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Simple Summary: More than three decades of scientific study have been unable to determine the
etiology of reproductive issues in cheetahs under human care. The reproduction of cheetahs in
zoological facilities has never been self-sustaining, and the differences between females who establish
pregnancy and those that do not remain poorly understood. The objective of this study was to
examine and compare ovarian and adrenal hormones post-ovulation in pregnant and non-pregnant
animals to better understand female physiology after natural breeding or artificial insemination,
and determine what may be contributing to the frequent lack of success. The authors also sought to
validate a urinary progestagen assay to assist with pregnancy detection. Although fecal glucocorticoid
metabolites among pregnant and non-pregnant groups were not different, samples from the third
trimester in pregnant animals were higher than at any other time. Additionally, glucocorticoids
were higher, and estrogens tended to be lower in samples from pregnant females that gave birth
to singletons, than those that had multi-cub litters. As a supplementary benefit, this is the first
time urinary progestagens have been measured and have been able to distinguish pregnant and
non-pregnant cheetahs. The results provide first-time insights into ovarian and adrenal hormonal
events surrounding ovulation and pregnancy detection in cheetahs.

Abstract: Cheetahs have been the subject of reproductive study for over 35 years, yet steroid hormone
activity remains poorly described after ovulation. Our objective was to examine and compare
fecal progestagen (fPM), estrogen (fEM), and glucocorticoid (fGM) metabolite concentrations post-
ovulation in pregnant and non-pregnant animals to better understand female physiology (1) during
successful pregnancy, (2) surrounding frequent non-pregnant luteal phases, and (3) after artificial
insemination (AI) to improve the low success rate. Secondarily, the authors also validated a urinary
progestagen metabolite assay, allowing pregnancy detection with minimal sample collection. Fecal
samples were collected from 12 females for ≥2 weeks prior to breeding/hormone injection (the PRE
period) through 92 days post-breeding/injection. Samples were assessed for hormone concentrations
using established enzyme immunoassays. Urine samples were collected for 13 weeks from 6 females
after natural breeding or AI. There were no differences among groups in fGM, but in pregnant
females, concentrations were higher (p < 0.01) in the last trimester than any other time. For pregnant
females that gave birth to singletons, fGM was higher (p = 0.0205), but fEM tended to be lower
(p = 0.0626) than those with multi-cub litters. Our results provide insight into the physiological events
surrounding natural and artificially stimulated luteal activity in the cheetah.
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1. Introduction

Surviving in highly fragmented populations primarily in eastern and southern Africa,
the wild cheetah (Acinonyx jubatus) is currently classified as vulnerable by the IUCN, with
approximately 7100 individuals remaining [1]. To avoid larger predators like lions and
hyenas, the majority of free-ranging cheetahs live on unprotected lands, where human
conflict with livestock and game farmers continues to cause population declines and threat-
ens the longevity of this species in the wild [1]. Steadily falling numbers of free-ranging
cheetahs highlight the importance of maintaining a healthy and sustainable population
of cheetahs in human care. Ex situ populations serve to educate and motivate the public
to contribute to conservation efforts, as an insurance population to avoid extinction and
provide individuals for reintroduction efforts, and finally, as the focus of research to better
understand this highly unique species with work that would be impossible to conduct on
wild counterparts. Cheetahs housed in North American facilities are part of a singularly
managed group called the Species Survival Plan (SSP) and are considered as one cohesive
research population containing approximately 358 animals at 52 institutions [2].

Over almost the last four decades, research utilizing the SSP population has yielded a
substantial body of work, advancing our understanding of topics, such as species’ nutri-
tional needs [3,4], behavior [5–8], husbandry [9,10], disease [11–14], genetics [15,16], and
reproductive physiology [17–29]. Despite our expanding knowledge base on cheetahs, the
species still pose significant reproductive challenges when under human care that does not
appear to be shared by free-ranging populations. For almost the last decade, only about
20% of the SSP population has been reproductively successful and as many as 28% of adults
are unavailable for breeding each year due to health, behavior or participation in educa-
tion/ambassador programs [2]. This relatively high proportion of reproductively excluded
individuals has been the driving force for research efforts to advance assisted reproduc-
tive technologies (ART) for this species and increase the proportion of the population,
contributing offspring to SSP population sustainability efforts.

While significant progress has been made in ART procedures related to sperm cryop-
reservation [22,30,31], exogenous hormone administration to control ovarian activity [32,33],
and successful in vitro fertilization, embryo development and transfer [28,34,35], there re-
mains a paucity of information surrounding physiological events occurring post-ovulation
in the cheetah. Consequently, the successes of ART, particularly artificial insemination (AI)
procedures in this species, are low; only around 22% carried, mostly by a high proportion
of early successes in the 1990s that has not been able to be replicated [21,33]. During these
procedures, out of 74 females treated with various tested exogenous hormone stimulation
protocols, only 49% or 66% of these responded as intended with fresh corpora lutea ob-
served at the time of AI [21,33]. Without a full understanding of the natural physiology
and hormonal control of the ovarian cycle and uterine environment through ovulation and
successful pregnancy, efforts cannot be made to adjust exogenous hormone stimulation
protocols for AI to mimic or encourage these conditions more accurately for this species to
contribute to increased pregnancy success.

