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Abstract: In recent years, the introduction and use of new nanomaterials in construction has increased
at a rapid rate. Exterior surface paints have been a product that have had these nanomaterials
added to them. In this study, the effects of natural weathering and exposure to atmospheric agents
was examined to determine the detrimental effects on outdoor paint that has been created with
nanomaterials. Data collected over the course of the yearlong study indicate that the nanoparticles
of the titanium dioxide were eliminated rapidly. Further testing indicated that various elements of
weathering were affecting the physical integrity of the paint. The weathering agents that appeared
to have the greatest effect on the samples were acid deposition and total precipitation. There was a
strong association between carbon monoxide and the effects on the panels. These results can lead to
new plans for assessments involving the synergistic effects of all weathering agents.

Keywords: Engineered nanomaterials; weathering; air pollutants; meteorology; acidity; titanium dioxide

1. Introduction

Engineered nanomaterials (ENMs) have been integrated into construction materials
including paints [1]. These nano-enabled products (NEPs) are commercially desirable
due to their improved structural integrity, thermal conductivity, fire prevention, and self-
cleaning features as compared to conventional products, and, as such, they are extensively
used in commercially available consumer products [2–5]. Despite these advantages, most
commercially available NEPs are not properly identified as containing nanomaterials.
Moreover, knowledge about their health and environmental effects is scarce, particularly
throughout the lifecycle of the product. For paint, it includes preparation and application
on indoor and outdoor surfaces, environmental weathering and aging, and final removal,
typically by mechanical abrasion. Many ENMs, such as carbon nanotubes, silicon dioxide
(SiO2), titanium dioxide (TiO2), and copper oxide (CuO) have been shown to be harmful
to humans, with pristine nanoparticles translocating from the lungs into the circulatory,
lymphatic, and nervous systems [6–10].

Exposures of painters and other construction workers are most likely to occur at the
early and last stages of the paint lifecycle. The sanding dust of walls and wood coated with
nano-containing products was dominated by particles in the 100–300 nm size range [11].
TiO2 and Ag nanoparticles were found in 80% of the collected paint dust particles [12]. The
size of TiO2-containing paint dust and the abundance of nano-sized TiO2 agglomerates
was related to the sandpaper grit size [13]. As a result, there is potential for occupational
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exposures to nanoparticles in paints. This may increase the probability of various diseases
that involve the lungs, as painters already have consistently higher lung cancer mortality
than other construction workers [14]. Additionally, the probability of a painter developing
chronic obstructive pulmonary disease (COPD) is the second highest among all construction
workers, following roofers [15].

Exposure to environmental conditions including weather and chemicals affects the
integrity and stability of paint over time, leading to deterioration, breaks, and the release of
chemical species. Kaegi et al. [16] determined that leachate from a two-year-old weather-
exposed façade had significantly less ENMs than a freshly coated façade. Silver ENMs
leaching showed that the first two months of exposure resulted in 30% of total ENM
loss [17]. Atmospheric pollution can also be detrimental to coatings over time. Acid
deposition is known to significantly deteriorate the integrity of outdoor surfaces [18,19].
TiO2, the most widely used pigment in paints, reacts with acids through photocatalysis,
potentially leading to the destruction of the coating binders in the outer paint film [20,21].
This may be enhanced by the interaction of anatase nano TiO2 and UV light [22]. As a result,
paint chemicals and ENMs may be released into the environment and enter the human
body through a variety of pathways including hand-to-mouth for toddlers, the primary
concern for Pb-based paint, and through the food chain (i.e., bioaccumulation) [23–25].

In the present work, we aim to evaluate the effect of environmental weathering on
the release of TiO2-containing paint dust by mechanical abrasion. The premise behind
this study is that environmental weathering may deteriorate the integrity of paint over
time, affecting both the availability and ease of generation of TiO2-containing paint dust by
mechanical abrasion. Using a previously developed methodological framework [13], the
current work sought to realistically simulate the generation of TiO2-containing paint dust
by mechanical abrasion on weathered wood panels for a year.

