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Abstract

Aberrant glycolytic metabolism is one of the hallmarks of carcinogenesis and therefore
reversal of metabolic transformation is a promising drug target in cancer treatment strate-
gies. Dichloroacetic acid (DCA) is known to target the glycolytic pathway in cancer cells
and facilitates reversal of metabolic transformation from aerobic cytosolic accumulation of
pyruvic acid, “the Warburg effect”, to mitochondrial oxidative phosphorylation. Recently,
combination therapy particularly involving photodynamic therapy (PDT) has received con-
siderable attention in oncology. We hypothesized that if DCA and PDT are combined, they
might potentiate mitochondrial dysfunction and induce apoptosis by a reactive oxygen spe-
cies (ROS) dependent pathway. We used MCF-7 cells as our in vitro model and 5-aminole-
vulinic acid (5-ALA) dependent PDT therapy to test our hypothesis. We found that
combinatorial treatment of MCF-7 cells with PDT and DCA not only increased cell growth
inhibition, but also affected mitochondrial membrane integrity perhaps via production of
ROS, and enhanced apoptosis. Further, our results on ATP release during the combined
treatment demonstrate that immunogenic cell death (ICD) is likely to be a potential mecha-
nism by which PDT and DCA induce cancer cell death. Taken together, our study suggests
a novel way of sensitizing MCF-7 cells for accelerated induction of apoptosis and ICD in
these cells. The findings included in this study might have direct relevance in breast cancer
treatment strategies.

Introduction

Breast cancer (BC) is a major health issue worldwide. It is estimated that 1.38 million women
are diagnosed with BC annually [1-3]. Surgery and radiation are the two major conventional
therapies used for disease control at the local level, whereas chemotherapies are used to control
metastatic disease [4]. In spite of these advancements, the metastatic BC remains an incurable
disease for the majority of patients due to therapy-resistance and relapse [5]. In recent years,
combination therapies involving radiotherapy, immunotherapy and chemotherapy have
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proven to be more effective in the control of aggressive cancers including melanoma, lung can-
cer and leukemia [6-8].

The seminal work by Craig Thompson and colleagues has demonstrated that metabolic
traits of tumor cells are crucial for tumor survival under conditions of hypoxia and limited
nutrient availability [9]. Unlike normal cells, cancer cells primarily rely on aerobic glycolysis to
generate energy needed for various cellular processes and this phenomenon is termed as “the
Warburg effect” [10, 11]. The discovery of the Warburg effect has enhanced our understanding
of metabolic transformation and several oncogenic signaling pathways including PI3K/AKT/
mTOR, p53, AMPK and others [12]. Taken together, the metabolic transformation in tumor
cells is an important hallmark of oncogenesis and important therapeutic intervention target in
many cancers including BC [10, 13, 14]. To this end, Golding et al (2013) used glycolysis inhib-
itors 2-deoxyglucose or lonidamine, taking advantage of increased aerobic glycolysis in tumor
cells and combined them with 5-aminolevulinic acid (5-ALA) based PDT to achieve cytotoxic-
ity in human breast cancer MCF-7 cells as compared to normal cells [15]. They also demon-
strated that PDT was effective only when the glycolysis inhibitors were used after 5-ALA
treatment.

Dichloroacetate (DCA), a small molecule of 150 Da, is a metabolic modulator that has been
used in the treatment of lactic acidosis and hereditary mitochondrial diseases [16, 17]. At the
cellular level, DCA acts as a mitochondria-targeting drug and is known to increase the activity
of pyruvate dehydrogenase (PDH), thus resulting in a shift of pyruvate metabolism away from
lactic acid formation, towards mitochondrial respiration [16]. These biochemical reactions
also accelerate mitochondrial dysfunction and promote pro-apoptotic JNK signaling and sub-
sequently induce cell death in several tumor models [16, 18, 19].

Many of the therapies used in oncology induce apoptosis in cancer cells and thus reduce
the overall tumor volume and burden [20, 21]. Thus, the overall efficacy of chemotherapies is
assessed by their ability to drive cytotoxicity in cancer cells. In 1994, Polly Matzinger proposed
‘danger theory’ which states that host immune system can distinguish between dangerous and
innocuous endogenous signals. This observation was also extended to apoptotic cell death
later on [22, 23]. The possibility that drug treatments (anthracyclines, oxaliplatin) and radia-
tion therapy can not only exert direct cytotoxicity but also result in enhanced anti-tumor
immunity of the host was attractive to immunologists and oncologists. This opened up an
entirely new field of research on danger molecules that are now classified as damage-associated
molecular patterns (DAMPs) [24]. Accordingly, the immune response to three molecular
determinants including ATP, endoplasmic reticulum (ER) chaperon calreticulin (CRT), and
the nuclear protein HMGBI are now characterized as “immunogenic cell death (ICD)” [21,
23]. These determinants are also widely used as biomarkers of ICD [22, 23].

