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Abstract  

Background: This prospective cohort study aimed to evaluate the antibody 

responses in non-invasive gingival crevicular fluid (GCF) and unstimulated whole 

saliva to the SARS-CoV-2 Spike unit 1 receptor-binding domain (S1-RBD) protein 

following administration of the mRNA BNT162b2 vaccine. 

Materials and Methods: This longitudinal study recruited 37 participants with no 

prior COVID-19 exposure (8 people recruited prior to the COVID-19 pandemic – 

labelled pre-COVID, 16 vaccinated and 13 non-vaccinated participants). An enzyme-

linked immunosorbent assay (ELISA) was used to determine antibody levels against 

S1-RBD in 90 saliva and 80 GCF samples obtained at 1 and 3 weeks after dose 1, 

and 3 days, 7 days and 3 weeks after dose 2. To determine previous SARS-CoV-2 

infection status, anti-nucleocapsid (N) Ig levels were determined in samples from 8 

pre-COVID (saliva as reference), 13 non-vaccinated (saliva and GCF) and 16 

vaccinated (saliva and GCF) participants at 1-week post-dose 1 using ELISA.  

Results: Salivary levels of Anti-N antibodies measured in samples from vaccinated 

and non-vaccinated participants were comparable to those in pre-COVID saliva 

samples collected between October 2018 and September 2019, thus confirming that 

all study participants had no prior SARS-CoV-2 infection. Overall, the levels of anti-

S1-RBD antibodies peaked at 3 weeks after dose 2 in both saliva and GCF for all 

three immunoglobulin isotypes. Notably, the concentration of anti-S1-RBD antibodies 

in GCF was significantly higher than in saliva at all time points.  

Conclusion: This study establishes GCF and saliva as viable alternative non-

invasive sources to monitor levels of antibodies following vaccination, with GCF 

demonstrating feasibility as a biofluid source for the detection of antibodies against 

SARS-CoV-2 S1-RBD antigen. 

Keywords: COVID, Immunology, Gingival Crevicular Fluid, Biomarker, clinical study, 

Host response, Periodontics, Saliva  
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Introduction 

SARS-CoV-2 is a newly identified enveloped, RNA single-stranded virus within the 

Coronaviridae family that is responsible for the coronavirus disease 2019 (COVID-

19) pandemic 1. SARS-CoV-2 has four key structural proteins: the nucleocapsid (N), 

spike (S), envelope and membrane 1, 2. Among these proteins, host antibody 

responses after natural SARS-CoV-2 virus infection are targeted primarily towards 

the S and N proteins 3-5. The spike glycoprotein contains a receptor-binding domain 

(RBD) that mediates viral binding to the angiotensin-converting enzyme 2 (ACE2) 

receptor on human cells, and it is a major target for vaccines and rapid antigen tests 

1. Antibody detection assays targeting the RBD protein are useful in 

seroepidemiological studies, individual risk assessment, and determining the 

sustainability of the anti-RBD antibody response. 

Recent evidence indicates that the oral cavity is an important site for SARS-CoV-2 

infection 6, 7, and that saliva and gingival crevicular fluid (GCF) serve as SARS-CoV-

2 virus reservoirs 2, 6, 8. Saliva is recognised as a powerful non-invasive biosample 

comprising local and systemic proteins, pathogens and antibodies, and an 

alternative source to detect immunoglobulin (Ig; IgG, IgM and IgA) antibody 

responses upon SARS-CoV-2 infection 6, 9-12. GCF is another non-invasive highly 

concentrated biofluid composed of serum and local periodontal tissue constituents 

that reflects both local and systemic biomarker status 13. Recently, GCF was shown 

to share the same kinetics of Ig antibody response with plasma for COVID-19 

positive patients 14, further supporting the potential of GCF as a non-invasive tool for 

assessing immune status, especially the important issue of waning immunity over 

time.  It is intriguing to explore whether GCF (saliva as control) could be useful non-

invasive analytes for assessing the effectiveness of vaccination against SARS-CoV-

2 in terms of stimulating immunoglobulin antibody production.  

