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Abstract

Population dynamics can be inferred from genetic sequence data by using phylodynamic methods. These methods typically
quantify the dynamics in unstructured populations or assume migration rates and effective population sizes to be constant
through time in structured populations. When considering rates to vary through time in structured populations, the num-
ber of parameters to infer increases rapidly and the available data might not be sufficient to inform these. Additionally, it
is often of interest to know what predicts these parameters rather than knowing the parameters themselves. Here, we
introduce a method to infer the predictors for time-varying migration rates and effective population sizes by using a gener-
alized linear model (GLM) approach under the marginal approximation of the structured coalescent. Using simulations, we
show that our approach is able to reliably infer the model parameters and its predictors from phylogenetic trees.
Furthermore, when simulating trees under the structured coalescent, we show that our new approach outperforms the dis-
crete trait GLM model. We then apply our framework to a previously described Ebola virus dataset, where we infer the
parameters and its predictors from genome sequences while accounting for phylogenetic uncertainty. We infer weekly
cases to be the strongest predictor for effective population size and geographic distance the strongest predictor for migra-
tion. This approach is implemented as part of the BEAST2 package MASCOT, which allows us to jointly infer population dy-
namics, i.e. the parameters and predictors, within structured populations, the phylogenetic tree, and evolutionary
parameters.
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1. Introduction

Genetic sequence data can be used to reconstruct the shared
evolutionary history, i.e. the phylogenetic tree, of pathogens.
These trees are shaped by migration and transmission dynam-
ics, and thus these dynamics should be quantifiable from the
trees by using phylodynamic methods. Phylodynamic methods,

however, typically assume that all sequences are from the same
well-mixed population.

Methods that account for population structure, such as the
structured coalescent (Takahata 1988; Hudson 1990; Notohara
1990), allow us to infer how lineages coalesce within and mi-
grate between sub-populations. This is done by inferring
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effective population sizes and migration rates, with the effec-
tive population sizes being related to transmission dynamics
(Volz et al. 2009). Even when only considering constant parame-
ters through time, the number of parameters to estimate grows
quadratically with the number of sub-populations. When addi-
tionally allowing these parameters to change through time by
using piecewise constant rate approaches (also referred to as
skyline approaches), this number has to be multiplied by the
number of time intervals considered. However, the information
encoded within a single phylogenetic tree can be too limited to
inform all these parameters. This problem is not only limited to
the structured coalescent process but also applies to structured
birth-death models (Stadler and Bonhoeffer 2013; Kühnert et al.
2016).

Alternatively, one can make use of additional data, such as
transportation data, that potentially predict these parameters
by using generalized linear models (GLMs) in a discrete trait
analysis (DTA), which we call DTA–GLM in this paper (Lemey et
al. 2014). This has, for example, been done to study the cross-
species transmission of bat rabies virus (Faria et al. 2013) or the
spatial spread of dog rabies virus through rural Tanzania
(Brunker et al. 2017). It was further used to study Ebola virus dis-
semination throughout West Africa (Dudas et al. 2017) or the
spread of Dengue virus in the Americas (Nunes et al. 2014). The
same approach has also been used to inform effective popula-
tion sizes through time in unstructured populations (Gill et al.
2016).

The underlying migration model (Lemey et al. 2009) used in
these structured models, although computationally feasible,
relies on simplifying assumptions of the tree generating pro-
cess. Namely, it is assumed that the process which generated
the phylogenetic tree is independent from the migration pro-
cess. This in turn can lead to biased estimates of migration
rates, e.g. when sampling is biased (De Maio et al. 2015).
Additionally, since only the migration process is modelled, the
coalescent process and thus the transmission dynamics in dif-
ferent sub-populations cannot be quantified.

The structured coalescent (Takahata 1988; Hudson 1990;
Notohara 1990) does not make this independence assumption.
This enables us to model the tree generating process by using
coalescence within and migration between sub-populations. It,
however, only allows considering a very limited number of dif-
ferent sub-populations (Vaughan et al. 2014), due to computa-
tional issues (De Maio et al. 2015). The GLM approach can
therefore not be readily used within the structured coalescent
framework.