2. Materials and Methods
2.1. Atmospheric Weathering Experiment

To evaluate the role of environmental weathering on paint dust generated by mechani-
cal abrasion, wood panels painted with TiO2-containing paint were exposed to weather
conditions and air contaminants for regular intervals up to a year. More specifically, both
sides of twelve (12) wood panels were prepared, conditioned, and coated as previously
described [13]. Briefly, the two sides of the wood panels (61.25 cm [L] × 28.75 cm [W]) were
painted with two layers of a commercially available water-based (49.6% w/w) latex paint
and primer formulation containing TiO2 (3.2% w/w). The application was done manually
using a 5-cm brush. The panels were conditioned at 20 ◦C and 30% RH for 48 h between
coatings and for 24 h before exposure. All panels were placed on the roof of a 6-floor
university building with restricted access and at least 10 m away from major air intake and
outlets to prevent unwanted contamination and interference (latitude: 33.502001; longitude:
−86.80382 (Datum: WGS84)) from 1 February 2017 to 31 January 2018. Every fifteen days,
the panels were rotated to directly expose both sides to environmental conditions. A panel
was randomly selected every 30 days for mechanical abrasion.

Meteorological conditions and air pollution concentrations measured at the US En-
vironmental Protection Agency NCore site in Birmingham, Alabama (EPA AIRS ID: 01-
073-0023) (latitude: 33.553056; longitude: −86.815000 (Datum: WGS84); Elevation 177 m
above sea level) for 2017 and 2018 were retrieved from the US Environmental Protection
Agency’s Air Quality System (AQS). The measured meteorological conditions included the
hourly temperature (in ◦F), percent of relative humidity, barometric pressure (in mbar), total
precipitation (in inches of water), resultant wind speed (in knots), and solar radiation (in
Langley per minute). Gaseous pollutant criteria included hourly CO (in ppm), O3 (in ppm),
NOx (in ppb), and SO2 (in ppb). The PM10 and PM2.5 mass (in µg/m3) were measured daily,
and PM2.5 speciation data were obtained at a frequency of once every three days. More spe-
cific chemical components including the total sulfate (SO4

2−), nitrate (NO3
−), ammonium

bisulfate ((NH4)2SO4), and ammonium nitrate (NH4NO3) concentrations were obtained.
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2.2. Paint Dust Generation and Characterization

The Coatings Aerosol Resuspension System (CARES) was used to generate TiO2 con-
taining paint dust using an orbital sander and 120 grit size sandpaper in a polyvinylchloride
glove box chamber (115 cm × 60 cm × 60 cm) (Lancs Industries, Kirkland, WA, USA) [13].
A wide particle spectrometer (WPS) (Model 1000XP, MSP Corp., Shoreview, MN, USA)
and a condensation particle counter (CPC) (Model 3771, TSI Inc., Shoreview, MN, USA)
were used to measure the particle number concentration and size distribution. Paint dust
samples were collected on 13-mm cellulose filters and 47-mm Teflon filters (Pall Corp., Port
Washington, NY, USA) at a 1.0 and 5.0 L/min flow rate, respectively, for chemical and
imaging analysis, respectively. Chemical analysis was done by attenuated total reflectance
Fourier-transform infrared spectrometer (ATR-FTIR; ALPHA II Platinum ATR, Bruker corp.,
Billerica, MA, USA) with a single reflection diamond ATR (range: 400–4000 cm−1, with a
resolution of 2 cm−1). Morphological analysis was performed by scanning electron micro-
scope (SEM; 650 FEG, Eindhoven, The Netherlands). The SEM was used at a low pressure
setting of 0.53 torr, working distance of 10 mm, and accelerating voltage of 10 kV. Samples
were examined at 5000× and 10,000× magnifications. The elemental composition was
determined using the integrated energy-dispersive X-ray (EDX) at 5000× magnification.

2.3. Data Analysis

The count median diameter (CMD), geometric standard deviation (GSD), and PM10,
PM2.5, and PM1 mass concentration of paint dust were computed using the WPS data, as
previously described [13]. Daily descriptive statistics or meteorological and air pollution
variables were computed from hourly measurements. Subsequently, daily estimates were
further aggregated to compute the cumulative exposure conditions for each wood panel
over the 48-week period. Aerosol acidity (in mol/m3) was computed as the sum of the
molar concentrations of free SO4

2− (difference of total SO4
2− and neutralized (NH4)2SO4)

and free NO3
− (difference of total NO3

− and neutralized NH4NO3). The sum of gaseous
SO2 and NOx molar concentrations (in mol/m3) was defined as the gas acidity. Ordi-
nary least squares regression analyses of CMD, GSD, PM2.5, and PM1 mass as well as
source contributions were used to determine the monthly trends. A multivariate least
squares linear regression analysis was used to estimate the synergistic effect of weathering
conditions on paint dust levels. The following weather conditions were included in the
analysis: dew point (computed from the ambient temperature, percent of relative humidity,
and barometric pressure), molar CO and O3 concentrations, precipitation, wind speed,
and aerosol and gas acidity, allowing for df = 4 (degrees of freedom of the model). The
percent of relative effect of each variable was calculated as the product of the regression
coefficient and cumulative exposure for each variable to the total effect of all variables. The
intercept is interpreted as being the effect associated with other weathering variables not
included in this study such as highly reactive radicals. All analyses were done using SPSS
(Version 27; IBM Analytics, Armonk, NY, USA) and Origin Pro (Version 9.1; OriginLab,
Northampton, MA, USA).