Recently, Garg et al [24] and others have advocated ICD as a cornerstone of therapy-
induced anti-tumor immunity. Garg et al [25] has described the validity of Photodynamic
Therapy (PDT) in cancer therapy which combines radiotherapy and ICD. In principle, PDT
combines visible or near-infrared light with a photosensitizer to generate reactive oxygen spe-
cies (ROS), which is known to efficiently kill cancer cells and increase tumor-specific antigen
presentation to T lymphocytes [6, 21, 26, 27]. Thus, radiotherapy not only exerts direct cyto-
toxic effects on tumor cells, but also reprograms the tumor microenvironment to exert a
potent antitumor immune response [28-30]. However, PDT has limited value in treating
deep-seated tumors because visible light can only penetrate to a shallow depth of less than 1
cm in tissues [31]. Taken together, these studies suggest that the combinatorial therapy using
PDT might be a promising strategy to efficiently kill breast cancer cells.

The present study was undertaken to investigate the combinatorial effects of DCA and PDT
on the cell death mechanisms in human breast adenocarcinoma (MCF?7) cells. To induce PDT,
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we used He-Ne laser as a light source and 5-aminolevunlic acid (5-ALA) as a natural non-toxic
photosensitizer involved in heme-biosynthetic pathway [32]. Although glycolytic inhibitors
have been used previously in combination with PDT to induce cytotoxicity in MCF-7 cells
[15], the novelty of our investigation stems from the use of Dichloroacetic acid (DCA), a mito-
chondrial-targeting non-toxic small molecule known to increase mitochondrial pyruvate
uptake, in combination with 5-ALA-PDT. We provide evidence that DCA potentiates PDT-
induced cytotoxicity in MCF-7 cells due to metabolic shift towards oxidative phosphorylation.
Secondly, we demonstrate the release of ATP during PDT therapy with DCA indicating an
involvement of immunogenic cell death mechanism. This is the first report on combinatorial
treatment of DCA and PDT leading to cell growth inhibition and immunogenic cell death in
MCEF-7 cells which has potential to develop therapeutic application for cancer treatment.

Materials and methods
Reagents

Human breast adenocarcinoma MCF-7 cell line, DMEM media, Fetal Bovine Serum (FBS),
penicillin, streptomycin and other cell culture reagents were obtained from the American
Type Culture Collection (ATCC; Manassas, VA). Vybrant flow cytometry apoptosis assay

kit (Catalog # V-13243) was obtained from Molecular Probes (Carlbad, CA). Dichloroacetic
acid (DCA), 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent,
dimethylsulfoxide (DMSO), 5°,5’,6”,6 -tetrachloro-1’,1,3’,3’-iodide (JC-1) dye, 2’,7’-dichlorodi-
hydrofluorescein diacetate (DCFH-DA) fluorescence dye, Trypan blue, 5-aminolevulinic acid
(5-ALA) and ATP assay kit (Colorimetric/ Fluorometric, Cat. ab83355) were obtained from
Sigma-Aldrich (St. Louis, MO).

Cell culture

MCEF-7 Cells were maintained in exponential growth phase in a complete medium containing
DMEM, 10% FBS, penicillin (500 Units/ml) and streptomycin (500 Units/ml) as per manufac-
turer recommendation. All cells were grown in a humidified CO, incubator set at 37°C with
5% CO, atmosphere. For subculturing, cells grown to 80% confluence were washed with PBS
and then detached with Trypsin-EDTA buffer (0.05% Trypsin/0.53 mM EDTA in HBSS with-
out sodium bicarbonate, calcium and magnesium) Subsequently, trypsin was removed by cen-
trifugation and finally resuspended in fresh DMEM complete medium. Cell density was
determined by counting the viable cells using a hemocytometer following staining with 0.4%
Trypan blue dye.