As nonseasonal induced ovulators, the physical act of mating in cheetahs results
in the release of luteinizing hormone (LH) and ultimately, ovulation [29,36]. Although
details of uterine events and associated timelines following mating and ovulation in the
cheetah are largely unknown, fecal monitoring of progestagen metabolite concentrations
and extrapolation from studies performed with domestic cats (Felis catus) has provided
some information. Similar to the domestic cat [37], in cheetahs, there appears to be no
signal from the developing embryo necessary for maternal recognition of pregnancy, with
elevated progesterone output maintained throughout gestation (~93 days; [36]) or roughly
two-thirds of the pregnancy length if fertilization is not successful, i.e., a non-pregnant
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luteal phase (NPLP). Therefore, fecal progestagen metabolite concentrations are indistin-
guishable between pregnant and non-pregnant cheetahs for 55 days or more after breeding
or exogenous hormone stimulation and AI [24,36]. Within the cheetah SSP population, lack
of offspring production and apparent NPLP occurs in as many as 50% of bred females,
even following multiple copulations with the same male [2]. Recent studies suggest that a
lowered reproductive potential may be due, at least in part, to external factors related to
the captive environment and management of this species in ex situ facilities [7,10].

Much of what is currently known about reproductive biology, health and welfare in
zoological facilities in cheetahs has been learned through studies measuring concentrations
and patterns of fecal steroid hormone metabolites; many of which were performed in our
laboratory [5,7,9,10,24–27,33,36,38–41]. While the relationship between the hypothalamic-
pituitary-adrenal and the hypothalamic-pituitary-gonadal axes has been long-established to
be complex and varies between species [42], prior to this study, estrogen and glucocorticoid
concentrations had not been fully described in cheetahs after natural breeding or AI. A re-
cent study in ocelots, which compared steroid hormones in successful pregnancies between
naturally bred and embryo transfer events, found changes in estrogens, progestagens and
glucocorticoids in embryo transfer pregnancies, which may be responsible for the typically
low birth rates with assisted reproductive technologies in felids [43]. In general, and often
over-simplistically referred to as “stress” hormones, glucocorticoids are responsible for the
response and recovery from energetic perturbations to an organism’s homeostasis and are
therefore also associated with metabolism and routine metabolic functions, such as diges-
tion, sleep-wake cycles, and importantly, reproduction [44]. Without a clear understanding
of the patterns and relationships between ovarian and adrenal hormones during successful
pregnancies, investigations into potential reasons for reproductive failure cannot progress.
A previous study in cheetahs revealed a positive correlation between estrogens and gluco-
corticoids that differs in females between anestrual and cyclic ovarian periods [39], but up
to this point, no comparisons in glucocorticoids had ever been made between females that
successfully give birth and those that exhibit an NPLP after ovulation.

The current study utilized opportunistic fecal sampling from females in the SSP that
occurred over a 9-year period, which had been primarily subjected to hormone analysis
to assist with pregnancy diagnosis. Our objective was to examine and compare fecal
progestagen (fPM), estrogen (fEM), and glucocorticoid (fGM) metabolite concentrations
post-ovulation in pregnant and non-pregnant animals to better understand female phys-
iology in three primary areas where information has been lacking: (1) during successful
pregnancies, (2) surrounding frequent non-pregnant luteal phases, and (3) after AI to im-
prove the low success rate. As evidence of recent difficulties obtaining AI success, none of
the AI events captured for this study resulted in the production of offspring. All successful
pregnancies mentioned hereafter were the result of natural breeding events. As a secondary
objective, we also aimed to compare fecal hormone metabolite concentrations during con-
firmed cheetah pregnancies according to known pregnancy characteristics, parity and
litter size.

To address our objectives, fecal samples were collected while females were in one of
three ovulatory conditions, one being the pregnant condition, confirmed by the birth of
cubs. The other two ovulatory conditions were both when the females experienced an
NPLP, but these events were split into two groups based on if the NPLP was following
natural breeding, categorized by detection of a luteal response following observed breeding
(referred to as ‘NPLP natural’), or exogenous hormone stimulation and AI, but no cubs
resulted (called ‘NPLP AI’).

In addition, monitoring fPM in females after breeding remains the cheapest, most
efficient, and least invasive method of pregnancy detection within the SSP population,
requiring no specialized equipment or animal training [2], but frequent fecal sample
collection and shipping to a laboratory is inconvenient for some facilities breeding cheetahs.
Fecal samples also require extensive processing before steroid hormone analysis can occur.
Here, as a supplemental aim, we also sought to validate a urinary progestagen detection
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assay for cheetahs and demonstrate utility in pregnancy detection that would require the
collection of only one or two samples with no processing needed prior to analysis on our
enzyme immunoassay.

2. Materials and Methods
2.1. Animals and Husbandry

The study was conducted in strict accordance with recommendations in the Guide
for the Care and Use of Laboratory Animals of the National Institutes of Health. All
samples required for this project were available in our biorepository and were collected
non-invasively (feces or urine), therefore not requiring specific IACUC approval or special
permits. A total of 13 female cheetahs (n = 12 feces sampled; n = 6 urine sampled; Table 1)
were included in the study; housed at five institutions throughout the USA, all of which
were accredited by the Association of Zoos & Aquariums. Study animals were adults of
appropriate breeding age (range: 3.6 to 11.3 years of age) at the time of sample collection.

Table 1. The number of female cheetahs and number of distinct ovulation events sampled by feces
and or urine collection in each of the following conditions, pregnant or experiencing a non-pregnant
luteal phase following natural breeding (NPLP natural) or exogenous hormone stimulation and AI
(NPLP AI), but no cubs resulted.

Condition Females Ovulation Events

Pregnant Feces: 8; Urine: 4 Feces: 15; Urine: 8
NPLP natural Feces: 5; Urine: 2 Feces: 7; Urine: 4

NPLP AI Feces: 4; Urine: 1 Feces: 5; Urine: 2

Samples were collected opportunistically over a nine-year period from females that
were scheduled for natural breeding (on the basis of SSP breeding management recommen-
dations) or to be given exogenous gonadotropins and subsequent semen deposition via
artificial insemination. Specific details regarding exogenous hormone stimulation protocols
using equine chorionic gonadotropin (eCG) and then human chorionic gonadotropin (hCG)
or porcine luteinizing hormone (LH) are found elsewhere, along with comprehensive
procedural details for semen collection, handling, and artificial insemination [21,32,45].
Pregnancy was verified by the birth of offspring. An NPLP was confirmed by an in-
crease in fecal progestagen metabolite concentration after natural breeding or gonadotropin
(eCG/hCG or eCG/LH) administration, but no offspring were produced. Some individual
females were sampled multiple times through subsequent ovulation events.