The messenger RNA (mRNA) Pfizer–BioNTech vaccine BNT162b2 developed 

against SARS-CoV-2 offers great promise to prevent the spread of disease and 

mitigate morbidity and mortality associated with SARS-CoV-2 infection 15-18. This 

vaccine induces Spike protein-specific immunoglobulin antibodies that confer 
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protective immunity 17. IgG, IgM and IgA antibody responses have been studied 

extensively in blood (or sera) samples in either COVID-19 patients or BNT162b2 

vaccination recipients to gain insights into the host immune response 16, 17, 19-25. 

Since blood sampling is invasive, it is of considerable importance to explore oral 

biofluids as alternative non-invasive samples for this purpose. Currently, there are 

two commercial antibody tests to detect antibodies against SARS-CoV-2 after 

vaccination: 1) neutralizing antibody detection tests (ie. antibody tittering using a 

competitive ELISA), and 2) binding antibody tests (ie. binding with Ig using ELISA). 

Limited studies to date have shown that IgG antibodies against spike protein 

generated by BNT162b2 vaccination can be detected in saliva using either binding 

antibody tests 26-28 or neutralising antibody test 10, 29, while the presence of Ig 

antibodies in GCF following BNT162b2 vaccination has not yet been demonstrated. 

As both saliva 6, 10-12, 26, 27, 30 and GCF 8, 14 are reservoirs for SARS-CoV-2 virus and 

important oral biofluids for Ig detection upon infection, the present study was 

undertaken to determine SARS-CoV-2-specific antibody levels in GCF and saliva 

over time, following the first and second dose of the BNT162b2 vaccine. 

Materials and Methods  

Study participant recruitment  

This study was approved by the human subjects ethics board of the Metro North 

Hospital and Health Service (MNHHS) and The University of Queensland Human 

Ethics Committees (approval numbers: 65509 and 2020/HE002629, respectively) 

and was conducted in accordance with the Helsinki Declaration of 1975, as revised 

in 2013. This study was performed following the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guidelines for human 

observational investigations 31. All the participants were voluntary with written 

informed consent prior to enrolment in the study. All 37 participants (8 pre-COVID, 

16 vaccinated and 13 non-vaccinated) were staff and students at the University of 

Queensland School of Dentistry, being generally healthy without any underlying 

systemic diseases and with no prior SARS-CoV-2 infection. Consecutive participants 

who were older than 18 years were included, with no exclusion criteria being applied. 

Demographic data are presented in Table 1 and in Table S1 in online Journal of 

Periodontology. 
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This observational study monitored the levels of antibodies to SARS-CoV-2 antigens 

in participants who received the BNT162b2 vaccine between May and July 2021 

(n=16). Samples of whole unstimulated saliva and GCF were collected at 1 week 

and 3 weeks after the first dose, and then at 3 days, 7 days, and 3 weeks after the 

second dose (see Figure S1 in online Journal of Periodontology). There was an 

interval of 3 weeks between the two vaccine doses and a total follow-up time of 6 

weeks. These time points were chosen based on the documented humoral immune 

response upon viral infection and immune response post-BNT162b2 vaccine 32-34.  

IgG, IgA and IgM antibodies to the RBD of the S1 subunit of the viral spike protein 

(SARS-CoV-2-S1-RBD) were assayed using a commercial enzyme-linked 

immunosorbent assay (ELISA). To remove any potential bias, samples from 

participants who were not vaccinated (n=13) and not previously infected by COVID-

19 were used as non-vaccinated controls.  

To confirm that our participants were not previously COVOD-19 positive, we 

compared the saliva samples to 8 whole saliva samples collected prior to the 

COVID-19 pandemic. Thus, whole unstimulated saliva from pre-COVID (n=8), non-

vaccinated (n=13) and vaccinated (n=16) participants were subjected to ELISA for N 

protein, which only increases following exposure to COVID-19 but not following 

vaccination. 

It is noted that one participant dropped out after the second dose and two 

participants did not provide GCF samples. Thus, a total of 98 saliva and 80 GCF was 

collected for this study at defined time points (see Table S2 in online Journal of 

Periodontology).  

Saliva and GCF sampling  

All participants were asked to refrain from food and drink for at least 1 hour before 

their appointment. Samples were collected between 9.00 AM and 12.00 PM. The 

participants rinsed their mouths to remove any food debris using 10 mL of water 

before saliva and GCF collection. Saliva was collected first and GCF collection was 

performed by a registered periodontist within 30 mins after saliva collection. 