Cytotoxicity assay

The cytotoxic effects of DCA were assessed by MTT assay [33]. In brief, MCF-7 cells were
seeded in 96-well plates (Costar, USA) at a density of 1.0-1.5x10* cells per well. After overnight
incubation at 37°C, cells were treated with various concentrations of DCA and incubated fur-
ther for 24 h at 37°C with 5% CO,. Control wells received PBS alone. At the end of the incuba-
tion period of 24 h with DCA, the medium was discarded, washed twice followed by the
addition of 10 pl MTT solution (5 mg/ml) to 90 pl culture medium containing no serum. The
cells were incubated for an additional 4 h in the dark and thereafter, the medium was dis-
carded, and the cells were lysed in100 pl of dimethylsulfoxide (DMSO) to dissolve the insoluble
MTT formazan. The color thus developed was read at 570 nm in a microplate reader. The
results were presented as % of the control values. All determinations were performed in tripli-
cates, and each experiment was repeated at least three times.
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Fig 1. Schematic representation of laser irradiation. The beam from the He-Ne laser is directly focused on the cells
grown in multi-well plates as a monolayer covering the entire surface area of the well. Cells were exposed for various
time intervals in order to obtain indicated doses of laser irradiation.

https://doi.org/10.1371/journal.pone.0206182.9001

Photo-irradiation with laser light

For photo-irradiation experiments, MCEF-7 cells were seeded in a clear 96-well microplate at a
density of 1.5x10* cells/well. The irradiation source was a He-Ne laser with an output power of
16 mW; the wavelength was 633 nm (Melles Griot-Covina; Rochester, NY) and this setup is
shown in Fig 1. The spot size of the laser was maintained at 0.5 cm in diameter. Power mea-
surements were made with the help of a meter (Instrumental Fiber Optics, Tempe, AZ, USA)
and the exposure time was adjusted to obtain the desired doses of photo-irradiation in the
range of 0-108 J/cm”. Control cells were not irradiated.

For photosensitization experiments, freshly prepared 5-ALA at 0.1 to 2.0 mM concentra-
tions was used as a photosensitizer. Subsequent to treatments, cells were incubated at 37°C for
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4 h followed by laser-irradiation at varying doses. At the end of the incubation, culture
medium was discarded, washed twice with PBS and replaced with complete medium and the
incubation was continued for another 24 h. To study the combined effects of PDT and DCA,
the cells were first exposed to laser in the presence or absence of 5-ALA followed by DCA
treatment for 24 h. The cell viability was then determined by MTT assay as described above.

Flow cytometric analysis of apoptosis

Apoptosis in MCE-7 cells was assayed by flow cytometry as described earlier [34]. This assay
detects changes in cell membrane permeability characteristics with YO-PRO-1 dye, a green-
fluorescence nucleic acid stain that is permeant only to apoptotic cells but not to live cells.
Necrotic cells are labeled with red-fluorescence propidium iodide. This assay detects three
types of cell populations: (1) live cells show a low level of green fluorescence, (2) early apoptotic
cells show an incrementally higher level of green fluorescence, (3) and late apoptotic (dead)
cells show both red and green fluorescence. Using single-color stained cells, standard compen-
sation was performed and cell debris was gated out [35, 36]. Briefly, 1 x 10° cells/ml were incu-
bated with 1ul of YO-PRO-I and 1 pl of PI for 30 min at 4° C and were analyzed in a BD
FACSCalibur (UAMS Core Facility for Flow cytometry) within 1 h. For each treatment condi-
tion, at least 10,000 cells were used and the data was analyzed by Flow]Jo software to detect dif-
ferent cell populations. YO-PRO-I based flow cytometry detects changes in plasma membrane
phospholipid orientation, similar to annexin V-assay and these two methods are comparable.
Data in the flow histogram is presented as percentages of early and late apoptotic cells in the
total population. Bar graph shows total apoptotic cells in each treatment condition.

Measurement of mitochondrial membrane potential (MMP)

For MMP measurements, MCF-7 cells were seeded in 96-well plates as described before

and allowed to grow for 24 h. Cells were then incubated with varying concentrations of 5-ALA
for 4 h. Excess 5-ALA was removed by a wash step followed by replacement with FBS and
phenol red free DMEM. Cells were then irradiated with various doses of the He-Ne laser.
Following laser irradiation, cells were washed twice with PBS and then treated with DCA

for 24 h in complete DMEM medium. At the end of incubation, mitochondrial membrane
potential was measured by JC-1 dye method as described earlier [37]. A change in red to green
fluorescence ratio is considered a change in membrane potential. For red fluorescence, the
excitation and emission wavelengths were set at 560 nm and 595 nm respectively, whereas for
green fluorescence, the excitation and emission wavelengths were set at 485 am and 535 nm,
respectively.