2.2. Sample Collection and Preparation

Feces were collected for a minimum of 3×/week for at least 2 weeks prior to breed-
ing/exogenous hormone injection—designated the ‘PRE’ time period. Samples continued
to be collected through 92 days post-breeding/exogenous hormone injection and were
broken into trimesters (as described below) for comparison to the PRE period. Each contin-
uous fecal collection series on a female constituted a single ovulation event. Approximately
50 g of deposited fecal samples were collected <24 h after deposition into individual plastic
bags and stored at −20 ◦C until shipping to the laboratory at the Smithsonian Conservation
Biology Institute for analysis. All fecal samples were lyophilized and pulverized, steroid
hormone metabolites were extracted, and steroid extraction efficiency was evaluated as
previously described [46,47]. The overall mean (±SEM) extraction efficiency for all samples
was 77.5% ± 0.2%. Fecal extracts were diluted 1:20 to 1:10,000 in BSA-free phosphate buffer
(0.039 M NaH2PO4, 0.061 M Na2HPO4, 0.15 M NaCl, H2O; pH, 7.0) for analysis by enzyme
immunoassay (EIA). Fecal hormone data were expressed as µg/g dry feces.

Urine samples were collected a minimum of 1×/week from the day of breeding or
hCG/LH injection through to 91 days after, when possible. Samples of ~3–5 mL were
collected immediately after deposition by aspiration from a nonporous surface and stored
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at −20 ◦C until analysis. Baseline values were determined by opportunistically collecting
samples (n = 42) from four of the six females utilized for urinary assessment during time
periods determined to be non-ovulatory based on fPM analysis. The urinary progestagen
metabolite concentrations for these samples were averaged to create a baseline value for
comparison to ovulatory event values. Raw samples were diluted 1:10 to 1:800 in BSA-free
phosphate buffer for analysis by enzyme immunoassay (EIA).

2.3. Fecal Glucocorticoid Metabolite (fGM) Analysis

Glucocorticoid metabolite concentrations in diluted fecal extracts were determined
using a cortisol EIA validated previously in our laboratory for the cheetah [7,38]. The
polyclonal antibody used (R4866; C. Munro) was raised in rabbits against cortisol-3-
carboxymethyloxime linked to bovine serum albumin. The antibody cross-reacted with
cortisol (100%), prednisolone (9.9%), prednisone (6.3%), cortisone (5%), and <1% with
corticosterone, desoxycorticosterone, 21-desoxycortisone, testosterone, androstenedione,
androsterone, and 11-desoxycortisol. EIA procedures were consistent with what has been
reported previously by these authors in this laboratory for analysis of cheetah fecal sam-
ples [39]. Samples that were considered too dilute (binding > 80% of maximum) were
evaluated at 1:10, and those that were too concentrated (binding < 20%) were assessed at
1:200. The sensitivity of the assay at a maximum binding was 3.9 pg/well.

The inter-assay coefficients of variation (CV) for two internal controls were 10.3%
(mean binding, 29.2%) and 6.5% (mean binding, 67.8%), and the CV for all duplicate
samples was maintained at <10% (n = 65 assays). Serially diluted, pooled fecal extracts
expressed displacement curves parallel to the cortisol standard curve (y = 0.889x + 7.169,
R2 = 0.97, p < 0.001). Recovery of added cortisol standard to a fecal extract demonstrated
significant recovery (y = 0.9x − 18.0, R2 = 0.99; p < 0.05).

2.4. Fecal Estrogen Metabolite (fEM) Analysis

Estrogen metabolite concentrations in diluted fecal extracts were determined using
an estradiol EIA validated for use in the cheetah [19,39]. This EIA relied on a polyclonal
anti-estradiol antibody (R4972; C. Munro, University of California, Davis, CA, USA) that
cross-reacted with 17β-estradiol (100%), estrone (3.33%), and <0.01% with estrone sulfate,
progesterone, testosterone, cortisol and corticosterone. Microtiter plates were assessed as
above for glucocorticoid metabolite analysis and as previously described in this laboratory
by these authors [39]. Samples that were considered too dilute (binding > 80% of maximum)
were assessed at a higher concentration (1:10), whereas those that were too concentrated
(binding < 20%) were run at a lower concentration (1:200). The sensitivity of the estradiol
EIA at a maximum binding was 1.95 pg/well.

The inter-assay CV for two internal controls were 10.4% (mean binding, 27.3%) and
16.7% (mean binding, 69.4%), and CV for all duplicate samples was maintained at <10%
(n = 84 assays). Serially diluted, pooled fecal extracts expressed displacement curves paral-
lel to those of the estradiol standard curve (y = 1.104x − 1.473, R2 = 0.99, p < 0.001). Recov-
ery of added estradiol to a fecal extract demonstrated significant recovery (y = 1.3x − 4.0,
R2 = 0.99; p < 0.05).