In order to allow for structured models with many different
sub-populations and parameters that change through time,
approximations to the structured coalescent have been devel-
oped (Volz 2012). Such approaches avoid the sampling of
migration histories by formally integrating over every possible
migration history, allowing to consider scenarios with more
parameters (De Maio et al. 2015). They have, however, been sub-
ject to strong biases due to simplifying assumptions that were
initially not accounted for (Müller, Rasmussen, and Stadler
2017). The marginal approximation of the structured coalescent
(MASCOT) on the other hand allows integrating over every
possible migration history, avoiding such biases (Müller,
Rasmussen, and Stadler 2017, 2018). This marginal approxima-
tion allows us to consider datasets with many different sub-
populations.

Here, we introduce a GLM approach similar to Lemey et al.
(2014) coupled with the marginal approximation of the struc-
tured coalescent (MASCOT-GLM). We infer the time varying

effective population sizes of and the migration rates between
different sub-populations from predictor and sequence data,
with predictor data characterizing one location (e.g. population
size, location) or how two locations are connected (e.g. transpor-
tation, distance). These predictors may describe differences of
effective population sizes of different sub-populations or migra-
tion rate differences between sub-populations. Similar to Lemey
et al. (2014), we define the migration rates as log-linear combi-
nations of coefficients, indicators and time varying predictors.
We further employ the same definition for the effective popula-
tion sizes. Some previously used predictors for migration rates
include air traffic data between different locations (Lemey et al.
2014; Nunes et al. 2014) and distances between them (Dudas et
al. 2017). The indicators and coefficients quantify if and to what
degree each predictor contributes in predicting effective popula-
tion size or migration rate differences across different sub-
populations and points in time. Whereas the use of indicators is
not strictly necessary, they allow us to use priors on the number
of active predictors, thereby helping to reduce over-fitting. We
implemented this approach as part of the BEAST2 (Bouckaert et
al. 2012) package MASCOT (Müller et al. 2018). This implementa-
tion allows us to co-infer indicators and coefficients from ge-
netic sequence and predictor data alongside phylogenetic trees
and evolutionary parameters.

By using simulations, we show that we are able to retrieve
the extent to which each predictor informs the population dy-
namics parameters. We then apply our GLM approach to a sub-
set of sequence data from the West African Ebola virus (EBOV)
dataset (Dudas et al. 2017). This subset is comprised of lineages
descended from the major introduction of EBOV into Sierra
Leone (Dudas et al. 2017), further down-sampled to only
sequences collected in 2014. The Sierra Leonean lineage was
sustained via intense endemic transmission, making it the
dominant EBOV lineage in the entire epidemic (Dudas et al.
2017). Following its introduction into Sierra Leone this lineage
was also the source of EBOV in neighbouring Liberia and Guinea
in the late stages of the epidemic (Dudas et al. 2017). Using the
example of Ebola, we demonstrate that our approach is able to
retrieve reasonable predictors for the migration rates and effec-
tive population sizes.

2. Results
2.1 Inference of predictor contributions from
phylogenetic trees

We first tested how well indicators and coefficients can be in-
ferred from phylogenetic trees. To do so, we randomly simu-
lated ten time-varying migration rate and ten time-varying
effective population size predictors for five different sub-
populations. Each value of each predictor at every point in time
was drawn from a normal distribution with mean¼ 0 and r¼ 1.
This means that different values of the predictors were sampled
independently of one another. As in Lemey et al. (2014), we
standardized each predictor to have mean 0 and standard devi-
ation 1. Next, we randomly sampled the number of active mi-
gration rate and effective population size predictors, i.e.
predictors for which the indicator is 1, from a Poisson distribu-
tion with k¼ 0.693. This puts 50% of the weight on no predictor
predicting migration rates or effective population sizes. Having
only few predictors explaining migration patterns is common.
Lemey et al. (2014), for example, inferred sample numbers and
air traffic as the most likely predictors of the global migration
patterns of influenza when having air communities as discrete
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locations. Additionally, having many different predictors
explaining rates can lead to very large differences in rates
across sub-populations and time. Since MASCOT is using ODE
calculations to compute the probability of a tip labelled tree un-
der the marginal approximation of the structured coalescent,
large differences in rates requires very small integration time
steps to compute this probability. This in turn can lead to very
slow run times.

