using the standard definition, i.e. the probability to find k or more

than k such genes- p(x$k). These two probabilities are nearly the

same for most situations, but can be quite different when the list is

very short (small k), as is the case here, where often k = 1. Table 4

in their paper shows what appears to be significant overlap

between several signatures, but in fact there is only one single gene

of the 70 gene list that belongs to each of the ‘enriched’ pathways.

Given that 50 genes from the 70 are annotated, chosen out of

11342 genes on the chip (the ‘‘population’’), and that, for example,

the RECK pathway (one of the five presented as significantly over-

represented and shared in Table 4) has 8 genes from the

population, a naı̈ve hypergeometric test will conclude a p-value

of 0.035, while Shen’s measure will indicate a much higher

significance, of 5.24*10-4. Checking the hypothesis for all probes

(not just annotated ones) will increase the p-value further. The

naı̈ve hypergeometric high p-values will not pass a reasonable

FDR on the 552 hypotheses checked. The other 4 pathways also

have only one gene among the 50, and since these pathways

contain more genes than RECK, their p-values will only be bigger.

Even if one chooses to ignore the 70 gene list, and look for

pathways common only to the three other signatures checked in

the paper, only the breast cancer estrogen signaling pathway is

found to be over represented in all. Repeating this analysis using

the standard definition of the p-value, we found that for the 70

gene list no pathway passes at any reasonable FDR, and even if we

ignored the 70 gene list, still only the breast cancer estrogen

signaling pathway was over represented in all the other three

signatures tested.

Pathway Overlap of Breast Cancer Prognostic Lists
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Reyal et al. [37] have not approached the question of pathway

convergence of the signatures directly, but instead aimed at

offering a new, pathway based predictor. In order to do so they

have used a large number of tumor expression profiles measured

by the Affymetrix 133A platform, started from seven published

signatures and used them to create enlarged signatures. These

contained all the genes correlated to the original signature,

revealing large gene clusters that differentiated good from bad

outcome. A careful pathway analysis discovered common

pathways which were then used to build new, more promising

predictors. In our context, however, one must be careful not to

deduce from this study that there is biological agreement between

the actual seven signatures they studied, as their analysis was done

on highly enlarged gene lists.

Sole et al. [39] have tested different signatures of different

cancers, including breast cancer signatures [5,29,49,50,51,52], by

two main approaches. The first was to check for overrepresenta-

tion of transcription factor targets as predicted by motif analysis

and chip experiments. The second was to check on a few datasets

for correlations between the signature genes and the various

pathway genes. The first approach identified targets of E2F and

ER, as well as cell cycle genes, to be common to many of the

signatures. Note that E2F is a major proliferation regulator and

many of its targets correlate with proliferation rate. They have

raised also the possibility that AHR, MYB and MYC targets are

overrepresented in a few of the signatures. The second approach

identified mitosis and possibly immune response as related to some

of the breast cancer signatures on the examined data. Note that

the second approach may reflect the prognostic potential of the

found pathways, but not the biological convergence of the

signatures.

Methods

Compared prognostic signatures
van’t Veer’s signature was developed based on ,5000 probes

(we reproduced a list of 5159 probes) from the Rosetta Hu25K

microarray, Wang’s signature was developed based on 17816

probes from the Affymetrix U133A microarray. These probes

were selected by filtering out probes with low signal, and hence

were the actual candidates for the signature, and therefore we

chose these lists as the background references.

The Hu25K probes were matched to known genes by their

sequences using BLAST [53], and mapped into official gene

symbols. We used Affymetrix’s mapping of the U133A probe sets

to gene symbols. For TANGO analysis probes were converted to

Entrez GeneID using MatchMiner [54]. Since not all probes

capture a recognized gene with an official gene symbol, and some

probes capture more than one gene, the actual lengths of the lists

are slightly different than the corresponding list of probes. This,

however, does not affect the enrichment analysis as probes with no

recognized official gene symbol also have no known annotations.

The gene lists of the van’t Veer and Wang signatures are listed in

Table S1.

Testing for significant pathway enrichment of each list
with standard FDR control

The pathway databases used for our analysis are the Gene

Ontology Biological Process [45] annotations, (as downloaded

from [55]) and MSigSB C2 Canonical Pathways database (version

2.5) [56], which integrates 12 different pathway databases. When

referring to a GOBP annotation we refer to all the genes in this

annotation together with all the genes of all the descendent

annotations. Only annotations that had at least one gene in the

relevant background were considered. When considering the size

of the annotation, only genes that appear in the relevant

background were counted.