Measurement of reactive oxygen species (ROS) production

For assessment of the production of intracellular ROS, cells were plated in the black clear bot-
tom 96-well plates at a density of 1.5 x 10 cells/well and treated with 5-ALA for 4 h as
described above. After washing the cells with PBS, cells were irradiated with the laser as
detailed earlier. Finally, the cells were treated with DCA for an additional 24 h. At the end of
the incubation period, ROS was detected using 2’, 7’-dihydrochloroflurorescein acetate
(DCFH-DA) as described earlier [38]. Briefly, DCFH-DA was added to the medium at a final
concentration of 10 uM and cells were incubated for 90 min in dark. Subsequently, cells were
washed twice and resuspended in 100 ul of PBS. DCFH-DA staining intensity was measured
using a fluorescence microplate reader (SYNERGY H4, Bio Tek, hybrid technology) at excita-
tion and emission wavelengths of 485 nm and 535 nm, respectively.
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ATP release assay

For ATP release assay, MCF-7 cells were seeded in 12-well plates at a density of 1 x 10° cells/
well and incubated at 37°C for 24 h. Cells were then treated with 1.0 mM 5-ALA for 4 h and
exposed to laser light (108 J/cm?) followed by treatment with 10 mM DCA as described above.
ATP released in cell culture medium was measured using a commercially available kit. Briefly,
cell lysates prepared in 100 ul ATP Assay buffer and the cell debris were removed by centrifu-
gation at 13,000 g for 5 min at 4°C. Samples were then deproteinized with 1 M perchloric acid
and neutralized with potassium hydroxide. The clear supernatants were obtained following
centrifugation at 13,000 g for 5 min at 4°C to remove any insoluble particles for ATP determi-
nation. An aliquot of 50 pl of the sample was mixed with 50 ul of ATP reaction mix and the rel-
ative fluorescence units were determined at excitation and emission wavelengths of 535 nm
and 587 nm, respectively.

Statistical analysis

All calculations were performed using GraphPad prism v 6.0 (San Diego, CA). Each experi-
ment was repeated at least three times. All data that show error bars are presented as

mean + SE unless otherwise mentioned. The significance of difference in the mean values was
determined using two-tailed Student’s ‘t’ test or by ANOVA using prism software. The p-value
“p< 0.05; **p<0.01, were taken as the value with significant differences as compared with
their controls.

Results
DCA induces cell growth inhibition in MCF-7 Cells

We have previously shown that DCA induces cell death in breast cancer adenocarcinoma
MCE-7 cell line via mitochondrial-dependent ROS production. We then hypothesized that
DCA might potentiate and produce synergistic effect on MCF-7 cells when combined with
He-Ne laser based photodynamic therapy (PDT). Cell growth inhibition in MCF-7 cells was
performed using MTT assay. As shown in Fig 2, DCA alone affected cell growth inhibition in
a dose-dependent manner during 24 h treatment. The cytotoxic effects of DCA were more sig-
nificant at higher doses of DCA (>20 mM). For combinatorial studies with DCA and PDT, we
chose a non-cytotoxic dose of DCA (10 mM) in the follow up experiments.

Low dose DCA and laser irradiation cause minimal effect on cell
viability

The effects of He-Ne laser up to a maximum dose of 108 J/cm® and 10 mM DCA were first
tested alone and in combination with DCA to examine their effects on cell viability of MCF-7
cells. As shown in Fig 3, the cell viability of MCF-7 was not affected significantly by either
treatment with He-Ne laser or DCA alone or in combination of the two where cells were
treated with DCA following exposure to laser. These results suggest that no significant cytotox-
icity associated with the laser and DCA at the dose regimens employed in this study.

Optimal dosing of photodynamic therapy following photosensitization
with 5-ALA

In order to develop an effective photodynamic therapy approach with laser irradiation, we
used 5-aminoluvelinic acid (5-ALA) as a photosensitizer in this study. As shown in Fig 4A,
5-ALA itself did not cause any significant changes in cell viability of MCF-7 cells even at 2.0
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Fig 2. Effect of DCA on cell viability. MCF-7 cells were plated at a density of 1.5x10* cells per well in 96-well plates and grown for 24
h. Cell were then treated with indicated doses of DCA for 24 h and the cell viability was determined by MTT assay as described in
“Materials and Methods” section. Data shown are mean values + standard error (SE) from 3 to 4 independent experiments, each
performed in triplicate. Asterisk shows values significantly different from control. *P < 0.01.
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mM, the maximum dose used in this study. However, when the cells were irradiated with the
laser light following treatment with 2.0 mM 5-ALA, a marked decrease in cell viability was
observed. These changes were dependent upon the laser beam strength employed (Fig 4B).
These results suggest that 5-ALA is a safe photosensitizer to develop a meaningful PDT therapy
for breast cancer.