Unstimulated whole saliva samples were collected using the spitting method as 

described previously 35-38. The participants expectorated the saliva into a sterile 50ml 
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falcon tube for 1 min. The samples of whole saliva were kept immediately on ice, and 

then aliquots were stored at −80 °C until used for ELISA. After that, 10 µL of whole 

saliva was carried out for ELISA test.  

For consistency, GCF samples were collected from a single non-bleeding 

mesiobuccal premolar site using sterile strips† by a registered periodontist as 

described previously 39, 40. The pre-selected mesiobuccal premolar site for each 

participant did not produce bleeding upon probing. Briefly, the area for collection of 

GCF was isolated using cotton rolls and air-dried for 10 seconds to avoid saliva 

contamination. Subsequently, a paper strip was inserted 2-3 mm into the gingival 

sulcus of the right maxillary premolar tooth (#14) at the mesiobuccal line angle and 

left for 30 seconds, ensuring that no saliva or blood contamination occurred. The 

GCF volume (µL) was determined ‡ and ranged between 0.09 and 1.2 µL (see Table 

S3 in online Journal of Periodontology). After Periotron reading, the paper strips 

were placed in 1.5mL Eppendorf tubes and eluted with 300 μL of phosphate-buffered 

saline. The eluate was immediately frozen and kept at −80°C until analysis. 10 µL of 

diluted GCF eluate was used for subsequent ELISA assay.  

Antibody detection against the SARS-CoV-2 proteins 

Commercially available ELISA assays were used to measure the levels of IgG, IgM 

and IgA antibodies against the spike glycoprotein § and N protein ** according to the 

manufacturer‟s instructions and as published previously 41. Briefly, 10 µL of saliva 

and 10 µL of eluted GCF were diluted in sample buffer to 50 µL and added to 

antigen-coated wells for 1 hour at room temperature. Thus, each saliva sample was 

diluted 5 times and GCF samples were diluted ~1,100 to 16,000 times for ELISA 

(see Table S3 in online Journal of Periodontology). After a series of washes with 

PBS, 50 µL biotinylated anti-human IgG antibody was added to each well, and the 

samples were incubated for a further 30 minutes. After final washes with PBS, 50 μL 

of HRP-streptavidin solution was added to each well for 30 minutes at room 

temperature, followed by 50 µL of TMB One-Step Substrate Reagent and then a 

                                                           
†
 PerioPaper, Oraflow Inc., Planviwe, NT, USA 

‡
Periotron 8000,  Pro-Flow Inc., Amityville, New York, USA 

§
 catalogue numbers: IEQ-CoVS1RBD-IgG-2, IEQ-CoVS1RBD-IgA-2, IEQ-CoVS1RBD-IgM-2; Raybiotech, Peachtree 

Corners, GA, USA 
**

 catalogue numbers: IEQ-CoVN-IgG-2, IE-CoVN-IgM-2, IE-CoVN-IgA-2; Raybiotech, Peachtree Corners, GA, 
USA 
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further incubation for 15 minutes at room temperature. The colour reaction was 

halted with 25 µL of Stop Solution, and the degree of enzymatic conversion of the 

substrate was determined by measuring absorbance at 450 nm.  

As stated in manufacturer‟s instructions, the exact amount of IgG/IgM/IgA is not 

known for positive controls, and as such, raw absorbance values at 450 nm for 

samples are reported, in line with previous publications 41-43. The values of negative 

controls from the kits were used as internal controls (ODs ranging from 0.067 to 

0.073, shown in see Table S4 in online Journal of Periodontology), with cut-off 

values calculated as the average of 13 negative samples plus the standard 

deviations (SD), as described in previous reports 11, 12, 20. Controls and samples were 

assayed in duplicates as described previously 10, 11. The intraassay variability was 

evaluated by determining the standard deviation and percent coefficient of variation 

(CV %); CV % was no greater than 30% for the duplicate values.  