2.5. Fecal and Urinary Progestagen Metabolite Analysis

Progestagen metabolite concentrations in diluted fecal extracts were determined using
a monoclonal antibody assay routinely applied in our laboratory (no. CL425, Quidel Co.,
San Diego, CA, USA) [19,24,33]. This antibody cross-reacts with 4pregnen-3,20-dione
(100%), 4-pregnen-3α-ol-20-one (188%), 4-pregnen-3β-ol-20-one (172%), 4-pregnen11α-ol-
3,20-dione (147%), 5α-pregnan-3β-ol-20-one (94%), 5α-pregnan-3α-ol,20-one (64%), 5α-
pregnan-3,20-dione (55%), 5β-pregnan-3β-ol-20-one (12.5%), 5β-pregnan-3,20-dione (8%),
4-pregnen-11β-ol-3,20-dione (2.7%), and 5β-pregnan-3α-ol-20-one (2.5%). Microplates were
prepared as above for the estradiol assays, and as previously described by the authors in
this same laboratory [24].The inter-assay CV for two internal controls was 11.7% (mean
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binding, 31.9%) and 17.7% (mean binding, 73.5%), and the CV for all sample duplicates
was <10% (n = 78 assays). The intra-assay CV of two controls at multiple points across a
microplate was <10%. Serial dilutions of fecal extract yielded a displacement curve parallel
to the standard curve (y = 1.14x − 21.25, R2 = 0.895, p < 0.001). There was no evidence of
matrix interference as adding diluted fecal extract to standards did not alter the amount
observed (y = 1.17x − 3.15, R2 = 0.985, p < 0.001).

Urinary progestagen metabolite concentrations were determined using the same assay
as described above for feces, except for 3 of the 14 ovulation events (1 in the pregnant and
2 in NPLP natural conditions), which were analyzed using a different EIA methodology
(described below) with the same monoclonal antibody (CL425). In this method, a double
antibody system was used, including a secondary goat-anti mouse IgG antibody (A008;
Arbor Assays, Ann Arbor, MI, USA). Microtiter plates were first exposed to secondary
antibody (0.15 mL; 10 µg/mL), which was given time to attach to the plastic well surface
before the second period of incubation with blocking solution (0.25 mL; X109, Arbor
Assays). Plates were allowed to dry at room temperature and stored with a desiccant
at 4 ◦C until use. Standards (0.05 mL) were added to pre-coated 96-well microplates in
triplicate, and diluted; unknown urine samples (0.05 mL) were added in duplicate. At
this time, a horseradish peroxidase enzyme-conjugated hormone (0.050 mL; 1:110,000; C.
Munro, University of California) and specific primary antibody (0.050 mL; 1:50,000) were
also each added to each well as quickly as possible, and the plate and its contents were
allowed to incubate at room temperature for 2 h. Unbound components were removed
using a washing procedure for fecal analysis, and a chromogen solution (0.1 mL, Moss,
Inc., Pasadena, MD, USA) was then added to each well. Optical densities were determined
using a microplate reader (Dynex MRX, reading filter at 450 nm, reference filter at 540 nm).

Serially diluted standard curves produced by this double antibody EIA method were
parallel and comparable to the original method, utilizing the same primary antibody;
therefore, the reported internal control variation and analytical validations are combined
for these two methods with cheetah urine samples. The inter-assay CV for two internal
controls was 14.1% (mean binding, 32.4%) and 18.5% (mean binding, 71.8%), and the CV
for all sample duplicates was <10% (n = 31 assays). The intra-assay CV of two internal
controls at multiple points across a microplate was <10%. Serial dilutions of fecal extract
yielded a displacement curve parallel to the standard curve (y = 0.867x + 0.73, R2 = 0.955,
p < 0.001). There was no evidence of matrix interference as adding diluted fecal extract
to synthetic standards did not alter the amount observed (y = 0.942x − 0.141, R2 = 0.999,
p < 0.001). Normalization of hormone concentrations for variations in urine water content
was done by quantitatively measuring urinary creatinine (CRT) and dividing the sample
hormone values by CRT concentration, as has been described previously [48,49].

2.6. Statistical Analysis, Calculations and Definitions

Ovulation event lengths were measured from the natural breeding date to the par-
turition date for pregnant females. For NPLP females, the ovulation event length was
calculated from the natural breeding or hCG/LH administration date to the date when
progestagen metabolites dropped to baseline concentrations. The trimester length was
determined by dividing the mean pregnancy length for all females by three. For urinary
progestagen metabolite analysis, females in both NPLP conditions, NPLP natural and
NPLP AI, were combined to create a single NPLP condition for comparison to pregnant
females. Individual urine sample concentrations were averaged by week post-breeding
or hCG/LH injection and then combined into three-week terms of weeks 1–3 (term 1),
weeks 4–6 (term 2), and weeks 7–9 (term 3) for statistical comparison between pregnant
and NPLP females.

Hormone metabolite data were summarized using an overall mean of all samples
for the identified condition or trimester, and a baseline of all values was calculated using
an iterative process, excluding values greater than the overall mean plus 1.5 standard
deviations [36,38,39]. Peak frequency was calculated by dividing the total number of peak
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samples (see below definitions) by the total number of samples collected for that ovulation
event (expressed as a percent) [39]. Mean peak amplitude was determined as the mean
height of hormonal peaks above individual baseline values [39]. A significant increase
in progestagen metabolite concentration was declared when the levels were three times
baseline for ≥five consecutive days following breeding or hCG/LH injection [33]. An
estrogen peak was the highest value within a group of samples > 1.5× baseline [36,39].
Values greater than three times baseline were considered to be glucocorticoid peaks [38,39].

Differences in fecal hormone metabolite concentrations among the three ovulatory
conditions were determined using a linear mixed-effect model in R package ‘nlme’ (R
version 4.0.2) with a gamma distribution that included the condition and term as fixed
effects with the individual, housing facility and age at sampling, each as random effects. A
separate model with gamma distribution was used to compare trimesters within pregnant
females only, as well as ovulatory events that resulted in singletons (n = 5) versus multi-cub
litters (n = 10), and those confirmed pregnant ovulations that produced first-time cubs
for a female, primiparous, compared to those of subsequent pregnancies for each female,
multiparous. This model held term, cub number and parity categories as fixed effects, and
the individual and their age at sampling as random effects. Tukey’s test was performed to
determine individual post hoc comparisons between significant groups. Unless otherwise
noted, the predicted values were used to generate values for figures. The differences in
urinary progestagen metabolite concentrations between pregnant and NPLP females, by
term, were also determined using a linear mixed model, including the condition and the
interaction between condition and term as fixed effects, and the ovulatory event number
nested inside individual as a random effect. Values are reported as mean ± standard error
of the mean (SEM) and effects were considered significant at p < 0.05. Raw fecal and urinary
data can be found in Tables S1 and S2, respectively.