Dose-dependent sensitizing effect of 5-ALA on DCA-mediated cell growth
inhibition

We next studied whether 5-ALA can sensitize the cytotoxic effects of DCA on MCF-7 cells fol-
lowing the combined treatment with 5-ALA and laser irradiation based PDT (5-ALA-PDT).
In a series of experiments, we found the optimal dose at which 5-ALA effected the highest cell
growth inhibition. Similarly, we kept the concentration of DCA to 10 mM and the laser beam
strength constant. As shown in Fig 5, 0.5 mM concentration of 5-ALA caused no significant
effect on cell growth (Fig 5A). However, at doses with 1.0 mM and 2.0 mM, 5-ALA caused syn-
ergistic effects (Fig 5B and Fig 5C) suggesting 5-ALA sensitizing effect was dose-dependent.
However, beyond 1.0 mM concentration, there was no significant increase in cell growth inhi-
bition by 5-ALA. We therefore used 1.0 mM 5-ALA in follow up experiments to investigate
the cell death mechanism.

DCA promotes 5-ALA-PDT-induced apoptosis

Next, we asked whether the cell growth inhibition observed during 5-ALA-PDT experiments
were due to apoptotic cell death. Using a commercially available kit (YO-PRO-I), early and
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Fig 3. Combined effect of laser-irradiation and DCA on cell viability. MCF-7 cells were cultured in 96-well plates as above in Fig 2. Cells
were irradiated with indicated doses of laser light following treatment with (B) or without (A) 10 mM DCA. DCA alone without laser
irradiation was also included as a control. Data shown are mean values + SE from three independent experiments, each performed in triplicate.

https://doi.org/10.1371/journal.pone.0206182.9003

late apoptotic cells were analyzed. As shown in Fig 6A, early apoptotic cells stained with
YO-PRO-I showed green fluorescence for apoptotic cells (lower and upper right quadrants)
and late apoptotic cells stained with propidium Iodide show red fluorescence for necrotic cells
(upper left quadrants). Double staining with YO-PRO-I and PI is indicative of late apoptotic
cells in the culture. As compared to controls, PDT + DCA treatment resulted in the highest
apoptotic cell death (Fig 6A & 6B). When the cells were exposed to 1.0 mM 5-ALA and laser
light (54 and 108 J/cm?) followed by treatment with 10 mM DCA, there was a significant loss
of cells for flow cytometric analysis perhaps due to necrosis (Fig 6A). The lower number of
apoptotic cells seen in the histogram is indicative of the remaining intact cells in the culture.
These results are in agreement with our cell viability data shown earlier. Collectively, our
results clearly demonstrate that DCA enhances 5-ALA-PDT mediated cell death by apoptosis.

Combinatorial treatment of DCA and 5-ALA-PDT induces mitochondrial
damage

Earlier studies have shown that DCA and PDT treatment led to increased ROS production
and oxidative stress in various experimental models [26, 39, 40]. Since mitochondria is
involved in excess ROS production, we treated MCEF-7 cells with 10 mM DCA and 1.0 mM
5-ALA, and two different laser beam strengths (54 and 108 J/ cm?) to determine ROS associ-
ated oxidative stress. Our results with mitochondrial membrane potential (Aym) assessment
in MCF-7 cells showed that none of the treatments either alone or in combination resulted in
any significant change in MMP (Aym) as compared to controls, except when cells were sub-
jected to 108 J/cm2 dose of laser-irradiation (5-ALA-PDT). A significant drop (50% reduction
to controls) in Aym was observed as shown in Fig 7. These results suggest that the beneficial
effects of combinatorial treatments involve mitochondrial integrity and are dependent on laser
irradiation at 108 J/cm2. We next investigated DCFH-DA fluorescence as a measure of ROS
production during DCA based photodynamic therapy under various experimental conditions.
Similar to the results shown in Fig 7, ROS production (Fig 8) paralleled mitochondrial mem-
brane potential suggesting oxidative stress played a vital role in mitochondrial dysfunction.
Thus, it is likely that decreased cell viability and increased apoptosis reported earlier (Figs 5
and 6) could be due to increased ROS and mitochondrial dysfunction.