All other predictors are considered inactive and are used
only to see if inactive predictors can be reliably identified as
such. By using equations (1) and (2), we then calculated the mi-
gration rates between every sub-population and the effective
population size in every sub-population at any point in time
from the active predictors and coefficients. We then used these
parameters to simulate 500 phylogenetic trees in MASTER
(Vaughan and Drummond 2013) under the exact structured coa-
lescent with 400 serially sampled tips. The location of these tips
were sampled uniformly at random, allowing for different sam-
ple numbers across these sub-populations. Additionally, we

simulated sequence alignments of 1,000 nucleotides in length
using the Jukes–Cantor model on top of each phylogenetic tree
using Seq-Gen (Rambaut and Grassly 1997).

We next inferred which predictors explained patterns of mi-
gration and effective population size (indicators) in simulated
phylogenies and their relative contributions (coefficients). This
inference was done using MASCOT (Müller et al. 2018) (see
Section 4). We did this once using fixed phylogenetic trees, and
once where we co-inferred phylogenetic trees. We assessed
convergence by calculating the effective samples size of each
Markov chain Monte Carlo (MCMC) run by using coda (Plummer
et al. 2006). If either the inference on fixed trees or the joint in-
ference with the phylogenetic tree had an effective sample size
of any parameter of <50, the run was not used in the analysis.
This removed �10% of all runs from the further analysis.

In Fig. 1, we compare the inferred coefficient values of active
predictors as well as the probability that active predictors are
identified as such between the analyses when fixing and when
inferring the phylogenetic tree. The coefficients are inferred

A B

C D

Figure 1. Comparison in inference of coefficients and indicators from fixed phylogenetic trees and when jointly inferring them. (A) Inferred active coefficients when in-

ferring the phylogenetic tree (y-axis) versus the inferred active coefficients when fixing the phylogenetic tree (x-axis) for the effective population size predictors. The

coverage denotes how often the 95% highest posterior density interval includes the true values of the coefficient, which describe the effect size of active predictors. (B)

Probability of the indicator of active effective population size predictors to be 1 when inferring the phylogenetic tree (y-axis) versus it being 1 when fixing the phyloge-

netic tree (x-axis). The effect size of a predictor is given by the grey scale. Predictors with a smaller effect size (brighter) are included less often as active predictors. (C)

Inferred active coefficients when inferring the phylogenetic tree (y-axis) versus the inferred active coefficients when fixing the phylogenetic tree (x-axis) for the migra-

tion rate predictors. (D) Probability of the indicator of active migration rate predictors to be 1 when inferring the phylogenetic tree (y-axis) versus it being 1 when fixing

the phylogenetic tree (x-axis).
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well for both migration rate and effective population size pre-
dictors when fixing and when inferring the phylogenetic tree
(see Fig. 1A and C; Supplementary Figs S1 and S2 that compare
estimated to simulated values). When fixing the phylogenetic
tree, active migration rate, and effective population size predic-
tors are inferred to be active more reliably than when inferring
the phylogenetic tree (Fig. 1B and D). While inactive predictors
are reliably excluded and predictors with strong effects (large
coefficients) are reliably included, predictors with only minor
effects (small coefficients) can be falsely excluded (see also
Supplementary Figs S1 and S2). This is, however, expected due
to a small effect size.

The 95% highest posterior density (HPD) interval contains
the true parameter values in 92–95% of cases. Additionally, the
HPD interval of the number of predictors that are active contain
the true number of active predictors well (see Supplementary
Fig. S3). The coverage is especially good considering that the
simulations are performed under the exact structured coales-
cent, while the inference is done using the marginal approxima-
tion of the structured coalescent (Müller et al. 2018).

We next compared the performance of the structured coa-
lescent GLM with the DTA-GLM approach introduced in Lemey
et al. (2014) using time invariant predictors. Since we used pre-
dictor data that change through time in the simulation study
above, we re-simulated datasets with ten effective population
size and ten migration rate predictors for ten different sub-
populations. We simulated 500 trees using MASTER (Vaughan

and Drummond 2013) under the exact structured coalescent
with 1,000 serially sampled tips. We next inferred which predic-
tors explained migration and effective population sizes from
these simulated phylogenies as well as their coefficients. Since
biased sampling has been shown to bias inferences of the un-
derlying migration model of Lemey et al. (2014), we additionally
used the sample numbers in each sub-population as predictors
for migration into or out of a state. As above, we assessed con-
vergence by calculating the effective sample size of each MCMC
run by using coda (Plummer et al. 2006). If either the run using
DTA or MASCOT had an effective sample size any parameter of
<50, the run was not used in the analysis. This removed �10%
of all runs from further analysis.