3. Results

Descriptive fecal hormone metabolite characteristics for each ovulatory condition,
trimester and values from studies using comparable methodologies are found in Table 2.
The observed high mean fEM peak amplitude for pregnant females during the PRE time
period was driven by two high outlier values, one each from two females housed at the
same institution, and did not correspond with significantly high pregnant fEM for this time
period within the statistical model.

Table 2. Ovarian and adrenal fecal hormone metabolite characteristics of cheetahs that ovulated
and gave birth (pregnant), ovulated after natural breeding and did not give birth (natural non-
pregnant luteal phase; NPLP natural), ovulated after exogenous hormone administration for artificial
insemination, and did not give birth (AI non-pregnant luteal phase; NPLP AI). Ovulation events
were measured from breeding or hCG/LH administration (abbreviated as LH injection) date to birth
for pregnant females and date progestagen metabolites dropped to baseline concentrations for NPLP
females. Values shown are group means ± SEM.

Parameter Pregnant
(n = 15)

NPLP Natural
(n = 7)

NPLP AI
(n = 5)

Published Value 1

[Source]

Fecal progestagen metabolites:
Time to elevation (days) 5.9 ± 0.48 5.57 ± 0.43 5.8 ± 1.28 3–4 [40]

Length of ovulation event (days) 92.60 ± 0.40 60.29 ± 4.75 55.20 ± 2.73 Preg: 94.2 ± 0.5 [36]
Preg: 92.8 ± 0.4 [40]

Pre-breeding/LH injection baseline (µg/g) 1.58 ± 0.38 1.10 ± 0.36 1.28 ± 0.74 0.92 ± 0.2 [25]

Mean of elevated values (µg/g) 38.32 ± 3.58 30.74 ± 4.63 36.99 ± 9.22
40–70 [40]

Preg: 28.7 ± 6.5 [25]
NPLP: 43.9 ± 12.7 [25]

Peak (µg/g) 120.78 ± 18.86 97.14 ± 16.57 110.12 ± 30.82
Peak post-breeding/LH injection (day) 39.60 ± 4.33 31.14 ± 2.52 29.8 ± 4.73
First trimester mean (µg/g) 31.63 ± 3.61 28.12 ± 4.80 35.43 ± 10.13
Second trimester mean (µg/g) 48.05 ± 4.37 28.91 ± 4.79 28.45 ± 8.02
Third trimester mean (µg/g) 27.85 ± 3.30 3.775 ± 1.37 1.43 ± 0.47
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Table 2. Cont.

Parameter Pregnant
(n = 15)

NPLP Natural
(n = 7)

NPLP AI
(n = 5)

Published Value 1

[Source]

Fecal estrogen metabolites:
Pre-breeding/LH injection–

Mean (µg/g) 0.34 ± 0.03 0.31 ± 0.04 0.41 ± 0.16
0.26 ± 0.02 [33]
0.29 ± 0.01 [39]
0.33 ± 0.07 [25]

Baseline (µg/g) 0.26 ± 0.02 0.26 ± 0.05 0.35 ± 0.14 0.21 ± 0.02 [33]
0.22 ± 0.01 [39]

Peak frequency (%) 10.06 ± 2.22 14.08 ± 2.00 14.75 ± 3.40
Mean peak amplitude (µg/g) 0.75 ± 0.35 2 0.22 ± 0.04 0.27 ± 0.16
Post-breeding/LH injection–

Mean (µg/g) 0.36 ± 0.02 0.36 ± 0.04 0.32 ± 0.06 Preg: 0.32 ± 0.06 [25]
NPLP: 0.28 ± 0.05 [25]

Baseline (µg/g) 0.24 ± 0.01 0.28 ± 0.04 0.20 ± 0.02
Peak frequency (%) 21.53 ± 2.03 15.00 ± 1.43 17.01 ± 2.28
Mean peak amplitude (µg/g) 0.34 ± 0.03 0.29 ± 0.04 0.33 ± 0.10
First trimester mean (µg/g) 0.29 ± 0.02 0.33 ± 0.04 0.36 ± 0.07
Second trimester mean (µg/g) 0.37 ± 0.02 0.35 ± 0.04 0.29 ± 0.06
Third trimester mean (µg/g) 0.44 ± 0.05 0.45 ± 0.05 0.32 ± 0.06
Fecal glucocorticoid metabolites:
Pre-breeding/LH injection–

Mean (µg/g) 0.42 ± 0.05 0.48 ± 0.07 0.65 ± 0.07 0.98 ± 0.13 [33]
0.62 ± 0.07 [39]

Baseline (µg/g) 0.25 ± 0.04 0.29 ± 0.02 0.40 ± 0.05 0.60 ± 0.12 [33]
0.32 ± 0.04 [39]

Peak frequency (%) 12.25 ± 5.02 8.22 ± 3.78 14.10 ± 4.67
Mean peak amplitude (µg/g) 0.47 ± 0.20 0.84 ± 0.40 1.63 ± 0.15
Post-breeding/LH injection–
Mean (µg/g) 0.53 ± 0.06 0.35 ± 0.05 0.61 ± 0.17
Baseline (µg/g) 0.28 ± 0.03 0.26 ± 0.04 0.43 ± 0.19
Peak frequency (%) 14.42 ± 2.99 4.60 ± 2.06 15.44 ± 4.19
Mean peak amplitude (µg/g) 1.25 ± 0.20 0.48 ± 0.18 1.82 ± 0.71
First trimester mean (µg/g) 0.48 ± 0.06 0.36 ± 0.06 0.77 ± 0.26
Second trimester mean (µg/g) 0.45 ± 0.04 0.33 ± 0.03 0.64 ± 0.27
Third trimester mean (µg/g) 0.69 ± 0.11 0.34 ± 0.02 0.45 ± 0.06

1 Previously published value(s) from studies utilizing the same or similar hormone analysis methodology. 2 Noted
high values driven by outlier values from two females at the same location.