3. Results and Discussion
3.1. Paint Dust Concentrations and Trends

Table 1 presents the mean (±3× standard error) and monthly trend of the CMD, GSD,
and reconstructed PM10, PM2.5, and PM1 mass concentrations. The CMD of paint dust var-
ied from 39 ± 10 nm to 98 ± 29 nm with a monthly increase of 2.2 ± 1.2 nm/month.
The GSDs of paint dust particles decreased from 3.9 ± 0.7 to 2.3 ± 0.1, at a rate of
0.12 ± 0.02 nm/month, suggesting a narrow size range of paint dust particles after weath-
ering. The CMD and GSD of paint dust generated after one month of environmental weath-
ering were somewhat different than those computed for paint dust generated from freshly
painted wood panels using the same protocol (CMD of 39.4 ± 2.7 nm; GSD of 2.2 ± 0.1),
albeit similar levels of particle mass (PM10, PM2.5, and PM1) levels were generated.
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Table 1. Monthly paint dust CMD, GSD, and mass concentrations and trend (mean ± 3× standard error).

Duration
(Month) CMD (nm) GSD

Particle Mass (µg/m3)

PM10 PM2.5 PM1

1 60 ± 22 3.4 ± 0.5 1250 ± 715 71 ± 43 18 ± 11
2 52 ± 12 3.9 ± 0.7 1573 ± 833 84 ± 39 22 ± 10
3 51 ± 14 2.9 ± 0.5 764 ± 471 38 ± 20 10 ± 5
4 77 ± 28 2.9 ± 0.5 1443 ± 1023 92 ± 68 25 ± 19
5 68 ± 18 2.8 ± 0.5 1887 ± 2325 130 ± 143 37 ± 8
6 62 ± 8 2.8 ± 0.2 832 ± 353 79 ± 36 24 ± 11
7 39 ± 10 2.5 ± 0.1 247 ± 166 25 ± 16 9 ± 6
8 50 ± 12 2.7 ± 0.2 315 ± 154 26 ± 17 8 ± 5
9 61 ± 12 2.5 ± 0.1 373 ± 416 38 ± 32 12 ± 8
10 69 ± 10 2.3 ± 0.1 315 ± 225 39 ± 22 13 ± 7
11 98 ± 29 2.4 ± 0.2 577 ± 380 64 ± 27 22 ± 7
12 82 ± 9 2.3 ± 0.1 118 ± 78 13 ± 9 4 ± 3

Trend
2.2 ± 1.2 −0.12 ± 0.02

(1/month)
−123 ± 35 −5 ± 3 −1 ± 0.8

(nm/month) (µg/m3/month) (µg/m3/month) (µg/m3/month)

This may be suggestive of weathering processes affecting the physical integrity of
paints and therefore the number and size of generated paint dust, but with no significant
changes in the availability of paint. The PM10, PM2.5, and PM1 paint dust concentra-
tions varied month by month; however, an overall decline was observed for all three
fractions, from −123 ± 35 µg/m3/month for PM10 to −5 ± 3 µg/m3/month for PM2.5
and −1 ± 0.8 µg/m3/month for PM1. This trend indicated that weathering may reduce
the quantity of paint available for mechanical abrasion through physical and chemical
deterioration and break-up.

3.2. Chemical and Morphological Analysis

The ATR-FTIR absorbance spectra of paint dust at 0, 3, and 12 months are depicted in
Figure 1. All paint dust samples retained the absorption bands at 1500–3500 cm−1 from
wood cellulosic signatures and paint organic polymers [13,26]. However, there was a
decline in the absorption bands of 1240–750 cm−1, attributed to the stretching of =C–H and
C–O groups and bending vibration of the aromatic C–H groups.
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Figure 1. ATR-FTIR spectra of paint dust generated by sanding using P120 sandpaper after 0, 3, and
12 months of environmental weathering.