For every individual gene list (signature) studied we tested

enrichment by genes that belong to a particular biological process

or pathway. Enrichment of annotations were computed by Fisher’s

exact test, using for each signature as background reference the

gene population of the original experiment from which the

signature was derived (i.e. genes from the corresponding chip that

have passed the initial filtering), and correcting for multiple testing

by standard control of the FDR [43], without taking the nested

dependencies of the GO annotations into account.

More accurate control of multiple hypotheses, using
resampling

One might claim that using the standard methods to control the

FDR is too strict (mainly due to the dependencies between the

pathways). Alternative approaches were suggested to test for

annotation enrichments, which were claimed to be less stringent

than the standard control of FDR, while still offering correction for

testing multiple hypotheses. TANGO [48] performs functional

enrichment tests that fully account for multiple testing, using a

simple resampling algorithm. The aim is to assess the significance

of the enrichment of a gene set T in the different biological

processes Ai of an ontology A. First, TANGO computes the

hypergeometric p-values pi of T against all the processes. To

determine (in a way that takes multiple testing into account) which

of these is significant (at say 5% level), TANGO calculates the

empirical background distribution of the best p-values obtained for

each one of a large number of randomly generated gene lists (of

the same length as T). Finally, the corrected p-value of each

process Ai is determined as the probability to do better, using the

background distribution. This way all the relations among the

biological processes of the ontology are preserved.We have used

the EXPANDER [57] implementation of TANGO to test for GO

annotation enrichments in all three lists (Wang 60, Wang 76, and

van’t Veer 70), and determined the threshold on the corrected p-

values one needs to use in order to have even a single enriched

process shared by van’t Veer and one of the Wang lists.

Correcting pathway overlap for multiple testing by
assessing the significance of shared processes

At the opposite end of the spectrum of stringency one is ignoring

the problem of multiple hypotheses and simply looks for biological

processes that passed some threshold on the enrichment p-value for

both gene lists, such as performing Fisher’s exact test [42] and taking

only p-values smaller than 0.05. Clearly, since the set of biological

processes that satisfied this criterion was derived neglecting

completely multiple testing (e.g. of testing many biological

processes for enrichment), this procedure is too permissive. To

estimate the significance of the fact that a biological process passed

this criterion in a way that corrects for multiple testing, we devised

a random model to generate a relevant background distribution,

which takes into account the real dependences between the

pathways and biological processes. Two random lists, L60 and

L70, containing 60 and 70 genes, were generated from the

respective lists of probes from the chips used by van’t Veer and by

Wang. We then preformed Fisher’s exact test between the genes

that correspond to the selected probes of each of the two lists and

every biological process (or pathway), and determined the number

x of processes with enrichment p-value smaller than some

threshold q (we used q = 0.05, 0.10 and 1.0), for both L60 and

L70 (as opposed to TANGO which estimates enriched pathways for

Pathway Overlap of Breast Cancer Prognostic Lists
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every list). By repeating this process 5000 times and calculating the

histogram of x, we constructed a background distribution P(x = k),

estimating the probability to get by chance k processes with hyper-

geometric enrichment p-value,q for both random gene lists.

Hence, the significance of observing c biological processes or

pathways for which both the Wang and van’t Veer gene lists are

enriched at this level, is simply estimated by P(x. = c). Note, that

just like in the actual process of learning the signatures, probes that

do not map to known genes with known annotations could be

selected, and therefore the effective length of the gene list is usually

smaller.

Results

Testing for significant pathway enrichment of each list
with standard FDR control

In order to check rigorously the claims of convergent biological

pathways and processes for different gene lists, we examined (see

Methods) the two most established outcome prediction signatures,

the 70 gene list of van’t Veer et al. [7] and Wang et al’s ER+
signature [33].

We have chosen the richest, well accepted annotation database,

the gene ontology biological process (GOBP) database [45] as the

major list of pathways, and repeated the analysis with two more

lists, for the sake of completeness (see below).