A sample was considered IgG/IgM/IgA positive if the absorbance reading value was 

greater than the cut-off value and internal negative control. For S1-RBD-IgM/IgA, 

albumin protein background was accounted for by subtracting signals from parallel 

samples added in duplicate to a second plate of albumin protein-coated wells from 

sample readings for the S1 RBD plate. As such, instances of „negative‟ data are 

presented (Figures 1b and c). Furthermore, protein content of saliva and GCF 

samples was determined by a BCA Protein Assay †† following the manufacturer‟s 

instructions. Absorbance (OD) was measured at 562 nm on a spectrophotometer ‡‡. 

Immunoglobulin OD values for saliva and diluted GCF were normalised as protein 

quantity within each 10 µL sample and expressed as OD per ug total protein (Figure 

3).  

Statistical analyses 

Data were analysed and presented as scatter plots displaying median ± 95% 

confidence interval (CI), unless otherwise defined, using GraphPad Prism §§ Data 

normality (Gaussian distribution) was determined by the D'Agostino-Pearson test 

with an α cut-off at 0.05. Further, the normality test was visualised by quantile-

                                                           
††

 Pierce BCA Protein Assay Kit, ThermoFisher Scientific, QLD, Australia 
‡‡

 Tecan Infinite® M200 Pro spectrophotometer, Tecan, Switzerland 
§§

 v9.0.0, San Diego, CA, USA 
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quantile plots in Prism, with data points following a straight line that matches the line 

of identity (if data are normally distributed). Data were considered as Gaussian 

distribution when they passed both normality tests.  

A mixed-effects model (to handle the missing data of dropouts) with Geisser-

Greenhouse correction and Dunnett's multiple comparisons test was used to 

compare S1-RBD Ig levels for each participant at defined time points, relative to 1-

week post-dose 1. Wilcoxon matched-pairs signed-rank test (non-parametric data) 

and paired T-test (parametric data) was applied for the comparison of S1-RBD Ig 

concentration between saliva and GCF at each time point, with missing data being 

excluded in this analysis.  

Ordinary one-way ANOVA with Tukey‟s test (parametric data) and Kruskal-Wallis 

with Dunn‟s test (non-parametric data) was used to compare N-Ig expression levels 

between pre-COVID, non-vaccinated and 1-week post-dose 1 vaccinated saliva 

samples. The GCF N-Ig data were compared using an unpaired T-test (parametric 

data) and Mann Whitney test (non-parametric data), respectively. A two-tailed p-

value < 0.05 was considered statistically significant. 

Results  

Study subjects 

A total of 29 (16 vaccinated, 13 non-vaccinated) subjects were enrolled, who 

provided saliva and GCF after vaccination with BNT162b2. Among vaccinated 

people, two participants did not provide GCF samples and one participant withdrew 

from the study after dose 2. In total, 98 saliva and 80 GCF samples were collected 

from 16 vaccinated participants, and 13 non-vaccinated participants (see Table S2 in 

online Journal of Periodontology). The age range of pre-COVID, non-vaccinated and 

vaccinated participants were comparable being relatively young adults (24 to 51 

years old), with both males and females from various ethnic backgrounds (Table 1 

and see Table S1 in online Journal of Periodontology). For the 8 pre-COVID 

participants, 3 males and 5 females were aged 30.5 ± 4.9 years old. In non-

vaccinated participants, there were 10 males and 3 females aged 32.2 ± 4.9 years 

old, while in vaccinated recipients there were 10 males and 6 females at 31.9 ± 9.7 

years of age. Pre-COVID, non-vaccinated and vaccinated groups had similar age 
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and sex profiles, although most participants were male. In terms of post-vaccine 

symptoms (see Figure S2 in online Journal of Periodontology), injection site pain, 

fatigue and headache/dizziness/light-headedness were the most commonly reported 

symptoms following both dose 1 and dose 2. Of note, one participant experienced 

severe symptoms for more than 7 days after both doses. 

The variability (CV%) for the majority of data was smaller than 15% CV% (93.3%). 

There was no significant difference in salivary anti-N-protein IgG, IgM and IgA 

between 8 pre-COVID, 13 non-vaccinated and 16 vaccinated participants at 1-week 

post-dose 1. The same was found in GCF for non-vaccinated and 1-week post-dose 

1 vaccinated participants (see Figure S3 in online Journal of Periodontology). This 

suggests that our participants had no prior SARS-CoV-2 infection at the time of 

sample collection. 