Olefinic, aromatic, and hydroxyl functional groups may be more susceptible to reac-
tions by atmospheric oxidants, leading to the rearrangement and break-up of the aliphatic
chain in organic polymers and/or hydrogen bonds between polymers [27,28]. The abun-
dance of broad bands in the 400–650 cm−1 regions previously assigned to TiO2 was ob-
served to substantially decline following three months of environmental weathering, indi-
cating the rapid elimination of TiO2 materials from painted surfaces due to weathering.
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Figure 2 depicts the SEM backscattering images of paint dust at months (a) 0, (b) 3, and
(c) 12. Released paint dust particles contained TiO2 nanomaterials of various shapes (spher-
ical, amorphous) in the nano-size and submicron size range at 0 months. Both the size and
concentration of TiO2 paint dust agglomerates declined following weathering, indicating
that most of the TiO2 may be inadvertently released into the environment; however, the
remaining TiO2 may be released in the nano-size range by mechanical abrasion.
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Figure 2. Backscattering SEM image of paint dust generated by sanding using P120 sandpaper after
(a) 0, (b) 3, and (c) 12 months of environmental weathering.

3.3. Weathering

Figures 3–5 show the daily variation of meteorological, particulate, and gas pollutants
with the study period, respectively. The mean daily temperature and relative humidity
were 18.3 ◦F and 66%, respectively. There was a total of 123 rain events for a total of
619.3 cm of H2O. The winds were blowing from a variable direction, mostly across the
southwest–northeast axis, up to 1.77 m/s on average. The mean daily ambient PM10 and
PM2.5 mass concentrations were 45.8 and 8.8 µg/m3, indicating that a large fraction of am-
bient PM10 was composed of coarse particles. The total sulfate and nitrate concentrations
(2.7 µg/m3 and 0.9 µg/m3) were substantially higher than those computed from neutral-
ized ammonium bisulfate (2.09 µg/m3) and ammonium nitrate (0.6 µg/m3), suggesting
acidic aerosol conditions that favored the deposition of sulfuric and nitric acid to surfaces.
The mean daily CO, O3, NOx, and SO2 concentrations were 360 ppb, 23 ppb, 14 ppb, and
9 ppb, respectively. The variation of meteorological and air pollution conditions was typical
of an urban environment. It is worth noting that the air quality monitoring site was in close
proximity of traffic and other industrial emissions, yielding reduced O3 concentrations due
to titration by combustion-related NOx.

Figure 6 shows the percent of relative effect of weathering factors on paint dust CMD,
GSD, PM2.5 and PM1 mass concentrations. The overall effect of meteorological conditions
(dew point, rain, and wind) was positive, i.e., more paint dust being generated by abrasion,
probably due to physical decomposition of paint and wood. The negative relative effect
of CO and aerosol acidity for CMD and GSD indicated that smaller particles may be
generated and that, therefore, the resultant PM2.5 and PM1 paint dust mass would decline,
as computed by the regression analysis. On the other hand, the exposure to strong gas
oxidants such as O3, NOx, and SO2 may result in the generation of a larger particle that
was associated with an increase of paint dust mass.
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The degradation of painted surfaces exposed to weathering occurs at the surface of
the paint, inside the paint layer, and at the interface between the film and the substrate.
Weathering conditions degrade painted surfaces through chain-scission and cross-linking
reactions in the paint layer, deteriorating adhesion and the mechanical compatibility with
the substrate. Previous studies clearly demonstrated the capacity of oxidative agents
(e.g., acid rain, ozone, and radicals) to inadvertently cause significant damage to painted
surfaces [29]. However, there is no evidence of chemical interactions of paint formulations,
TiO2 materials, and CO [30]. In an urban environment, CO is released predominantly from
automobiles. Traffic exhaust is also the primary source of volatile organic compounds
that can readily react in the atmosphere and form hydroxyperoxy radicals. Paints may
undergo oxidation and isomerization from a non-conjugated to a conjugated isomer and
form hydroperoxides at allylic and vinylic carbons. This was in agreement with changes in
the FTIR spectra of paint dust. These hydroperoxides may form dimers and polymers to an
insoluble and infusible film. These reactions may occur throughout the life of the paint but
at decreasing rates.

Water also accelerates deterioration by stimulating physical processes and volatile and
water-soluble decomposition byproducts. In conjunction with a high ambient temperature,
which is typical in the southeast US, degradation reactions may accelerate depending on
the reactions’ activation energy. These processes may be further facilitated by TiO2 particles.
Anatase titanium dioxide participates chemically in the deterioration reaction by acting as
a catalyst in the oxidation of film by atmospheric oxygen [2].