Only a single process, DNA Replication, passed FDR in both

signatures, at a very permissive level of 0.31. Raising the bar to

FDR = 0.53 gave rise to the microtubule cytoskeleton organization

pathway, and with even more permissive FDR only two closely

related annotations emerged - ‘microtubule-based process’ and

‘DNA-dependent DNA replication’. This indicates that probably

both signatures capture some aspects of cell cycle and proliferation.

It is worth mentioning that the well accepted DAVID annotation

tool [58,59] does not find any enriched pathway in any of the

signatures, which passed FDR of 0.9, other than organelle

organization and biogenesis in Wang’s signature (q = 0.36).

We repeated the analysis for a shorter list of GOBPs along the

lines of Yu et al. [40] who tested only those 304 GOBPs that had

representative probe sets for at least 10 of their genes on the

U133A chip. We found 1373 such GOBPs and repeated our

analysis limited to this list (we believe that the discrepancy between

304 and 1374 is due to the fact that Yu et al used a very early

version of the GO database). Next, we also examined the MSigDB

canonical pathways database [56], collecting metabolic and

signaling pathways from 12 online pathway databases. Further-

more, we repeated the analysis for the entire signature of Wang (76

probe sets). All these additional comparisons yielded even less

common pathways than the original one. The full results of all the

pathways that passed FDR of 0.75 in any one of the three

databases are shown in Table S2. Few more details can be found

in the Methods section.

More accurate control of multiple hypotheses, using
resampling

TANGO [48], a resampling based method for pathway

enrichment analysis (see Methods), did not find any pathways

with p-value smaller than 0.48, see Table S2 for annotations with

less significant p-values (DNA Replication was found in all

signatures, but with a p-value higher than 0.8).

Correcting pathway overlap for multiple testing by

assessing the significance of shared processes. Using the

‘‘p-value smaller than 0.05’’ criteria with p-values obtained by

Fisher’s exact test of both signatures (see Methods), gave rise to 18

common pathways, most of which were related to cell cycle.

Raising the allowed p-value threshold to 0.1 discovers 10 more

pathways of different contexts, as also shown in Table 1.

Since this overlap was derived neglecting multiple testing

completely, it is too permissive. We estimated the significance of

this overlap using a random model (see Methods) to generate a

relevant background distribution that takes into account also the

real dependences between the pathways and biological processes.

This analysis finds that the number of common Biological

Processes (derived without any FDR control) that we found for

the real lists was significantly higher than the number for random

signatures- we calculated a p-value of 0.015 to get the observed

overlap for threshold of p,0.05 (and 0.068 for p,0.1), showing

that indeed both signatures capture some common essence. As

before, the process was repeated for the reduced GOBP list and

MSigDB, as well as for Wang’s complete 76 genes signature. The

results of the analysis were similar, as shown in Table S3.

What common pathways are really present, other than
proliferation?

The fact that both signatures capture cell cycle and proliferation

is evident. It is well known that there are many genes whose

mRNA level correlates with proliferation, usually referred to as the

‘‘proliferation cluster’’, since they are all cluster together

[60,61,62]. Indeed both signatures contain genes from the

proliferation cluster, which enables them to approximately capture

the rate of proliferation. To test whether there are any additional

common pathways, we omitted from both lists the genes that were

highly correlated with cell proliferation. Those genes were

identified by calculating the Pearson correlation of their expression

with the expression of a gene known to be correlated with the rate

Table 1. The list of pathways whose hypergeometric p-value
is less than 0.05 and 0.1, without correcting for multiple
hypothesis testing.

Common pathways for p,0.05
Additional common
pathways for p,0.1

DNA metabolic process axon regeneration

DNA packaging cell cycle

DNA replication cellular component organization

DNA replication initiation chromatin assembly or disassembly

DNA strand elongation intracellular signaling cascade

DNA strand elongation during
DNA replication

mitotic cell cycle

DNA-dependent DNA replication negative regulation of translation

cell division nucleus localization

chromosome condensation response to hypoxia

chromosome organization second-messenger-mediated
signaling

cytokinesis during cell cycle

cytoskeleton organization

microtubule cytoskeleton organization

microtubule-based process

mitotic chromosome condensation

nucleosome assembly

organelle organization

phosphoinositide-mediated signaling

doi:10.1371/journal.pone.0017795.t001
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of proliferation in the EMC-344 cohort [33,63]. To be on the safe

side, 3 attempts were made, each using a different proliferation

gene (either MKI67, TOP2A or CDK1, all of which appear in

three major papers discussing the members of the proliferation

cluster [60,61,62]). For each attempt, all the genes with Spearman

correlation of at least 50% were omitted from the list on which

they appeared. The genes that were omitted are listed in Table S4;

as can be seen, in all cases the common gene cyclin E2 was

omitted. The enrichment analyses described above were now

repeated for the filtered signatures.