Immunogenic cell death by DCA during photodynamic therapy

Accumulating literature strongly suggest a beneficial liaison between radiotherapy and immu-
notherapy [28]. Importantly, local radiation produces systemic, immune mediated anti-tumor
and, potentially antimetastatic effect via release of DNA, neoantigens and ICD [28, 41, 42]. In
this study, we investigated whether our approach of DCA treatment following 5-ALA and
laser-irradiation (5ALA-PDT) is linked to ICD. For this, we measured ATP release as one of
the DAMPS molecules in response to various treatment conditions. As shown in Fig 9, treat-
ment of MCE-7 cells with 1.0 mM 5-ALA, 108 J/cm? laser-irradiation and 10 mM DCA alone
and in combination caused a significant release of ATP. These doses of treatments, as deter-
mined in cell viability studies, were nontoxic. The release of ATP was most prominent when
cells were treated with DCA following treatment with 5-ALA and laser-irradiation (Fig 9).
Thus, the ATP release paralleled mitochondrial damage, ROS production and cell death indi-
cating that these molecular events are inter-related culminating into immunogenic cell death.
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Fig 4. Effect of 5-ALA and laser-irradiation on cell viability. MCF-7 cells were cultured in 96-well plates as above in Fig 3 and then
treated with indicated concentrations of 5-ALA alone as a photosensitizer for 4 h (A). For combined treatment (B), cells were first
treated with 1.0 mM 5-ALA and then exposed to indicated doses of laser-irradiation. Controls without any treatment and only with
5-ALA were also included. Cell viability was determined by MTT assay as described in “Materials and Methods” section. Data shown
are mean values + SE from three independent experiments, each performed in triplicate. Asterisk shows values significantly different
from control. *P < 0.01.

https://doi.org/10.1371/journal.pone.0206182.9004
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The purpose of this study was to investigate the potential role of DCA in reprogramming cellu-
lar metabolism of MCEF-7 breast cancer cells in the presence of radiosensitization by
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Fig 5. Dose-dependent sensitizing effect of 5-ALA on laser-irradiation and DCA mediated effects on cell viability.
MCE-7 cells were cultured in 96-well plates as above in Fig 3 and then treated with 5-ALA (A, 0.5 mM; B, 1.0 mM; C,
2.0 mM) for 4 h followed by indicated doses of laser-irradiation. Cells were then treated with 10 mM DCA. Controls
with 5-ALA and DCA alone and in combination without laser irradiation or with any treatment were also included.
Cell viability was determined by MTT assay as described in “Materials and Methods” section. Data shown are mean
values + SE from three independent experiments, each performed in triplicate. Asterisk shows values significantly
different from control. *P < 0.01.

https://doi.org/10.1371/journal.pone.0206182.g005
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Fig 6. Flow cytometry analysis of apoptotic cells. MCF-7 cells were cultured in 6-well plates and treated as described in Materials and Methods section. Harvested cells
(1 x 10° cells/ml) were labeled with the Vybrant apoptosis assay kit reagents (Yo-Pro-1 and propidium iodide) and analyzed in a BD FacsCalibur flow cytometer. Fig 6A:
Early apoptotic cells were identified by Yo-Pro-1 staining (green fluorescence, right lower quadrant), whereas late apoptotic events were identified by dual staining of
Yo-Pro-1 and PI (red fluorescence, right upper quadrant). Results show a marked increase in early and late apoptotic events in the combined treatment with DCA and

5-ALA-laser-irradiation. Shown is a representativ

e histogram out of three independent experiments performed with similar results. Fig 6B: Bar graph showing total

apoptotic cells with various treatments. Data from flow cytometry experiments (Fig 6A) were represented here in the form of bar graphs. It is evident that DCA + PDT

enhance cell death by apoptosis.
https://doi.org/10.1371/journal.pone.0206182.g006

photodynamic therapy. Garg et al and others [28, 31, 43, 44] have demonstrated that PDT pro-
vides all the benefits of the localized ionizing radiation therapy in a ROS-dependent manner.
The data included in this report demonstrate that combinatorial therapy involving DCA and
laser based PDT has an additive effect on MCF-7 cells resulting in decreased cell growth and
enhanced apoptotic cell death. To the best of our knowledge, this is the first report demon-
strating induction of immunogenic cell death with the assistance of radiosensitization and
DCA treatment in a breast cancer cell line. Recent breakthroughs in immunotherapy have
shown that eliciting immune responses against multiple types of cancer can lead to a wide
range of benefits including complete regression of metastatic disease in some cases [45]. Fur-
thermore, encouraging results from combination with PDI and PDLL1 inhibitors with cytotoxic
chemotherapy and/or radiation therapy has accelerated a renewed interest in the use of combi-
nation therapies in oncology practice. Recently, Verbrugge et al [46] have demonstrated that
radiotherapy can neutralize the inhibitory role of immune checkpoint pathways, thus suggest-
ing that radiotherapy may benefit from coincident or subsequent immunotherapy [8, 28, 47,
48].