Antibody responses after BNT162b2 to SARS-CoV-2 S1 protein 

Overall, unadjusted absorbance readings indicated higher median IgG, IgM and IgA 

levels against SARS-CoV-2-S1-RBD protein in vaccinated recipients compared to 

non-vaccinated individuals, for both saliva and GCF, although based on small 

sample size (Figures 1, 2). In terms of temporal patterns, levels of IgG against S1-

RBD protein in saliva were not significantly different between doses 1 and 2, while 

levels of IgG in GCF were significantly higher at all time points (3 weeks after dose 1, 

and 3 days, 7 days and 3 weeks after dose 2) compared to 1 week after dose 1 

(Figure 1a). No significant changes in either salivary or GCF IgM between doses 1 

and 2 were observed (Figure 1b), although absorbance readings for IgM were 

considerably higher in saliva than in GCF. An elevated IgA response was seen in 

saliva samples, although this was significant only at 3 weeks post dose 2 compared 

to 1 week after the first dose (Figure 1c). Conversely, there was a significant 

increase in GCF anti-IgA antibodies at all time points (3 days, 7 days and 3 weeks) 

post dose 2 (Figure 1c). All three immunoglobulin isotypes reached their peak levels 

at 3 weeks post dose 2 in both saliva and GCF (Figure 2). In terms of gender, we 

determined each participant‟s antibody response kinetics over time (Figure 3) and 

the trend between males and females was similar in both saliva and GCF (see 

Figure S4 in online Journal of Periodontology).  
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When the percentage of participants exhibiting a positive immune response to S1-

RBD protein (i.e. higher than the non-vaccinated cut-off values in Figure 1) was 

compared at each time point after the first and second doses of vaccine, there was a 

higher percentage of positive immune responses (IgG/IgM/IgA) to S1-RBD protein in 

saliva samples than in single-site GCF samples following the first dose (see Table 

S2 in online Journal of Periodontology). In contrast, the percentage of GCF samples 

with positive anti-S1-RBD IgG/IgM/IgA responses increased following the second 

dose, and these were comparable to saliva samples at all time points after 

vaccination (see Table S2 in online Journal of Periodontology).  

Assay samples were normalised to the amount of total protein in the sample volume 

(OD/g total protein) for direct comparison between saliva and GCF concentrations 

of IgG, IgM, and IgA (Figure 4). The concentration of all three Ig isotypes was 

significantly higher in GCF than saliva at all time points, with an increase in median 

OD/g total protein between 2.5- and 16-fold (Figure 4a-c).  

Discussion  

Monitoring antibody responses after COVID-19 vaccination is critical for 

understanding the effectiveness of the conferred protection against SARS-CoV-2 

infections, and for informing public health measures at the community level. The 

results of this study show that immunoglobulins against SARS-CoV-2-S1-RBD 

(IgG/IgM/IgA) generated by the BNT162b2 vaccine are detected in both saliva and 

GCF. Moreover, GCF was shown to be markedly more sensitive in terms of Ig 

concentration. This is the first study to demonstrate that the immune response to 

COVID19 is detectable in GCF and that GCF collected from a single site can be 

informative for monitoring and assessing immune response after vaccination. 

Oral biofluids are valuable as “liquid biopsies” for the detection of antibodies against 

SARS-CoV-2-S1-RBD. Studies to date have utilised blood, serum, or breast milk to 

detect antibodies generated by BNT162b2 mRNA vaccination 16, 17, 19-25. Recently, 

stimulated saliva 27 or extracts from saliva filtered through 22 µm filters 26 were used 

to track antibodies against the spike glycoprotein. The levels of salivary IgG, IgM and 

IgA against SARS-CoV-2 S1-RBD protein observed in the current study are 

consistent with recently published data on antibodies against the spike glycoprotein 

being present in the saliva of BNT162b2 vaccine recipients 26, 27. Of note, levels of 
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antibodies in saliva against S1-RBD peaked 3 weeks after dose 2, which is in line 

with changes in the levels of antibodies in serum 18. The levels of IgG antibodies in 

saliva against the spike protein are approximately 500-times lower than in serum 27, 

consistent with the premise that salivary antibodies are a dilution of the concentration 

found in serum. This may explain why antibody levels in the present study varied 

between individuals. Indeed, immune response varied among individuals after each 

vaccination dose (see Table S2 in online Journal of Periodontology). Compared to a 

blood sample, whether saliva and GCF reflect comparable levels of immunoglobulin 

response needs further investigation.   