Figure 2 and Supplementary Fig. S4 shows how the inference
of predictors and their contribution compares between the two
different methods. DTA-GLM underestimates the contribution
of active predictors, but correctly infers if they positively or neg-
atively predict migration rates. In particular, the relationship
between true and estimate contribution is linear. When we
compare the power of the two methods to infer active predic-
tors to be active, we find that DTA-GLM often does not correctly
identify predictors. This is not only the case for predictors with
a small effect size, but also seems to be the case for predictors
with larger effect sizes. Additionally, DTA is more likely to infer
random predictors that are not active to be predicting migration
rates. Consistent with the findings in De Maio et al. (2015), we
find that sample numbers are inferred to be a strong predictor

A B

C D

Figure 2. Inference of coefficients and indicators using the generalized linear model versions of MASCOT and DTA based on fixed phylogenetic trees. (A) Inferred active

coefficients (y-axis) versus the true coefficients for migration rate predictors using MASCOT (left) and DTA (right). (B) Probability of the indicator of active migration rate

predictors to be 1 (y-axis) for the effective population size. The dashed line corresponds to a Bayes Factor of 10 for the predictor being included. (C) Histogram of inclu-

sion probabilities from predictors that are not predicting migration rates. Therefore, the true value of these inclusion probabilities is 0 and predictors with large inclu-

sion probabilities might be falsely considered as predicting migration rates. (D) Histogram of inclusion probabilities of indicators for sample number predictors. That is,

the predictor that predicts migration into a state being proportional to the number of samples from that state. These predictors were not used to predict migration

rates.
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of migration rates into a sub-population by DTA. MASCOT on
the other hand does not put strong weight on sample numbers
as predictors when they are not actually predicting migration
rates.

2.2 2014 Ebola epidemic in Sierra Leone

We next apply the MASCOT-GLM approach to a previously de-
scribed Ebola virus dataset. We used EBOV sequences sampled
in fourteen different regions of Sierra Leone in 2014 (Dudas et
al. 2017). As migration rate predictors, we used the same time
invariant predictors as Dudas et al. (2017). Namely, we used
mean travel time to the nearest major settlement of at least
100,000 inhabitants, gridded economic output, population size
and density, mean annual temperature and precipitation, and
index of precipitation and temperature seasonality. All these
predictors can either inform migration rates from or to a partic-
ular district and are therefore called origin/destination
predictors.

To account for potentially missing predictors, we added
predictors that only predict the migration rate from or to one
individual district. We also included the sample numbers,
whether two districts neighbour each other and the ratio of
weekly cases between two districts as a migration rate predic-
tor. Additionally, we used the great circle distances between the
different districts as a migration rate predictor.

For effective population sizes we used the origin/destination
predictors from Dudas et al. (2017), i.e. the ones we listed above
being used for migration rates. Effective population size predic-
tors could not be used previously, since information about the
coalescent process in different sub-populations cannot be incor-
porated into previous approaches (Lemey et al. 2014).
Additionally, we incorporated the weekly case data of each loca-
tion as a time-varying predictor of the effective population size.
Instead of using 0 for weeks with no reported cases, we used
0.01 in order to not completely exclude lineages to be in a loca-
tion if there are no reported cases there. This also avoids com-
putational issues arising from predictors being log(0). We
further added eight predictors for which we changed the weekly
case data such that we assume that every case happened 1, 3, 6
and 9 weeks later or earlier. This allows us to test on real data if
the approach is sensitive to changes in the time scale.

We then jointly inferred the phylogenetic tree and the indi-
cators and predictors of effective population sizes and migra-
tion rates from the genetic sequence data. As an evolutionary
model, we used a strict clock and a separate HKYþC4 site model
on the three codon positions as well as a separate HKYþC4 site
model on the non-coding regions. We fixed the evolutionary
rates of the site models to the mean inferred rates of Dudas et
al. (2017) to save computation time. We analysed the data by
running three independent coupled MCMC (Altekar et al. 2004;
Müller and Bouckaert 2019) chains, each with twelve chains for
around forty-five million iterations. Then, we combined the
three chains after a burn-in of 5% and calculated effective sam-
ple size values and potential scale reduction factors (PSRF)
(Brooks and Gelman 1998) for each inferred parameter to assess
convergence using coda (Plummer et al. 2006). The PSRF values
on the posterior, prior and likelihood values was below 1.01 and
below 1.05 for most parameters. For parameters with a PSRF
larger than 1.05, the ESS of the combined chain was always
>700.