Radiotherapy has been a major component of cancer treatment, with over 50% of cancer
patients receiving radiation during the course of their disease. As a monotherapy, radiation is
widely known to induce tumor cell death through DNA damage and by promoting expression
of Fas and MHC class I antigens on tumor cells [28]. In recent years, various combination
therapies involving surgery, radiation, chemotherapy, and immunotherapy are favored over
monotherapies since cancer is a complex disease affecting multiple signaling pathways [28,
49]. Along these lines, radiation therapy is the most favored tool since it is inclusive of both
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Fig 7. Effect of DCA on 5-ALA and Laser-irradiation on mitochondrial membrane potential. MCF-7 cells were seeded at a density of 2.0-2.5 x 10* cells/well
in 96-well plate and grown as described above. Cells were treated with 1.0 mM 5-ALA, 10 mM DCA and 54 and 108 J/cm?2 laser doses alone or in combination
as described above. The cells were then stained with JC-1 (10 uM) for 20 min at 37°C in the dark. The ratio of red to green fluorescence was acquired
subsequently with a fluorescence microplate reader. Data shown are mean values + SE from three independent experiments, each performed in triplicate.
Asterisk shows value significantly different from control. *P < 0.01.

https://doi.org/10.1371/journal.pone.0206182.g007
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immuno-enhancing and free radical generating therapy. Furthermore, the “abscopal effect”
reported for radiotherapy (RT) wherein, the localized RT results in immune-mediated tumor
regression in disease sites well outside of the radiation field [28, 41]. These ancillary and largely
unappreciated immunologic effects are now being recognized and intensely researched to bet-
ter understand the changes within the tumor microenvironment.

Both chemotherapy and radiation therapy have been causally linked to induction of apopto-
sis in various cancer models [50]. While apoptosis leads to a spectrum of immunological con-
sequences, ICD is more specific and potent way in activating tumor-specific immunity [28,
50]. As a consequence of ICD, damage-associated molecular patterns (DAMPs), such as ATP,
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Fig 8. Effect of DCA on 5-ALA and laser-irradiation on ROS production. MCF-7 cells were plated in the black clear bottom 96-well plates at a density of
1.0-1.5x10* cells/well and grown as described in Materials and Methods section. The cells were treated with 1 mM 5-ALA, 10 mM DCA and indicated does of
laser alone or in combination. The cells were then stained with DCFH-DA and fluorescence intensity was determined. Data shown are mean values + SE from
three independent experiments, each performed in triplicate. Asterisk shows value significantly different from control. *P < 0.01.

https://doi.org/10.1371/journal.pone.0206182.9g008

uric acid and high mobility group protein Box1 (HMGB1), from tumor cells and by the trans-
location of calreticulin, an ER- associated chaperone, to the tumor cell surface are released and
amplify immune response [51, 52]. Similarly, extracellular ATP is an important chemo-attrac-
tant for immune cells and plays a major role in the activation of dendritic cells [28, 50]. Taken
together, these immunological determinants activate both innate and adaptive immune
responses that ultimately enhance anti-tumor responses.

The biologic premise behind the combinatorial therapy of DCA and radiotherapy is that
the tumor-antigen release together with augmented Warburg effect facilitates enhanced oxida-
tive stress and immunogenic cell death. Till recently, chemotherapy drugs prescribed for
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Fig 9. ATP Release in response to DCA, 5-ALA and laser-irradiation. MCE-7 cells were seeded at a density of 1x 10° cells/well in
12-well plates and grown as described above. Cells were treated with 1.0 mM 5-ALA, 108 J/cm2 laser dose and 10 mM DCA alone or
in combination as indicated. The release of ATP was measured by relative fluorescence. Data shown are mean values + SE from three
independent experiments, each performed in triplicate. Asterisk shows values significantly different from control. *P < 0.01,

**P < 0.001.

https://doi.org/10.1371/journal.pone.0206182.g009

cancer patients were considered cytotoxic as well as immunosuppressive [49]. However, recent
data indicate that some of these drugs are not only cytotoxic, but also facilitate an adaptive
immune response against the tumor that the patient is suffering from. Most solid tumors
including breast cancer switch to glycolytic metabolism even though oxygen is sufficiently
available for oxidative phosphorylation to produce needed cellular energy [9]. Targeting this
abnormal phenomenon has paved a way for developing novel cancer therapeutic strategies.
DCA is known to bring about such a metabolic shift [16, 17] by inhibiting pyruvate dehydro-
genase kinase (PDK), thus activating pyruvate dehydrogenase (PDH) which enables mito-
chondrial pyruvate uptake. DCA has also been shown as an effective anticancer agent [18, 53,
54], which enhances therapeutic benefit in certain types of cancer cells [55]. In the present
study, we have examined the effectiveness of DCA by combining it with 5-ALA as a photosen-
sitizer and He-Ne laser as a mild radiation source to achieve apoptosis in MCF-7 human breast
cancer cells. We have demonstrated that DCA has robust apoptotic effects when combined
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Fig 10. Proposed mechanism of apoptosis by PDT and DCA. Possible mechanism of apoptosis in MCF-7 cancer cells

is via immunogenic cell death signaling pathway involving mitochondrial damage, ROS production and ATP release
(DAMPs).