Our findings support the value of GCF as an analyte for assessing antibody 

responses against S1-RBD after vaccination. The evidence for this comes from 

using matched samples of unstimulated saliva and GCF from the same individual 

over time. Although raw absorbance readings for IgG, IgM and IgA antibodies 

against the S1-RBD protein were higher for whole unstimulated saliva than GCF 

(Figure 1), there was up to a 16-fold increase in concentrations of the Ig isotypes in 

GCF after normalising for total sample protein (Figure 3). There are other recent data 

showing GCF to be comparable to saliva in terms of its sensitivity as a diagnostic 

fluid for the detection of SARS-CoV-2 virus 8. Despite GCF having the same kinetics 

of IgA and IgG antibodies upon SARS-CoV-2 infection 14, it is not feasible to directly 

compare the antibody concentration in blood and GCF presented in this study, as a 

direct comparison is not possible with the previously reported blood neutralising 

antibody titer (>1:160 dilution) and GCF antibody ratio (ng of specific Ig per 100 mg 

total IgG) data 14. GCF is a serum transudate, reflecting its constituents and 

comprising highly concentrated biological components compared to saliva. It is worth 

noting that in the present study, saliva was diluted 5 times, but GCF was diluted 

1,000-16,000 times for ELISA. Due to the limitation of commercial ELISA kits that 

were used in this study, we were unable to normalise the Ig data to GCF volume, 

without knowing the exact amount of Ig in positive control samples. In Figure 4, 

diluted GCF exhibited an Ig increase of 2.5- and 16-fold compared to saliva. 

Considering the dilution factor of GCF, it is speculated that GCF has at least more 

than 500 times higher antibodies than saliva, while saliva has ~500 times lower than 

blood 27. This suggests that highly concentrated GCF may reflect circulating Ig 

concentrations following BNT162b2 mRNA vaccination. However, patient-matched 
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blood samples should be assayed in future studies to confirm this. Moreover, the 

vaccinated participants belong to the 25-50-year group and our data showed that 

antibody responses between males and females have a similar trend, which is in line 

with published immune responses that are gender-independent within the same age 

group 34. In light of this, the findings of the present study highlight the potential of 

GCF as a tool for both COVID-19 diagnosis and immune surveillance available to 

dentistry practitioners and researchers alike.   

It is highlighted that GCF collection needs to be performed by an appropriately 

trained dental professional; therefore, the application of GCF as a clinical source for 

immune response monitoring may be limited at this point in time due to the technique 

sensitivity of collection protocols. Nevertheless, GCF potentially mirrors serum 

antibody levels and is a non-invasive sampling method more favourable to blood 

collection. It may be worthwhile to train dental professionals in standardised GCF 

collection, which could be incorporated into routine dental screening procedures to 

facilitate non-invasive periodontal biofluids-GCF diagnostics for immune surveillance 

at a community level. 

Several study limitations that must be acknowledged include, i) a relatively small 

sample size, ii) the absence of baseline (pre-vaccination) data for vaccinated 

participants, such that it was necessary to use saliva and GCF samples from a 

separate cohort of non-vaccinated individuals as negative controls, iii) the absence 

of participant-matched blood or serum samples, iv) a relatively narrow age group 

(paediatric (<16 y.o) and older than 65-year-old were excluded) and v) no correlation 

assay was performed: a) between saliva and GCF antibodies level and b) 

saliva/GCF vs matched plasma samples. This is because children under 16 were not 

being vaccinated in Australia and the older population (>60y.o.) was prioritized for 

the Oxford/AstraZeneca vaccine at the time of this study. A larger cohort study 

where matched pre- and post-vaccination samples of GCF, saliva, and blood 

collected from different aged participants are necessary to validate the utility of GCF 

for monitoring an individual‟s immune status following vaccination. Future correlation 

assays to correlate antibody levels between saliva and GCF and plasma will be 

helpful to validate our „proof-of-concept‟ data and confirm the value of GCF as an 

alternative non-invasive biosample that reflects systemic antibody status.  