Figure 3 shows the inferred maximum clade credibility tree
with the different colours denoting the inferred locations of the
nodes. Location inference is done as described in Müller et al.

(2018). Figure 4 shows the inferred predictors for the migration
rates and the effective population sizes. The distribution of the
number of active predictors is shown in Supplementary Fig. S5.
Weekly case data is inferred to be the strongest predictor of ef-
fective population size. This is to be expected since weekly
cases should be approximately proportional to viral effective
population sizes in each location given the probability of EBOV
being transmitted is similar across different locations (Volz et
al. 2009). Weekly case data offset by 3, 6, or 9 weeks is excluded
from predicting effective population sizes. Weekly case data
where we assume all cases to have happened 1 week later or
earlier, have higher support than the predictors shifted by more
weeks, but are still less supported than the un-shifted weekly
case data.

We infer great circle distances between population centroids
of districts to be the strongest predictor for migration rates. This
means that migration rates are inversely proportional to the
distance between population centroids of districts. The root of
the tree is inferred to be in Kailahun with 62% probability, with
the rest of the probability mass approximately evenly distrib-
uted across the other locations.

3. Discussion

We here introduce a new approach that is able to jointly infer
time varying effective population sizes and migration rates us-
ing predictor data and sequencing data. Previous GLM
approaches were restricted to time invariant (Lemey et al. 2014)
and time variant (Bielejec et al. 2014) migration rates in models
that treat the migration and coalescent process as independent
processes and thus do not model effective population sizes
across sub-populations. Other approaches were using the GLM
framework to inform effective population sizes through time in
unstructured populations (Gill et al. 2016), but none allowed to
jointly model these processes. While Lemey et al. (2014) has sig-
nificant computational advantages over MASCOT, it cannot
model the effective population size and thus the transmission
dynamics within a sub-population. Approximated structured
coalescent approaches accounting for effective population sizes
within sub-populations, such as BASTA (De Maio et al. 2015),
potentially also have speed advantages compared with
MASCOT. They have, however, been shown to be significantly
biased in the presence of asymmetric effective population sizes
or non-uniform sampling (Müller, Rasmussen, and Stadler
2017).

By using simulations, we show that indicators and coeffi-
cients of predictors can be inferred reliably using MASCOT-GLM.
Predictors that do not explain migration rates or effective popu-
lation sizes are reliably excluded. This, however, also applies to
predictors with small effect size. These are often inferred to not
predict effective population sizes or migration rates at all. We
further showed that at least for phylogenetic trees simulated
under the structured coalescent, MASCOT-GLM outperforms
DTA-GLM. Sample numbers are not used as migration rate pre-
dictors in our simulations. Sample numbers are correctly ex-
cluded by MASCOT, but not by DTA. It remains open how the
different methods perform under more realistic simulation sce-
narios or when some of the active predictors are missing.

In contrast to, for example, Gill et al. (2016), we currently do
not allow for error terms in the GLM equation. We therefore es-
sentially assume that all or a subset of the predictors fully ex-
plain the migration rates and the effective population sizes
through time. Future improvements could fill that gap by allow-
ing for such error terms. This would, however, require efficient
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operators to sample the error terms. Furthermore, it would re-
quire to develop reasonable priors on these error terms, similar
to the ones used for skyline methods (see, e.g. Drummond et al.
(2005) or Minin, Bloomquist, and Suchard (2008)).

Similar GLM approaches as presented here could be applied
to inform birth, death, migration, and sampling rates through
time for structured birth-death models (Stadler and Bonhoeffer
2013; Kühnert et al. 2016).