3.1. Ovulatory Condition and Time Period Comparisons

Overall fPM concentrations for the three ovulatory conditions followed a predictable
pattern in time periods following breeding or LH/hCG injection (hereafter abbreviated to
LH injection) for females in all conditions, with all trimesters higher than PRE concentra-
tions (p < 0.0001; Figure 1). Third trimester concentrations for all ovulatory events were
lower than the 1st and 2nd trimesters (p < 0.0001), but the first two trimesters were not
different from each other (p = 0.392). Across all samples, pregnant condition values were
higher than both NPLP natural (p = 0.0433) and NPLP AI (p = 0.0414) conditions.

Although neither NPLP condition was different from overall pregnant fEM concentra-
tions (p > 0.05), the NPLP conditions did differ from each other with NPLP AI fEM being
higher (p = 0.0459) than NPLP natural fEM concentrations (Figure 2). When all ovulatory
conditions were combined, fEM concentrations were lower in the 1st trimester (p < 0.001)
and higher in the 3rd trimester (p < 0.001) than the pre-breeding/LH injection time period
(PRE). There was no difference among any ovulatory condition in fGM concentrations
(p > 0.05), or between any trimester and the PRE time period (p > 0.05). However, the 1st
and 2nd trimester were both lower in fGM concentrations (1st: p = 0.006; 2nd: p < 0.001)
than the 3rd trimester (Figure 3a).
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stimulation and artificial insemination (AI), but no cubs resulted. In (a), different lower-case letters 
denote differences (p < 0.05) among time periods for all ovulatory events. Asterisk indicates a dif-
ference from other trimesters in the pregnant condition only. In (b), alternatively shaded sections 
indicate PRE time period and three trimester divisions. 
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Figure 1. Time period raw means (a) and three representatives (b) fecal progestagen metabolite (fPM)
profiles for female cheetahs experiencing ovulatory events: pregnant, confirmed by birth of cubs, or a
non-pregnant luteal phase (NPLP) following natural breeding or exogenous hormone stimulation and
artificial insemination (AI), but no cubs resulted. In (a), different lower-case letters denote differences
(p < 0.05) among time periods for all ovulatory events. Asterisk indicates a difference from other
trimesters in the pregnant condition only. In (b), alternatively shaded sections indicate PRE time
period and three trimester divisions.
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Figure 2. Time period predicted mean concentrations for fecal estrogen metabolites (fEM) from female
cheetahs experiencing ovulatory events: pregnant, confirmed by birth of cubs, or a non-pregnant
luteal phase (NPLP) following natural breeding or exogenous hormone stimulation and artificial
insemination (AI), but no cubs resulted. Different lower-case letters denote differences (p < 0.05)
among time periods for all ovulatory events.
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Figure 3. Predicted (a) and raw (b) fecal glucocorticoid metabolite (fGM) time period means for
female cheetahs experiencing ovulatory events: pregnant, confirmed by birth of cubs, or a non-
pregnant luteal phase (NPLP) following natural breeding or exogenous hormone stimulation and
artificial insemination (AI), but no cubs resulted. In (a), all ovulatory events were combined to
determine overall model-predicted means. Different lower-case letters denote differences (p < 0.05)
among time periods. Asterisk indicates a difference (p < 0.05) from all other time periods in the
pregnant condition only.

3.2. Fecal Hormone Metabolite Concentrations in Confirmed Pregnant Females

The mixed model, including only pregnant female hormone values, determined all
trimester fPM concentrations to be higher (p < 0.0001) than PRE concentrations, and the 2nd
trimester was higher still than the 1st or 3rd trimester (p < 0.0001), which were not different
from each other (p = 0.174; Figure 1a). In the pregnant condition, fGM were higher in the
3rd trimester than PRE and both earlier trimesters (p < 0.0001; Figure 3b). For pregnant
females only, fEM concentrations mirror the results of when all ovulatory conditions were
combined and were lower in the 1st trimester (p < 0.001) and higher in the 3rd trimester
(p < 0.001), than the pre-breeding/LH injection time period (PRE; Figure 2).

In primiparous ovulatory events (raw mean = 0.405 ± 0.074 µg/g), fGM were lower
(p = 0.009) than for multiparous pregnancy events (raw mean = 0.595 ± 0.066 µg/g).
Interestingly, fGM were also lower (p = 0.021) and fEM tended to be higher (p = 0.063)
during pregnancies of litters of more than one cub, than pregnancies where females only
gave birth to a singleton (Figure 4). There was no difference (p > 0.05) in fPM concentrations
by parity or the number of cubs born in each pregnancy event.
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Figure 4. Raw (a) fecal glucocorticoid metabolite (fGM) and (b) fecal estrogen metabolite (fEM) means
for pregnant female cheetahs that gave birth to a litter of more than one offspring (n = 10) compared
to hormone concentrations collected during pregnancies in which females gave birth to a singleton
cub (n = 5). Asterisk denotes significance (p < 0.05), and plus sign denotes a tendency (p = 0.063).
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3.3. Urinary Progestagen Metabolite Analysis