The results of the enrichment analysis have changed dramati-

cally. No common pathways have passed any FDR (as a matter of

fact, no pathway was found in the reduced van’t Veer signature that

passed any FDR,1). Ignoring FDR corrections, only 1–2 common

pathways were found with p,0.05 (nucleus localization and in the

MKI67 case, also response to hypoxia), and 5 common pathways

for p,0.1. These overlaps were found to be not statistically

significant when comparing to the generated background distribu-

tion, as described above (p-values of 0.6–0.8). As before, the process

was repeated for the reduced GOBP list and MSigDB, as well as for

Wang’s complete 76 genes signature, yielding similar results. For

more details see Table S5 and Table S6.

One might claim that pathway enrichment is not an accurate

enough tool to answer the question whether two signatures capture

the same biological features. This might be true, but in this case

some other proof is necessary, and none has been presented yet.

For example, possibly the presence of even one single gene from a

pathway could suffice to capture a biological feature, at least to

some extent. Proliferation is a good example of such a possibility,

since apparently any gene picked from the proliferation cluster will

capture the proliferation rate. If this is indeed the case, our test

would find an insignificant enrichment, while in fact the pathway

is represented to some extent. It seems hard to believe, however,

that the expression level of one gene can capture the level of

activity or deregulation of more complex pathways.

Discussion

We presented a comprehensive analysis aimed at answering the

question whether the two outcome prediction signatures for early-

discovery breast cancer, of van’t Veer et al and Wang et al, capture

the same biological processes. We focused on these two signatures

since they were derived using machine learning approaches, with

minimal biological knowledge incorporated in the choice of the

predictive genes. While such an overlap between the biological

processes has been claimed or implied, very few studies have

actually tested this claim. We performed our tests in a way that on

the one hand did not ignore the problems of multiple testing, but on

the other hand took into account the dependent and nested nature

of the gene ontologies used. We found that the concordance of

enriched pathways between the two tested signatures is restricted to

capturing the cells’ proliferation rate. When proliferation-related

genes are deleted from the two lists, the number of pathways over

represented in both signatures does not exceed the number of such

pathways expected for two random gene lists.

Taken together, all the results obtained indicate that while there

is some common biology captured by the two signatures, it is very

limited: all the processes captured by both signatures are related to

cell proliferation.

To conclude on a constructive note, we do believe that an

expression-based prognostic method that is knowledge-based, i.e.

one that incorporates also well-established biological and clinical

information on relevant pathways, will be able to improve current

prediction capabilities.

Supporting Information

Table S1 Gene symbols of the genes in van’t Veer and Wang

signatures used in the analysis. The Wang signatures were

converted from the published probe sets by Affymetrix official

tables. The van’t Veer signature was converted from the published

probes using BLAST. The common gene cyclin E2 is highlighted.

(XLS)

Table S2 Enrichment analysis of each signature separately.

FDR controlled hypergeometric enrichment of van’t Veer

signature, Wang 60 gene ER+ signature and Wang 76 gene

signature, for GOBP annotations (both complete and filtered as

proposed by Wang et al), and MSigDB pathways. Additionally the

results of the TANGO analysis are attached. Pathways common

both to van’t Veer and one of Wang signatures are highlighted.

(XLS)

Table S3 Pathway overlap significance. The results of our

suggested random background model, estimating overlap signifi-

cance.

(XLS)

Table S4 The proliferation genes omitted. The genes were

selected according to correlation in expression in the EMC-344

cohort to the genes MKI67, TOP2A or CDK1.

(XLS)

Table S5 Enrichment analysis after omitting proliferation genes.

Hypergeometric enrichment of the signatures minus the genes that

correlated with proliferation.

(XLS)

Table S6 Pathway overlap significance after omitting prolifer-

ation genes. Same as Table S2, but calculated after omitting

proliferation genes.

(XLS)
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