By using the example of the 2014 Sierra Leone Ebola virus
disease (EVD) outbreak, we show that our approach is able to in-
fer the effect size of predictors reasonably from real data as
well. We infer weekly case numbers to predict effective popula-
tion sizes best. We further exclude weekly case numbers offset
forwards or backwards in time as effective population size pre-
dictors. For migration rate predictors, the distances between
population-weighted centres of different locations is inferred to

A

B

Figure 3. Analysis of data from the 2014 Ebola epidemic in Sierra Leone. (A) Inferred maximum clade credibility tree from the 2014 Sierra Leone EBOV sequences.

Colours denote the most likely inferred district for each node, and branches are coloured as their descendant node. District colour scheme is shown on the map. (B)

Weekly incidence by district. The x-axis denotes time in months and acts as a scale for both incidence data as well as the phylogenetic tree.
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be the strongest predictor. Previously, distances have been iden-
tified as an important predictor of geographic spread for Ebola
virus in West Africa, by both phylodynamic (Dudas et al. 2017)
and epidemiological approaches (Kramer et al. 2016), even
when only Sierra Leone is considered (Gustafson and Proctor
2017). Overall, we infer similar migration rate predictors as
Dudas et al. (2017) that used the panmictic and time invariant
model described in Lemey et al. (2014). We expect the greatest
differences in the inference of migration rate predictors

between the two approaches when sampling is strongly biased
(De Maio et al. 2015).

Sampling of Ebola cases was fairly dense during the out-
break. Whilst Ebola virus sequencing in West Africa has gener-
ally kept up well with increasing numbers of cases (Dudas et al.
2017), numerous locations are, however, known to have been
under-sampled or un-sampled altogether. For example,
an EBOV lineage established early in Conakry prefecture of
Guinea resurfaced at least three times during the epidemic
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Figure 4. Inferred predictors of the effective population sizes and migration rates for the Ebola analysis. (A) Inferred effective population size predictors. The x-axis

shows the probability of the predictors being included in predicting the effective population sizes. Red bars are predictors for which the median value of the coefficient

is negative and blue bars are predictors for which the median value of the coefficient is positive. The magnitude of the coefficient from a standardized predictor does

not have a direct meaning or dimension. We therefore only plotted if a coefficient was inferred to be positive or negative, i.e. if the relationship between a predictor

and the effective population size or migration rates is inverse or not. The case data predictor include the number of cases per week in a location. We additionally added

eight predictors where the cases are assumed to have happened 1, 3, 6, and 9 weeks earlier or later. These are not inferred to strongly predict effective population sizes.

(B) Inferred migration rate predictors. The x-axis shows the probability of the predictors being included in the migration model. ‘Origin’ and ‘from’ predictors predict

the migration rate from a location. ‘Destination’ and ‘to’ predictors predict the migration rate into a location. The dashed line corresponds to a Bayes Factor of 10 for

the predictor being included.
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(Carroll et al. 2015; Simon-Loriere et al. 2015; Quick et al. 2016).
This suggests the presence of a substantial, yet cryptic, localised
transmission chain not seen outside of Conakry. It remains
unclear how to treat entirely un-sampled locations and what
their effect might be on internal node state reconstruction or in-
ference of predictors. Future research will need to investigate
the effects of ghost states (Slatkin 2004) on the GLM approach.

Overall, this newly introduced method allows including pre-
dictor data, such as transportation or incidence data, into phy-
lodynamic analyses. This allows us to infer population dynamic
parameters as well as the location of ancestral nodes more reli-
ably in a computationally tractable way. Predictor data, such as
the movement of people using mobile phone data (Deville et al.
2014; Wesolowski et al. 2015) or the social mixing of different
age groups (Mossong et al. 2008), are increasingly being gath-
ered. This in turn means that methods that are able to combine
various sources of information in a computationally feasible
way will be playing an ever increasing role in epidemiology.

4. Materials and Methods
4.1 Effective population sizes and migration rates as
GLMs

Instead of inferring the effective population size NeaðtÞNeaðtÞ of
state a at time t directly, we define it as a linear combination of
c different predictors pNe ðtÞ, coefficients bNe

, and indicators rNe :

NeaðtÞ ¼ bNeexp
Xc

i¼1
bi

Ne
ri

Ne
pi

Nea
ðtÞ

� �
: (1)

The coefficients bi
Ne

can be between �1 and 1 and denote
the extent to which each predictor contributes in predicting ef-
fective population sizes. We typically use a normal distribution
as a prior distribution on these coefficients. The values of the
coefficients are sampled during the MCMC by using a random
walk operator independent of the value of the corresponding
indicator. This means that if the corresponding indicator to a
coefficient is 0, the operator samples the value of a coefficient
from the prior distribution.