Mean urinary progestagen metabolite concentrations for each week post-breeding/LH
injection are represented in Figure 5. Urinary progestagen metabolite concentrations in
pregnant females were higher (p = 0.0006) in term 3, representing values from weeks 7–9
combined, than in females experiencing NPLP. The high value in week 4 for the NPLP con-
dition was due to two irregularly high values from one female collected during that period.
The statistical model, in controlling for individuals, did not determine a difference between
ovulatory conditions for the term including these high values. The considerable discrep-
ancy in all measured concentrations between pregnant (mean: 7.5 ± 1.5 ng/mg CRT; range:
3.1–18.5 ng/mg CRT) and NPLP (mean: 0.9 ± 0.1 ng/mg CRT; range: 0.5–1.6 ng/mg CRT)
conditions were observed by week 9, allowing the pregnancy diagnosis to be performed
with 100% accuracy for these samples (n = 28) using a 2.0 ng/mg CRT cutoff for pregnant
values at day 56 post-breeding/LH injection.
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female cheetahs after natural breeding or hormone administration and either giving birth to offspring
(pregnant), or exhibiting fecal progestagen metabolite concentrations indicative of ovulation, but
no offspring were produced (NPLP). Elevated values were determined to be all those above a value
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CRT). The shaded area indicates the three-week term in which pregnant values were higher than
NPLP concentrations (p < 0.001).

4. Discussion

Despite an extensive history of scientific investigation, the cheetah remains a species
with significant gaps in our understanding of basic and especially reproductive biology.
Breeding in the wild is rarely observed, and efforts to achieve a self-sustaining ex situ
population have thus far been unsuccessful [2]. While some of the causes for this are likely
related to aspects of the captive environment and suboptimal husbandry, there are also
unique reproductive challenges posed by this species in human care that dramatically
reduce the reproductive potential of the population [7,10]. For example, females exhibit
seemingly random periods of anestrus that have, to date, not been attributed to any
specific environmental or physiological parameter [33,36,39]. Instances of apparent non-
pregnant luteal phases after even multiple copulations with proven males occur in the
North American Species Survival Plan (SSP) population with surprising frequency [24].
Successful hormonal stimulation and pregnancy outcomes from artificial insemination (AI)
attempts remain at a low frequency in this species, despite much previous research [21,33].
To expand our knowledge base of the physiological events that occur post-ovulation in
the cheetah, to improve AI success and uncover areas of focus for future research on
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this species, we utilized a sample set, almost a decade in the making, of fecal material
collected from female cheetahs and sent to the laboratory at the Smithsonian Conservation
Biology Institute for assistance with pregnancy diagnosis. Using these samples, that were
collected surrounding ovulatory events, such as natural breeding or exogenous hormonal
administration for AI, we were able to not only describe estrogen and glucocorticoid
concentrations and patterns for the first time in this species after ovulation but also to
compare ovarian and adrenal hormone metabolite concentrations between ovulatory events
that result in cubs and those that do not. Significantly, we validated a urinary progestagen
metabolite assay and generated pregnant and non-pregnant female profiles to assist with
the ease of pregnancy detection in this species, requiring minimal sample collections
and processing.

Pre- and post-ovulatory fPM concentrations reported here mirror those determined
by previous studies on cheetahs using the same assay procedures [25,36,40], depicting an
increase from negligible concentrations—occurring at a mean of 5–6 days after natural
breeding or LH/hCG administration—to peak concentrations of approximately 120 µg/g
that occurred early in the second trimester for NPLP females, and later in this same trimester
for pregnant females (Table 2). The slightly (1–2 day) extended time period determined
here for initial fPM elevation to occur, from previously published values, is likely due to
differences in sampling technique. Some females in the current study were sampled three
times per week, possibly missing days of initial fPM increase, and therefore, contributed
to an artificial extension in this period, determined from studies in which females were
sampled daily [40]. Overall, pregnant females had higher fPM concentrations than both
NPLP groups, with the difference evident in individual profiles by the end of the second
trimester, or between days 55 to 60 post-breeding/LH injection, again reflecting what has
been found previously in this species [24,36]. Although third trimester fPM concentrations
were found to be higher in both NPLP groups than samples from the PRE time period, this
may be because some of these values were still in the process of returning to PRE levels for
some females, causing enough difference to be significant in very low values. Additionally,
fEM concentrations were higher for all ovulatory conditions in the third trimester than
PRE, indicating NPLP females during this time were likely experiencing typical developing
follicular waves and were capable of ovulating. The pregnancy length, from breeding to
the birth of cubs, was found here to be 92.6 ± 0.4 days, which was also within published
ranges for cheetahs. Although, to our knowledge, the current study includes the largest
number of pregnancies (n = 15) ever assessed together for this species.

Similarly, pre-ovulatory fEM values that have been previously published for this
species were not perceptibly different from those determined in this study (Table 2). Mea-
suring fEM concentrations post-breeding/LH injection showed a decrease in concentrations
from PRE values exhibited during the first, followed by an increase in the third trimester.
Although they are often compared, domestic cats exhibit a sharp decline and continued
low values in circulating estradiol after breeding, associated sometimes with an increase
immediately prior to parturition [50]. In contrast, female cheetahs in this study showed
similar estrogenic activity after ovulation to the pre-breeding/LH injection values (Table 2).
Regular fEM peaks, similar in amplitude to the pre-ovulatory peaks and likely correspond-
ing with waves of follicular development—although dampened somewhat in the first
trimester—were detectable in females throughout pregnant and NPLP events. This pattern
of fEM concentrations has been noted to occur in other non-domestic felid species, such
as the snow leopard and the lion [51,52], as well as domestic mares and heifers during
pregnancy [53,54]. In mares, this tendency has even made it possible to expand the genetic
contribution of high-quality females through the collection of oocytes during pregnancy for
IVF and embryo transfer to a surrogate. During the AI procedures assessed for this study,
we observed higher overall fEM for NPLP AI compared to NPLP natural ovulatory events,
however, this result appears to be driven primarily by differences in pre-breeding/LH in-
jection concentrations. However, as NPLP AI fEM concentrations were expectedly affected
by exogenous hormone stimulation (eCG) at levels higher than what may be produced
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naturally, and neither NPLP condition was different from the pregnant condition (Figure 2),
this difference is, therefore, unlikely to be biologically relevant.