The discharge of TiO2 particles in the environment has been hypothesized to involve
their release from the outer layer due to dissolution followed by diffusion into the solution
in cement surfaces [31]. Environmental releases of TiO2 particles appear to be negligible
during the production of paints [32], but they have been previously found in environmental
media including ambient air [33,34].

4. Conclusions

The effect of environmental weathering on TiO2-containing paint dust emissions
by mechanical abrasion was investigated. This study showed that most TiO2 and paint
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polymers may have been depleted from weathered painted surfaces; PM10, PM2.5, and PM1
paint dust emissions declined as a narrow range (GSD decrease) of smaller particles (CMD
decrease) was generated for weathered wood panels. The morphological and chemical
analysis showed that the abundance of TiO2 agglomerates in the nano-size range declined
over time. Weathering agents including meteorological conditions and air pollutants may
act at different levels and rates, independently or synergistically in various combinations
and in different sequences, resulting in highly variable outcomes. Gas and aerosol acidity
and rain appeared to exert a strong influence on paint deterioration. The strong association
with carbon monoxide, an indicator of incomplete combustion, may be indicative of the
potential effect of highly reactive volatile organic compounds, co-emitted with CO from
vehicles. This study demonstrated the need to assess the synergistic effects of environmental
weathering on painted surfaces because of its potential to expose the environment and
workers to appreciable quantities of TiO2-containing paint dust.
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22. Marolt, T.; Škapin, A.S.; Bernard, J.; Živec, P.; Gaberšček, M. Photocatalytic activity of anatase-containing facade coatings. Surf.
Coat. Technol. 2011, 206, 1355–1361. [CrossRef]

23. Lin, G.; Peng, R.; Chen, Q.; Wu, Z.; Du, L. Lead in housing paints: An exposure source still not taken seriously for children lead
poisoning in China. Environ. Res. 2009, 109, 1–5. [CrossRef] [PubMed]

24. Lucas, J.-P.; Le Bot, B.; Glorennec, P.; Etchevers, A.; Bretin, P.; Douay, F.; Sébille, V.; Bellanger, L.; Mandin, C. Lead contamination
in French children’s homes and environment. Environ. Res. 2012, 116, 58–65. [CrossRef]

25. Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Rehman, M.Z.U.; Farid, M.; Abbas, F. Effect of metal and
metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017,
322, 2–16. [CrossRef] [PubMed]

26. Vahur, S.; Teearu, A.; Leito, I. ATR-FT-IR spectroscopy in the region of 550–230 cm−1 for identification of inorganic pigments.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 1061–1072. [CrossRef]

27. Stephens, E.R. Chemistry of Atmospheric Oxidants. J. Air Pollut. Control Assoc. 1969, 19, 181–185. [CrossRef]
28. Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a Group Contribution Method to Predict Aqueous Phase

Hydroxyl Radical (HO•) Reaction Rate Constants. Environ. Sci. Technol. 2009, 43, 6220–6227. [CrossRef]
29. Lipfert, F.W.; Dupuis, L.R.; Malone, R.G.; Schaedler, J. Case Study of Materials Damage due to Air Pollution and Acid Rain in New

Haven, CT; Brookhaven National Lab.: Upton, NY, USA, 1985.
30. Salthammer, T.; Fuhrmann, F. Photocatalytic Surface Reactions on Indoor Wall Paint. Environ. Sci. Technol. 2007, 41, 6573–6578.

[CrossRef]
31. Bossa, N.; Chaurand, P.; Levard, C.; Borschneck, D.; Miche, H.; Vicente, J.; Geantet, C.; Aguerre-Chariol, O.; Michel, F.M.;

Rose, J. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environ. Pollut. 2017, 220, 1160–1170.
[CrossRef]

32. Fonseca, A.S.; Viitanen, A.-K.; Kanerva, T.; Säämänen, A.; Aguerre-Chariol, O.; Fable, S.; Dermigny, A.; Karoski, N.; Fraboulet, I.;
Koponen, I.K.; et al. Occupational Exposure and Environmental Release: The Case Study of Pouring TiO2 and Filler Materials for
Paint Production. Int. J. Environ. Res. Public Health 2021, 18, 418. [CrossRef] [PubMed]

33. Hong, H.; Adam, V.; Nowack, B. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials
(Nano-Ag, Nano-TiO2, and Nano-ZnO) in European Freshwaters. Environ. Toxicol. Chem. 2021, 40, 2629–2639. [CrossRef]
[PubMed]
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