The indicators ri
Ne

can be 0 or 1 and denote if a predictor con-
tributes at all. We sample these indicators by using an operator
that randomly switches the values of indicators between 0 and
1 with a hastings ratio such that the total number of indicators
that is 1 is distributed as given by some prior distribution, for
example, a Poisson distribution. We therefore perform model
selection on which predictors are active, as described for phylo-
genetic approaches in Lemey et al. (2009, 2014). In other words,
the sum of active predictors is a random variable which is
distributed according to some prior distribution. This prior dis-
tribution is typically chosen such that lower numbers of active
predictors are favoured. That means, more weight is put on less
predictors explaining the observed migration and coalescent
patterns.

bNe denotes a scaling parameter, scaling every effective
population size at every point in time with the same value.
This means that if every indicator in the effective population
size or migration rate GLM is 0, every effective population size
or migration rate will be equal to the scaling parameter. As a prior
distribution on the scaling parameters, we here used an inverse-
uniform distribution. The different predictors are in log space
and in order to have comparable predictors, they are typically
standardized, such that their mean is 0 and their standard devia-
tion is 1. The values of these predictors vary across different

states a as well as different time points t. This parametrization
of the GLM is the same as described in Lemey et al. (2014).

We apply the same framework for the forward-in-time vary-
ing migration rates mf

abðtÞ at time t between states a and b:

mf
ab ¼ bmexp

Xc

i¼1
bi

mri
mpi

mab
ðtÞ

� �
(2)

where bm is the overall rate scaler, describing the overall
magnitude of migration. Since the structured coalescent uses
backwards in time migration rates, we define the backwards in
time rates as:

mb
ba tð Þ � NeaðtÞ

NebðtÞ
mf

ab tð Þ:

The ‘�’ becomes ‘¼’ for the case when aa ¼ ab such that
NeaðtÞ ¼ aaIaðtÞ and NebðtÞ ¼ abIbðtÞ with IaðtÞ denoting the num-
ber of infected individuals in population a at time t (Volz 2012).
This is the case when the ratio of effective population sizes
between states is equal to the ratio of number of infected indi-
viduals between states.

4.2 Ebola sequence and incidence data

Sequences belonging to the major Sierra Leonean Ebola virus
lineage that dominated the country’s epidemic (Dudas et al.

2017) were extracted and down-sampled to sequences collected
up to 31 December 2014, leaving 473 taxa. Stretches of putative
hypermutation tracts corresponding to hypothesised ADAR
edits were identified and masked as described in Dudas et al.

(2017).
Incidence data were compiled from the latest WHO report

on EVD cases in Sierra Leone: http://apps.who.int/gho/data/
view.ebola-sitrep.ebola-country-SLE-new-conf-prob-districs-
20160511-data?lang¼en. These data report the number of new
EVD cases for each subnational division of Sierra Leone (district)
and epi week, split by whether the cases are confirmed or prob-
able. Additionally, due to the scale of the epidemic across the
region, there are two databases (an earlier patient database and
later situation reports) for EVD incidence that overlap by around
a year (September 2014–September 2015) with slightly different

reported incidences. Available data are likely underestimates of
the true burden of EVD in Sierra Leone, and thus we combine
confirmed and probable cases, and keep the higher number for
each epi week for when the reporting of patient and situation
report databases overlap (Dudas et al. 2017).

4.3 Software

The method above is implemented into our BEAST2 package
MASCOT (Marginal Approximation of the Structured
COalsescenT). Simulations were performed using a backwards
in time stochastic simulation algorithm of the structured coa-
lescent process using MASTER 5.0.2 (Vaughan and Drummond
2013) and BEAST 2.5.2 (Bouckaert et al. 2014). Script generation
and post-processing were performed in Matlab R2015b. Plotting
was done in R 3.2.3 using ggplot2 (Wickham 2009). Plotting of
the EBOV analysis was done by using baltic (https://github.com/
blab/baltic) and matplotlib (Hunter 2007). Effective sample sizes
and PSRF for MCMC runs were calculated using coda version
0.18-1 (Plummer et al. 2006).
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