Notwithstanding the limitations of this study, it is the first report to describe the 
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utilisation of GCF to detect immunoglobulin antibodies following administration of the 

BNT162b2 vaccines.  

Conclusion 

The current data are significant in that they show that the oral biofluids saliva and 

GCF both represent potential sources for monitoring an individual‟s immune status 

after vaccination, with the more sensitive single-site GCF monitoring being an 

approach that is non-invasive and well suited to applications in the general clinical 

dental setting.  
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Figure legends  

Figure 1. Longitudinal analysis of IgG (a), IgM (b) and IgA (c) response to the 

spike 1- RBD antigens of SARS-CoV2 in saliva and GCF. ELISA absorbance 

values are shown as scatter plots, with medians and 95% confidence intervals. The 

blue dotted line represents cut-off values from non-vaccinated individuals.  *p<0.05, 

**p<0.002, ****p<0.0001 vs matched individuals at 1-week after dose 1 

 

Figure 2. Immunoglobulin response to S1-RBD over time in saliva and GCF 

(based on raw readings in Figure 1). Data are presented as median ± 95% CI. 

Figure 3. Patient matched samples are represented by the connecting lines. 

Blue and red lines represent samples from male and female participants, 

respectively.  

Figure 4. Higher levels of IgG (a), IgM (b) and IgA (c) antibodies response in 

GCF compared to saliva following two doses of Pfizer-BioNTech vaccine. Data 

were calculated using raw absorbance values per ug total protein. Data are 

presented as median ± 95% CI. **p<0.002,***p<0.001, ****p<0.0001. 
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Figure 1. Longitudinal analysis of IgG (a), IgM (b) and IgA (c) response to the 

spike 1- RBD antigens of SARS-CoV2 in saliva and GCF. ELISA absorbance 

values are shown as scatter plots, with medians and 95% confidence intervals. The 

dotted line represents cut-off values from non-vaccinated individuals. * p < 0.05, † 

p<0.002, ‡ P<0.0001 between groups compared to vs matched individuals at 1-

week after dose 1.  
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Figure 2. Immunoglobulin response to S1-RBD over time in saliva and GCF 

(based on raw readings in Figure 1). Data are presented as median ± 95% CI. 
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Figure 3. Patient matched samples are represented by the connecting lines. 

Blue and red lines represent samples from male and female participants, 

respectively.  

 



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 4. Higher levels of IgG (a), IgM (b) and IgA (c) antibodies response in 

GCF compared to saliva following two doses of Pfizer-BioNTech vaccine. Data 

were calculated using raw absorbance values per ug total protein. Data are 

presented as median ± 95% CI. * p<0.0001, † p<0.002 between saliva and GCF 

groups. 

 



 

 

This article is protected by copyright. All rights reserved. 

 

 

 Table 1: Sociodemographic data of participants 

Variables  Gender/ 

Ethicinity 

Pre-COVID Non-

vaccinated 

Post-

vaccine 

dose 1 

Post-

vaccine 

dose 2 

n  8 13 16 15 

Age in 

years 

(mean ± 

SD) 

 30.5±4.9 

(24-38) 

 

32.2 ± 4.9 

(24-51) 

31.9 ± 

9.7 

(25-43)  

 

31.4 ± 

4.1 

(25-43)  

 

*P 

(for age) 

 >0.9  0.56 0.48 

Gender, 

n (%) 

Male  3 (37.5%) 10 (76.9%) 10 

(62.5%) 

9 (60%) 

Female 5 (62.5%) 3 (23.1%) 6 

(37.5%) 

6 (40%) 

 
Caucasian  2 (25%) 5 (38.5%) 3 

(18.8%) 

3 (20%)  

Ethnicity, 

n (%) 

Asian 6 (75%) 7 (53.8) 11 

(68.7%) 

11 

(73.3) 

 
Other   1 (7.7%) 2 

(12.5%) 

1 (6.7%) 
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Note: Pre-COVID: participants that were recruited before the COVID-19 pandemic 

between October 2018 and September 2019. 

  

 

 

 

                                                           
* p values were calculated using the Kruskal-Wallis test and Dunn's multiple comparisons test vs non-

vaccinated participants. 
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