By analyzing this extensive dataset from cryo-repository samples, we were able to
investigate fGM concentrations and patterns for the first time in female cheetahs after
breeding/LH injection. Our analysis did not reveal any difference in fGM among ovulatory
events that resulted in pregnancy and those that exhibited an NPLP, but a more focused
analysis of fGM during pregnancy did yield some interesting differences. Expectedly,
fGM were higher in the third trimester of pregnancy than any other time period, a pattern
exhibited by many other mammals, as higher concentrations are necessary for the final
stages of development for various fetal organs, and reflect an increased metabolic demand
on the female, ultimately helping to initiate parturition [55,56]. Somewhat unexpectedly,
though, primiparous pregnancies were also discovered to produce lower overall fGM
concentrations than multiparous pregnancy events. This result is contrary to findings in
other species that gestation is more energetically taxing for first-time mothers [57,58], or
that there is no impact of parity on measured glucocorticoid concentrations [59–61]. A
recent publication in wild geladas suggested that because first birth typically occurs prior
to the female achieving adult body mass, pregnancy tends to be more energetically taxing
because the dam is also supporting her own continued development, thus contributing to
higher glucocorticoids measured during primiparous pregnancies [62]. This is not the case
for female cheetahs in the SSP, however, as the youngest individual to give birth in this
study was 3.6 years in age, and females in this population are known to achieve adult body
mass by 1.75 years and are fully through puberty by 2.5 years [27]. Instead, the relationship
between parity and measured glucocorticoids may be species-specific. In cheetahs, in the
absence of other contributing factors, fGM may be higher due to their anti-inflammatory
actions, which are needed during pregnancy to prevent the rejection of the embryo(s) by
the mother’s body, requiring a higher response to overcome subsequent, similar exposure
that occurs in later pregnancies [56].

Another interesting result in fGM concentrations was the higher overall fGM during
pregnancies that resulted in singletons compared to those producing litters of more than
one offspring. Although parental investment and the provisioning of resources to multi-
cub litters would seem to equate to a higher energetic demand and therefore a higher
production of glucocorticoids to meet these demands in females gestating more than one
fetus, a similar result was also recently found in domestic cats that gave birth to large vs.
small litters [61]. These authors concluded that glucocorticoids and potentially the overall
metabolism may have been higher in females leading up to, as well as during gestation of
small litters, only allowing for a lower investment in reproduction, and therefore supporting
the production of fewer offspring than those females with lower metabolic demands prior
to and during gestation [61]. Our results here agree with this hypothesis, aided further by
our observed tendency for fEM to be lower in pregnancies, resulting in singletons rather
than those of more than one cub. Following this hypothesis, higher glucocorticoids in
the period preceding ovulation could result in fewer or smaller developing oocytes, thus
lower estrogen production and fewer resulting embryos. Our results are also supported
by studies in rodents, finding that a higher total cortisol during gestation was associated
with smaller litters, in which the authors suggest a glucocorticoid-mediated mechanism
inducing embryonic mortality [63–65].

During our investigation of fecal hormone metabolite concentrations after ovulation,
we also sought to validate a urinary progestagen metabolite assay to assist with preg-
nancy determination in cheetahs; one that removes the need for frequent, multi-month
sampling efforts. Although urine collection requires a nonporous surface for the aspiration
of deposited urine, we were able to develop and compare full pregnant and NPLP urinary
progestagen metabolite profiles using the same antibody and EIA procedures our labora-
tory uses to analyze fPM in cheetahs. Our results have made it possible to successfully
diagnose pregnancy from a single urine sample collected on day 56 or later following
breeding or LH injection in this species. This outcome decreases resource expenditure
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needed for institutions breeding cheetahs to diagnose pregnancy, avoiding the need for
specialized equipment or extensive fecal collection, storage, shipping, and processing.
Resources instead may be put toward the minimal training required to facilitate reliable
urine collection from females housed predominantly on porous material.

5. Conclusions

For the first time, by utilizing a sample set collected opportunistically over a nine-year
period from females around the SSP recommended breeding time or artificial insemination,
for analysis for pregnancy diagnosis, we were able to fully describe and compare ovarian
and adrenal hormone output after ovulation in pregnant and NPLP cheetahs. Some of
the major results we experienced include the discovery of regular fEM fluctuations, likely
corresponding to the developing follicular waves occurring after ovulation. These were
seemingly not impacted by a luteal presence and/or a developing pregnancy. While
fGM were not different among pregnant and NPLP ovulatory events, confirmed pregnant
animals did show an anticipated increase in fGM during the third trimester. Although
this seems to eliminate fGM involvement in the high frequency of NPLP after successful
breeding in this population, our findings of fGM output differences related to parity and
litter size seem to indicate a strong role of glucocorticoids in pregnancy of the cheetah that
we have yet to fully elucidate. It may be that adrenal output immediately before and during
pregnancy could be reducing litter size in this species, although an additional study in this
area is warranted. Here, we were also able to validate and generate full profiles of urinary
progestagen metabolites after natural breeding and AI, providing a novel technique for
pregnancy detection that requires minimal resource and sample collection investment for
cheetah breeding facilities. In conclusion, this study has served to fill significant remaining
gaps in the physiological events surrounding ovulation and gestation in the cheetah and
provided critical information to focus future work in this area.
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