https://doi.org/10.1371/journal.pone.0206182.9010

with PDT. Further, our results provide a mechanistic explanation of this treatment whereby a
combination of elevated ROS, mitochondrial damage and release of ATP lead to immunogenic
cell death pathway (Fig 10).

Photodynamic therapy has been shown to be beneficial in treating various solid tumors
because of the lack of side effects that ionizing radiation known to produce [29, 30]. PDT can
be combined with other cytotoxic cancer drugs, but at significantly lower doses to minimize
deleterious side effects, yet maximize its effectiveness. Golding et al (2013) has demonstrated
that glycolytic inhibitors such as 2-deoxyglucose or lonidamine potentiate 5-ALA based PDT
by inhibiting ATP production [15]. This study overlooked ATP leakage outside the tumor cells
and associated immunological consequences of ATP related signaling. In our study, we have
shown that DCA potentiates PDT by two possible mechanisms, firstly by targeting oxidative
phosphorylation and secondly by immunogenic cell death and apoptosis. Additionally, we
argue that ATP acts as a DAMP molecule in light of large body of literature available now. To
our knowledge, this is the first report showing DCA together with PDT on immunogenic cell
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death. In our study, we have used low doses of He-Ne laser light with specific wavelength of
633 nm as a mild radiation source. This wavelength of laser light specifically strikes certain
photosensitizer molecules and energizes them to produce ROS and cause oxidative damage
[27]. For this purpose, we chose 5-aminolevunlic acid (5-ALA) as a non-toxic photosensitizer
known to be involved in heme biosynthetic pathway [32]. 5-ALA preferentially enters cancer-
ous cells perhaps due to their genetic variability and hyper proliferative biochemical nature
[56-58]. Being a natural precursor molecule of heme biosynthesis, 5-ALA is non-toxic to the
cells. 5-ALA produces protoporphirin IX (PpIX) as its first metabolite in heme synthesis which
is accumulated in large quantities within the mitochondria. PpIX is highly sensitive to photo-
irradiation and upon laser exposure it produces excessive ROS which amounts to mitochon-
drial damage. Thus, 5-ALA is a preferred photosensitizer in PDT. However, the degree of
effectiveness of 5-ALA based PDT is highly dependent upon the nature of cancer cell type [32,
59].

In our combined approach of DCA mediated PDT treatment strategy, we have first opti-
mized concentrations of DCA, 5-ALA and doses of laser exposure to determine their individ-
ual non-toxic values in a MTT based cytotoxicity assay. The doses of DCA and 5-ALA used in
our combination treatment are very safe and non-toxic [53, 54, 60]. Similarly, laser doses used
in our study also did not have any deleterious effect as a single agent treatment. Mechanisti-
cally, both DCA and PDT enhanced ROS production and decreased mitochondrial membrane
integrity paving the way for increased apoptosis [60].

The type of danger signals in the form of DAMPs released during DCA plus PDT in our
cell culture system is still for speculation. However, our preliminary data on ATP shows that
this molecule is significantly elevated suggesting a vital role for ICD in our cell culture model
(Fig 10).

Conclusion

Tumor cells are notoriously non-immunogenic and acquire metabolic transformation and
therapy resistance, the properties that enable them to evade the immuno-surveillance system.
The data included here have identified a role for DCA and PDT in the induction of apoptotic
and immunogenic cell deaths. Our data indicate that DCA can be combined with other treat-
ment agents, such as those used in photodynamic therapy, to induce cytotoxicity or apoptosis
primarily in cancerous cells. Our studies also demonstrate a safe use of this combination
approach to target aggressive cancerous cells. Since DCA has been used in humans and clinical
trials are still underway, it is safe to conduct further studies of its use in laser therapy. In the
future, testing DCA with the photosensitizer and laser-irradiation in an in vivo animal model
of tumor xenograft will be a meaningful step in the right direction to further realize its poten-
tial as a successful drug for cancer treatment.
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